
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 41, NO. 3 ,  MAY 1995 611 

Nonparametric Estimation via 
Empirical Risk Minimization 

Ghbor Lugosi and Kenneth Zeger, Senior Member, IEEE 

Abstract- A general notion of universal consistency of non- 
parametric estimators is introduced that applies to regression 
estimation, conditional median estimation, curve fitting, pattern 
recognition, and learning concepts. General methods for proving 
consistency of estimators based on minimizing the empirical error 
are shown. In particular, distribution-free almost sure consistency 
of neural network estimates and generalized linear estimators is 
established. 

Index Terms- Regression estimation, nonparametric estima- 
tion, consistency, pattern recognition, neural networks, series 
methods, sieves. 

I. INTRODUCTION 

ET the random variables X and Y take their values from L IRd and IR, respectively. Denote the measure of X on 
IRd by p, and the measure of ( X . Y )  on IRd x IR by U .  We 
are interested in predicting the value of Y from X ,  that is, 
in a measurable function 7n : IR” --+ IR such that rrL(2Y) 
approximates Y well. One can show that if EIE71P < 3c 

(1 5 p < x), then there always exists a (not necessarily 
unique) measurable function m* that minimizes the &-error 
(Elni*(X) - YIP)l/P. Take, e.g., 

! r rL*( : r j  = inf{z : E(lz - I’IPIX = . I ; )  

5 E ( l f  - YlplX = .r;).Vt}. 

Denote the error of the I,,,-optimal predictor by .I;, that is 

.J; = iiif‘(Elrri(X) - I7IP)’” = ( E / r r r * ( S )  - I7IP)’” 

where the expectation is taken with respect to the joint 
distribution v of ( X . 1 7 j .  Assume that we do not know 
anything about the distribution of the pair (X.Y),  but a 
collection of independent, identically distributed (i.i.d.) copies 

I f 1  

D,, = ( ( X I .  Y1 j .  ’ ’ ‘ . YI , ) )  

of (X. Y )  is available, where D,, is independent of (X. Y).  
Our aim is to estimate good predictors from the data, that 
is, to construct a function 7 4 , ( x )  = ru,,(.r. D n )  such that its 
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L,-error is close to the optimum .J,*. Denote its error by the 
random variable 

Clearly. the estimated predictor rn,, is good, if its error c J P ( ~ r ~ / , , l )  
is close to the optimum .I,*. A desirable property of an estimate 
is that its error converges to the optimum as the sample size I L  

grows. This concept is formulated in the following definition. 
Dejinition I :  We call a sequence of estimators { m r L }  con- 

sistent for a given distribution of (-Y. I”), if 

t J J , ( ~ r ~ , I )  - .I; - 0 almost surely (a.s.) as 71 + x. 

{ r n I L }  is universul/y consistent if i t  is consistent for ung 
distribution of (X. 1.) satisfying Ell~l,’ < x. 

Consistency may be defined in terms of other modes of 
convergence, too. The reason we adopt (the strong notion of) 
almost sure convergence is because it provides information 
about the behavior of the estimate for the given realization of 
the training data. 

The main results of the paper are estimators that are 
universally consistent. These estimators are based on empirical 
risk minimization, which is described in Section 11. Sections 
VI and VI1 give our two main applications, where universal 
consistency of neural network estimates and generalized linear 
estimates are demonstrated. Sections 111 and IV contain some 
general tools for studying estimates based on empirical risk 
minimization, while Section V gives lemmas that are necessary 
for the neural network results in Section VII. 

The following examples illustrate why this notion of uni- 
versal consistency is important. 

Remark 1 (Curve Fitting): If Y is a function of X. that is, 
Y = h(X) for some measurable I t ,  then clearly Jy* = 0, 
and the problem of minimizing .JJ,(rr/,,I) - .I; reduces to 
approximating the unknown I r  in L,, 

where the available data are observations of h ( x )  at random 
points X1. . . . . X I ! .  If the unknown function It is an indicator 
of a set, then the problem reduces to the basic question of 
the theory of concept leurning. where the estimator ut,,, is 
typically an indicator function (see, e.g., Valiant [67], Blumer 
et al. [ 1 I ] ) .  
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Remark 2 ( L2-Error, Regression Estimation, and Pattern 
Recognition): If p = 2 ,  then 5; = JE(Y - VL*(X))~ ,  
where m*( . r )  = E ( Y I X  = J )  is the regression function, and 
J*(rrL, l )  - .I; + 0 if and only if 

E ( ( r n , ( X )  - Y ) 2 / D n )  - E ( r n * ( X )  - Y)' 
= E((m, (X)  - m*(X) )* lDn)  + 0 

which is the usual notion of L2-consistency for regression 
function estimates. Several local averaging type regression 
function estimates are known to be universally consistent, 
such as k-nearest neighbor estimates (Stone [65], Devroye, 
Gyorfi, Krzyzak, and Lugosi [22]), kernel estimates (Devroye 
and Wagner [25], Spiegelman and Sacks [64], Devroye and 
Krzyzak [23]), and partitioning estimates (Breiman, Friedman, 
Olshen, and Stone [12], Devroye and Gyorfi [21], Gyorfi 
[42]). Estimating the regression function is closely related to 
pattern recognition. In the pattern recognition problem Y can 
take only two values: Y E (-1. l}. A classifier is a binary 
valued function y,(s) that can depend on the data D,,, whose 
errorprobability P{g,(X) # YID,,} is to be minimized. The 
function that minimizes the error probability is given by 

-1. if m * ( J )  5 0 
1. otherwise Y * ( J )  = { 

and is called the Bayes decision. Its error probability 
P{g*(X) # Y} is the Buyes-risk. As observed by Van Ryzyn 
[69], Wolverton and Wagner [77], Click [34], Gyorfi [40], and 
Devroye and Wagner [24], good estimators of m*(s) provide 
classifiers with small error probability. Namely, if a classifier 
,yn is defined as 

-1. if m,(x) 5 0 c 1. otherwise % l ( J )  = 

that is, if . J 2 ( m , )  - 5; + 0, then the error probability of the 
obtained classifier approaches the Bayes-risk. 

Remark 3 (L1 -Error, Conditional Median Estimation, and 
Pattern Recognition): Next we discuss the case p = 1. It is 
well known that if the median of the conditional distribution 
of Y given X = .I' exists, then it is equal to rn*(x) ,  the 
function that minimizes the L1-error E17n(X) - Y I .  Con- 
sistency (in probability) of local averaging-type conditional 
quantile estimates were established by Stone [65], while neural 
network estimation of conditional quantiles was studied by 
White [76]. Again, a connection to pattern recognition can 
be established as follows. Assume that Y can take only two 
values: Y E { -1. l}. Then it is easy to see that a function 
that minimizes the L1 error is also binary valued, and can be 
written as 

-1. if P { Y  = -1IX = x} 2 1/2 
1. otherwise 

7 n  * ( . E )  = 

which is just the Bayes-classifier: m* = g*. Now, if we have 
a (not necessarily binary valued) estimator m, such that the 

difference between the L1-errors Jl(rn,) - J ;  is small, then 
it is natural to define a decision rule as 

-1. if m,(z) < 0 
g n ( x )  = { 1, otherwise. 

The following lemma asserts that L1-consistency of rn7, im- 
plies consistency of g n :  

Lemma 1: 

P { g n ( X )  # YIDn} - P{Y*(X) # Y }  I J1(%) - J;.  

P{g,(X) # YIX = x.D,} - P{g*(X) # Y I X  = IC} = 0 

Pro08 If gn(x) = g*(z) then clearly 

so it suffices to consider the case when g,(x) # 9*(x). By 
straightforward calculation we get 

P{y,(X) # Y I X  = x : D n }  - P{g*(X) # Y I X  = x }  

= 11 - 2P{Y = 1IX = .}I 
and 

E(lm,,(X) - Y ( X  = 5 .  D n )  - E ( / g * ( X )  - Y l l X  = x )  

2 11 - 2P{Y = 1IX = IC}~  . (I + min(Im,(z)l; I)). 

Therefore, for every IC 

P{gn(X) # Y I X  = 5 .  D,} - P { y * ( X )  # YIX = x} 

5 E ( Im, , (X)  -Y I IX = IC. D n )  -E (1y* ( X )  - Y I IX = IC) . 

Integrating both sides with respect to p completes the proof. 

11. EMPIRICAL RISK MINIMIZATION 

Our method of constructing an estimator m, is to choose 
it as a function from a class of functions 3 that minimizes 
the empirical error 

that is 

Remark: Here we assumed the existence of minimizing 
functions, though not necessarily their uniqueness. It is easy 
to see that in the special cases studied in Sections VI and 
VI1 the minima indeed exist. In cases where the minima do 
not exist, the same analysis can be carried out with functions 
whose error is arbitrarily close to the infimum, but for the 
sake of simplicity we stay with the assumption of existence 
throughout the paper. Also, similar analysis may be carried 
out for estimators that approximately minimize the empirical 
error, i.e., when Jp,n(rrLn) is sufficiently close to the optimum. 

Clearly, we need a large class of functions in order to be 
able to get small errors for any distribution of ( X , Y ) .  On 
the other hand, if the class is too large (e.g., the class of all 
measurable functions, or the class of all continuous functions 
with bounded support), it may over-t the data, that is, the 
empirical error of a function in the class may be small, while 
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its true error is large. Asymptotic properties of this method 
of minimizing the empirical risk were studied by several 
authors such as Vapnik [70] and Haussler [44]. Empirical risk 
minimization has also become known in the statistics literature 
as “minimum contrast estimation,” e.g., by Nemirovskii [53] ,  
Nemirovskii et d .  [ 5 2 ] ,  Van de Geer [68], and BirgC and 
Massart [IO]. They typically consider picking the empirical 
optimum from a collection of,fixed functions. and study how 
far it is from the true optimum in the class. The situation is 
similar i n  the theory of learning, whcre classes of functions, 
for which empirical minimization picks a function with small 
error, are called learnuhle. and are usually characterized by 
having finite VC-dimension (see, e.g., Blumer, Ehrenfeucht, 
Haussler, and Warmuth I 1 11). These classes, however, are 
usually too “small” to approximate arbitrary functions, and 
therefore fail to provide universally consistent estimators. To 
resolve this conflict, one can adopt different strategies. One of 
the more interesting techniques is called complexity regular- 
ixition (Barron and Cover [9l, Barron [5], [6], and [8]), where 
one adds a term to the empirical error that penalizes functions 
with high “complexity.” They also apply their results to the 
special cases discussed in this paper. The method of structural 
risk minirni:ation, developed by Vapnik and Chervonenkis [72] 
and closely related to complexity regularization, offers an 
automatic way of selecting correct-sized classes. The approach 
we investigate here in depth is different. We let the class 
of candidate functions change (i.e.. grow) as the sample-size 
71 grows. This principle is sometimes called the “method of 
sieves.” introduced by Grenander 1391. Its consistency and 
rates of convergence have been exhaustively studied primarily 
for nonparametric maximum-likelihood density estimation and 
least squares regression function estimation by Geman and 
Hwang [33] ,  Gallant 1321, Shen and Wong [62], and Wong 
and Shen [78]. This is the approach discussed by Devroye [20] 
for pattern recognition in  general, and by White [75], as well 
as Farag6 and Lugosi 1301 for neural networks. We should 
also mention here that apart from arithmetic means, other 
estimators of the error can also be minimized over functions in 
the class, and these estimators may perform better. The work 
of Buescher and Kumar [ 131, [ 141 formulates a more general 
theory. 

In all of our applications, the approximating function classes 
are finite-dimensional, i.e.. they can be smoothly parametrized 
by tinitely many parameters. This seems to be necessary, as 
our goal is to obtain estimators that are consistent for all 
distributions. 

Formally. let {F, l}  be a sequence of classes of functions, 
and detine r r ~ , ~  as a function in FIl that minimizes the empirical 
error 

For analyzing how close the error of the estimator . / ! > ( r t L ? , )  is 
to the optimum ./;, we will use the following decomposition: 

The first term on the right-hand side tells us about the 
“leamability” of Frl, that is, how well the empirical mini- 
mization performs over this class. We will refer to this term 
as the estimation error. The second term, which we call the 
approximation error, describes how rich the class 3, is, that is, 
how well the best function in the class performs. Here the main 
problem is to balance the tradeoff between the approximation 
potential and the estimability of the class, that is, to determine 
how fast the class should grow to get universally consistent 
estimators, if possible at all. The main tools for analyzing 
such estimators are approximation properties of the classes 
(i.e., denseness theorems), and exponential distribution-free 
probability inequalities for the uniform estimability of the error 
over the class. These exponential inequalities are necessary, 
since we need distribution-free rate-of-convergence results for 
the estimation error in order to be able to choose the size of the 
class without knowing the distribution. If Y is bounded (as, 
for example, in the pattern recognition problem), then this can 
be handled in a relatively straightforward way using uniform 
large deviation inequalities originated mainly by Vapnik and 
Chervonenkis [71], 1731 (also see Vapnik [70], Devroye [20], 
White [75]. or Haussler [44]). 

In this paper we introduce techniques to extend results to 
unbounded variables. After developing general principles and 
techniques, we exploit them to obtain universal consistency 
for estimators based on linear combinations of fixed basis 
functions. Namely, if $1. 4 ~ 2 .  . . . is a sequence of real-valued 
functions on Rd, then the estimator m, takes the form 

k 

1=1 

where the coefficients a l .  . . . . u k  are determined from the data 
Dl,  . 

Our other main examples are estimators m, realized by 
neurd networks of one hidden laver, that is, by functions of 
the form 

/=1 

where the sigmoid c : IR 4 [O. 11 is a monotone nondec- 
reasing function converging to 0 as .I‘ -+ -CO, and to 1 as 
.I’ + x. k is the number of hidden neurons, and 

H I ,  = {‘Il. ’ ‘ ’ . fJk. b l .  ’ ’ ’ . b k .  CO. .  ’ .  . ck}  

(where u l . .  . . . (ik E IR”: b l . .  . . . b k .  c0. .  . . . c k  E R) is the set 
of parameters (or weights) that specify the network. Our aim 
is to adjust the weights of the network as functions of the data 
D ,  such that the function realized by the obtained network is 
a good-desirably consistentpstimator of m* . 

111. APPROXIMATION ERROR 

Here we deal with the convergence of the approximation 
error 
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by the triangle inequality, therefore, the approximation error 
goes to zero if 

Since our aim is to establish universal consistency, we require 
this convergence for every measure p and m* E L P ( p ) .  If, for 
example, the classes are nested, that is, 3, c Fn+l for every 
R > 0, then this is equivalent to requiring that the set 

cu 

be dense in LP(p)  for all p. 

IV. ESTIMATION ERROR 

This section is devoted to investigating the almost sure 
convergence of the estimation error 

The usual way to investigate the above quantity is to exploit 
the inequality (Devroye [20], Haussler [44]) 

by using uniform laws of large numbers to estimate the 
right-hand side. In our case, we need nonasymptotic uniform 
large-deviation inequalities, since the class the supremum is 
taken over changes with the sample size n. These types of 
inequalities are available (Vapnik and Chervonenkis [7 11, [73], 
Pollard [56]) if the random variable f ( X )  - Y is uniformly 
bounded for f E F, with probability one, that is, if for each n 
there exists a constant B, E (0. x) such that P { ( f ( X ) - Y (  5 
B,} = 1. If Y is bounded by a number B > 0 with probability 
one, then this condition is satisfied if the class of functions 
.F, is uniformly bounded by some BA < CO, that is, for 
every f E F,, and IG E IRd we have If(x)l  5 BA. Then 
B, = 2max { B ,  BA} is an almost sure bound for I f ( X )  - YI. 
Note that in order to get the desired denseness property that 
is required for the convergence of the approximation error, 
BA has to approach infinity as n grows. The situation is 
more problematic if Y (and therefore, possibly m* ( X ) )  is not 
bounded. In this case it is much harder to obtain exponentional 
probability inequalities for the above supremum. Fortunately, 
however, in the case of empirical minimization the situation is 
much nicer. This is asserted by the theorem below. A similar 
result for estimators based on local averaging was given by 
Gyofi  [42]. We briefly comment here on other approaches 
taken in similar situations. Vapnik [70] developed one-sided 
inequalities so that nonuniformly bounded function classes 

may be handled. In a similar setup Shen and Wong [62] used 
adaptive truncation and large deviation inequalities based on 
L2 bracketing metric entropy. 

Theorem 1: If 

almost surely for every distribution of ( X .  E’) such that Y is 
bounded with probability one, then 

Jp(m,) - inf J P ( f )  + 0 
f E 3 n  

almost surely for every distribution of ( X . Y )  such that 
E(YIP < x. 

ProoJ Let L > 0 be an arbitrary fixed number and 
introduce the following “truncated’ random variables: 

if IYI 5 L 
yL = { :sgn (Y ) .  otherwise 

y3J = { 2:gn (Y,). otherwise 

and 
if lYJl 5 L 

for j = 1.. . . ,71, where sgn (J) = 21{,201 - 1. Further, let 
f i i ,  be a function in F, that minimizes the empirical error 
based on the truncated variables 

for every f E 3,. 

Also, denote by f *  a function that minimizes J P ( f )  over F,. 
Observe that the triangle inequality implies 

and similarly 

Combining the two inequalities above we obtain 
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Now, we bound the difference on the right hand side of the 
inequality: 

where ( 2 )  and (4) follow from the triangle inequality, while 
(3) exploits the defining optimality property of m,. Combining 

this with (l) ,  and using the strong law of large numbers we get 

J p ( m n )  - inf J , ( f )  
91-30 f € 3 7 1  

+ ~ ( E J Y L  - YIP)’/’ a.s. 

The first term of the right-hand side is zero almost surely by 
the condition of the theorem, while the second term can be 
made arbitrarily small by appropriate choice of L;  therefore, 

The main message of the above theorem is that we can 
always assume that Y is bounded (though we cannot assume 
that the bound is known), in which case using uniformly 
bounded classes of functions we will be able to derive the 
desired exponential inequalities. 

If I f ( X )  - Y I P  5 B, for f E Fn, then inequalities of the 
following type can be derived: 

the proof is completed. 

where C ( n ,  t) is the complexity of the class Fn expressed in 
terms of either the Vapnik-Chewonenkis shatter coeficient or 
the covering number of the class. We investigate some of these 
inequalities in the next section. 

v. SHATTER COEFFICIENTS AND COVERING NUMBERS 

In this section we present some lemmas that will be used to 
obtain consistency for neural network and generalized linear 
estimates. As Theorem 1 clearly demonstrates, in order to 
prove consistency, it suffices to study uniform deviations of 
averages from their expectations. Let F be a class of real- 
valued functions defined on IRd, and let Z1,. . . , Z, be i.i.d., 
IRd valued random variables. For our purposes it suffices to 
assume that functions in F are nonnegative and uniformly 
bounded, that is, there is a positive number B such that 
0 5 f ( z )  1. B for all z E IRd and for all f E F. By 
Hoeffding’ s inequality, 

for any f E F. However, we need information about 

Vapnik and Chervonenkis [73] were the first to obtain bounds 
for the probability above. Our basic tool is an inequality 
involving the notion of covering numbers defined as follows. 
Let A be a bounded subset of IRd. For every t > 0 the 
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L1-covering number, denoted by N(E,A), is defined as the 
cardinality of the smallest finite set in lRd such that for every 
z E A there is a point t E Rd in this finite set such that 
( l /d)  llz - till 5 E, where 1 1  . 111 denotes the 11 norm in lRd. 
We will mainly be interested in covering numbers of special 
sets. Let dn) = (21, . . . , z,) be a vector of n fixed points in 
Rd, and define the following set: 

W")) = {(fh), ' ' ' , f h ) ) ;  f E 3) c Et" 

that is, .F(z("))  is the space of functions in 3 restricted 
to ~ 1 . " .  ,z,. The L1 covering number of 3 ( z ( " ) )  is 
N ( E ,  F(z("1)). If Z(") = (21,. . . ,Z,) is a sequence of i.i.d. 
random variables, then N ( t , F ( Z ( " ) ) )  is a random variable. 
As the next inequality shows, this random variable plays a 
central role in the theory of uniform large deviations. 

Lemma 2 (Pollard, [561): For any t > 0 

P SUP - Cf(2i) - E f ( Z 1 )  { f E 3  1 ,Il 
Next we recall the concept of the shatter coeficient of a 

class of sets. Let A be a collection of measurable sets in IRd. 
For z l ,  . . . , z ,  E lRd, let N ~ ( z 1 , .  . . z,) be the number of 
different sets in 

and define the shatter coefficient as 

The shatter coefficient measures, in a sense, the richness of 
the class A. Clearly, s(A,7~) 5 2". If NA(z~,...,z,) = 2" 
for some ( z l , . . .  ,z,),  then we say that A shatters the set 
{ z l , . . . , z n }  . If s (A,n)  < 2", then there exist n points, 
such that for some subset of it there is no set in A that 
contains exactly that subset of the n points. In other words, A 
does not shatter those n points. The largest integer k 2 1 
satisfying s ( A , k )  = 2k is denoted by V,, and is called 
the Vapnik-Chewonenkis dimension (or VC dimension) of the 
class A. If s(A: n)  = 2" for all n, then by definition, Vd = CO. 

First we list a few interesting properties of shatter co- 
efficients s ( A , 7 t )  and the VC-dimension V, of a class of 
sets A. The following lemma, usually attributed to Sauer 
[60], describes the relationship between the VC-dimension and 
shatter coefficients of a class of sets. 

Lemma 3 (Sauer [60]): If a class of sets A has VC- 
dimension VA, then for every n 2 vd 

s ( A .  71)  5 2 (:) 
i=O 

Lemma 3 has some very surprising implications. Probably 
the most important is the following corollary. 

Corollury I :  If 2 < VA < CO, then for every n 2 1 

s(A, n) 5 nVA. 

This means that for any fixed class A, the shatter coefficients 
s ( A ,  n)  are either equal to 2" for every n, or they are bounded 
by a polynomial in n. 

The following is a general, and very useful result. (For the 
proof see also Pollard [56].)  

Lemma 4 (Cover [16]): Let 8 be an r-dimensional vector 
space of real functions on I R ~ .  The class of sets 

A = {{z  : g(z) 2 O } ; g  E 6 )  

has VC-dimension V, = r. 
Next we discuss properties of covering numbers, and their 

connection to shatter coefficients of certain classes of sets. The 
next result is a straightforward extension of inequalities found 
in Nobel [54], Nolan and Pollard [ S I ,  and Pollard [57, p. 221. 

Lemma 5: Let 3 1 ,  . . . , 3 k  be classes of real functions on 
lRd. For arbitrary, fixed points z(") = (zl, . . . , z,) E Wd" 
define the sets 3 1  (.("I), . . . , Fk ( in R" by 

3 J ( z ( q  = ( ( f ( z 1 ) .  . . . . f ( z n ) ) ;  f E 3J}, j = 1,. . . , k .  

Also, let 

m")) = { ( f ( z 1 ) ,  . . . 1  f(zn>); f E 3) 

F =  { f l  + . . . + f k ; f ,  E 3,. j = l l . . . , k }  . 

for the class of functions 

Then for every E > 0 and z(") 
k 

N(E, 3(2("))) 5 rI N(E/k ,  F J ( Z ( " ) ) ) .  

j = 1  

Let 3 and 8 be classes 
of bounded real functions on lRd, where l f(z)I 5 B1 and 
1g(z)1 5 Bz for every z E Rd, f E F, and g E 6. For 
arbitrary, fixed points z(") = (z1,  . . . , z,) E lRd" define the 
sets -T(z("))  and G(z (" ) )  in lR" as in Lemma 5. Let 

Lemma 6 (Pollard [57, p .  231): 

3-1(z(")) = { (h ( z1 ) .  . . . , h(z,)); h E 3-1) 

'Ft = {fu; s E 379 E 8) .  

for the class of functions 

Then for every t > 0 and ,z(,) 

N ( E , X ( d ) ) )  5N( f / (2Bz ) . .F ( z ( " ) )  .N( t / (2B1) ,G(z(n) ) ) .  

Now, we recall the notion of packing numbers. Let 3 be 
a class of real-valued functions on lRd, and p an arbitrary 
probability distribution on IRd. Let 91, . . .  , g m  be a finite 
collection of functions from 3 with the property that for any 
two of them 

The largest m for which such a collection exists is called 
the packing number of 3 (corresponding to p),  and it is 
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denoted by M ( E ,  3). But if b places 1/n probability on each 
of zl. .. . . z,, then M(e ,  3) = M(e ,  F(z (" ) ) ) ,  and it is easy 
to see (e.g., Kolmogorov and Tikhomirov [48]) that 

M ( 2 e . F ( z ( 4 ) )  I N ( c . F ( z ( " ) ) )  I M(€ ,F(Z( , ) ) ) .  

An important feature of a class of functions 3 is the VC- 
dimension V3+ of the following class of subsets of IRd x IR: 

3+ = { { ( x , t )  : t I f ( x ) } : f  E F}. 
This importance is made clear by the following lemma, which 
is Haussler's [44] result, based on earlier ideas by Dudley [26] 
and Pollard [56]. It connects the packing number of 3 with 
the VC-dimension of the class of sets F+. 

Lemma 7 (Haussler, [44]): 

The quantity V3+ is sometimes called the pseudo-dimension 
of F (see Haussler [44]). It is immediate from Lemma 4 
that if 3 is a linear space of functions of dimension T ,  then 
its pseudo-dimension is T .  The following lemma is another 
property of the pseudo-dimension that will be useful later. It 
is proved, for example, in Haussler's paper [44]: 

Lemma 8 (Nolan and Pollard 1551, and Dudley [27]): Let 
g : [0, B] -+ IR be a fixed nondecreasing function, and define 
the class 6 = {g o f ;  f E F}. Then 

v,+ I v3+. 
VI. SERIES METHODS 

Our first application of the principles of the previous sec- 
tions is to the family of linear estimators. Here the estimated 
function is a linear combination of a certain number of fixed 
basis functions $1, $ 1 2 .  . . . ~ &,, . The coefficients are picked to 
minimize the empirical error. In order to achieve consistency, 
the number of functions k ,  in the linear combination has to 
grow, as the sample size 71 grows, but not too rapidly. At the 
same time, for every n, the possible range of the coefficients in 
the linear combination has to be restricted as C::, lazl I p,, 
where, again, to obtain consistency, Pn has to grow, but 
not too rapidly. These estimators are closely related to the 
Fourier series estimates of a density. These density estimates 
were studied in the works of Cencov [15], Schwartz [61], 
Kronmal and Tarter [49], Tarter and Kronmal [66], Specht 
[63], Greblicki [35], and Greblicki and Pawlak [36], [37], [38]. 
Series based regression function estimation was investigated 
by, e.g., Cox [17] and Hardle [43]. The estimate for curve 
fitting and pattem recognition is also related to the so-called 
''potential function method" (see Aizerman, Braverman and 
Rozonoer [l] ,  [2], [3]). Our consistency theorem is formulated 
as follows: 

Theorem 2: Let p E [ 1. x). Let $1. $9, . . . be a uniformly 
bounded sequence of functions such that the set of all finite 
linear combinations of the +J ' s  

is dense in L p ( p )  for any probability measure ,U. Let the 
coefficients a; , . . . , a;_ minimize the empirical error 

under the constraint 
k ,  

1 %  I bf 
z = 1  

for every j = 1, . . . , k,, and denote the empirically optimal 
estimator m, as 

k n  

7n,(z)  = a,**,(.). 
J=1 

Then if k ,  and ,& satisfy 

then 

Jp(m,) - J; + 0 

in probability, for all distributions of ( X ,  Y )  with ElYlP < x. 
If we additionally assume that /3':p = o(nlP6) for some 6 > 0, 
then Jp(m,) - Jp* + 0 almost surely, that is, the estimate m, 
is universally consistent. 

Proofi We can assume without loss of generality that 
J$j(x)l 5 1 for every z E IRd and every j .  We apply the 
usual decomposition into estimation and approximation errors 

By the denseness assumption and the conditions ,l3, --f cc and 
k ,  -+ x, the class of functions 

3c 

U 3n 
n=l  

is dense in L p ( p )  for any p by the argument in Section 111, 
where 

To show that the estimation error 

converges to zero almost surely, we use Theorem 1. By 
Theorem 1, it is enough to show that if IYI 5 L a s .  for 
some L < cc, then 
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h ( X ; ,  Y,)  - E h ( X ,  Y )  

almost surely. This convergence certainly holds if where F, is the class of functions 

VF+ 5 k ,  (Lemma 4). So by Lemma 7 
-+ 0 

Therefore, it is enough to estimate the covering number 
corresponding to F,. But F, is a subset of a linear space 
of functions, and therefore, its pseudo-dimension satisfies 

to see that 

h ( X ,  Y )  = U j + j ( X )  - Y 

5 2p . max {PE, L P } .  

c 

Thus we 5 h ( X ,  y ,  5 2PpE 
almost surely. Therefore, Lemma 2 asserts that if n is large 
enough such that Pn 2 L is satisfied, then 

that if pg 2 L p ,  then which goes to zero if (l/n)k,@ log (p,) + 0. It is easy to 
see that if, in addition, for 6 > 0, p;~/~i-6 ~ 0, 
then strong universal consistency follows by applying the 

W Borel-Cantelli lemma for the last probability. 
h ( X , , Y , )  - E h ( X . Y )  

VII. NEURAL NETWORKS 
5 QEN(G,  ~ , “ ~ ( ~ ) ) ) e - ~ ~ ~ / ( l z ~ ’ 2 z p ~ ~ )  In our second example we show that it is possible to 

where Z(“) = ( ( X I ,  Y I ) ,  . . . , ( X , ,  Y,)). Next we estimate 
N ( ( E /  16), ‘H, ( dn) ) )  for any fixed ~ ( ~ 1 .  First consider two 
functions hl (z ,  y) = I ~ ~ ( I c )  -ylP and hz(z,  y) = Ifi(x) -YIP. 

Then for any probability measure v on lRd x [ -L ,L] ,  using 
the inequality 

obtain universally consistent estimators using neural networks. 
For a limited class of distributions (i.e., for distributions, 
where both X and Y are of bounded support) White [75] 
proved Lz-consistency in probability for certain estimators. 
Almost sure consistency for the same class of distributions 
can be obtained by using Haussler’s [44] results. For a smaller 

llalp - IblPl I pln - bl . lmax { a ,  b}lP-l class of distributions, Mielniczuk and Tyrcha [5 11 obtained 
Lz-consistency for arbitrary sigmoids. Universal consistency 
for the pattern recognition problem was shown by Farag6 
and Lugosi [30] for threshold function networks. Barron [6], 
[SI used the complexity regularization principle to prove 

we get 

consistency and a rate of convergence for curve fitting by = Ilfl(IC) - YIP - 1f2(z) - YIPlv (dx ,  dy) neural networks. 
A neural network of one hidden layer with k hidden neurons 

is a real-valued function on IRd of the form 

where / I  is the marginal distribution of v on IRd. Therefore, 
for any dn)  = ( X I ,  y l ) ,  . . . , ( x n ,  y n )  and E ,  

where the sigmoid 0 : lR + [0,1] is a monotone non- 
decreasing function converging to 0 as IC + --cc and 1 P(2Pn)P-l 

N ( t , Z n ( z ( ” ) ) )  5 N 
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as IC --+ 0. 6k = ( U ~ , ~ ~ ~ , ~ ~ , b ~ , ~ ~ ~ , b ~ , C ~ , ~ ~ ~ , ~ ~ }  is the 
set of parameters that specify the network ( a l ,  . . .  ,ak E 
IRd; b l ,  . . . , b k ,  C O ,  . . . , C k  E IR). We choose the parameters 
that minimize the empirical error. However, in order to obtain 
consistency, again, as in the previous section, we have to 
restrict the range of some parameters. Here we have to impose 
some restriction on the ti's. This is in contrast to results by 
White [75], [76] where the range of the ai's and bi ' s  had to be 
restricted, too. The next consistency theorem states that with a 
certain regulation of the parameters c; and k,, empirical risk 
minimization provides universally consistent neural network 
estimates. We emphasize that we do not have to impose any 
additional condition on the sigmoid function. 

Theorem 3: Define a sequence of classes of neural networks 
F1, F2, . . . as 

F, = { 5 cia(u:x + b i )  + C O ;  

i=l 

1 k n  

ai E bi E R, E I C ~ I  I ~n 
i=l  

and let m, be a function that minimizes the empirical L,-error 
in .E,, i.e. 

Then if ICn and Pn satisfy 

then 

Jp(m,) - J; + 0 

in probability, for all distributions of ( X ,  Y )  with ElYlP < CO. 

If, in addition, there exists a S > 0 such that /3;P/n1-' --+ 0, 
then Jp(m,) - Jp* + 0 almost surely, that is, the estimate m, 
is universally consistent. 

In order to be able to handle the approximation error, we 
need a denseness theorem for feedforward neural networks. In 
1989, Cybenko [18], Homik, Stinchcombe, and White [47], 
and Funahashi [3 11 proved independently, that feedforward 
neural networks with one hidden layer are dense with respect 
to the supremum norm on compact sets in the set of continuous 
functions. In other words, every continuous function on IRd 
can be approximated arbitrarily closely, uniformly over any 
compact set by functions realized by neural networks. For a 
survey of such denseness results we refer the reader to Barron 
[4] and Homik [46]. Here, as seen in Section 111, we need 
denseness in L p ( p )  for any probability measure p. 

Lemma 9 (Hornik [45]): For every probability measure p 
on IRd, every measurable function f : IRd --+ IR with 
j- I f ( x ) I p p ( d ~ ~ )  < 00, and every E > 0, there exists a neural 
network h ( z )  such that 

Proof of Theorem 3: We can proceed similarly as in 
the proof of Theorem 2; it is only the estimation of covering 
numbers that requires additional consideration. It follows from 
the argument in Section I11 that the approximation error, 
inff€F,, Jp(f) - J;, converges to zero as IC,, Pn --+ 00, if the 
union of the Fn's is dense in L p ( p )  for every p (Lemma 9). 

To handle the estimation error, we use Theorem 1 again, 
which implies that we can assume IYI I L almost surely, for 
some L,  and then we have to show that 

Proceeding exactly as in the proof of Theorem 2 we obtain 

if k,P, 2 L, so we have to upper-bound the covering 
number N ( c , F , ( I c ( ~ ) ) ) .  This can be done by applying the 
series of Lemmas from Section V. Define the following three 
collections of functions: 

= { a T z  + b;  a E I R d , b  E IR} 
G2 = { ~ ( u ~ z  + b ) ;  U E IRd, b E IR} 
G 3  = { c o ( a T z  + b ) ;  U E IRd, b E IR, c E [-Al P n ] } .  

By Lemma 4, VG; = d + 1 .  This implies by Lemma 8 that 

VG; d + 1 ,  so by Lemma 7, for any I C ( " )  

N ( t , G 2 ( d n ) ) )  5 2 (Yd+l). - 

Now, Lemma 6 allows us to estimate covering numbers of G3 

if ,On > 2 /e .  Finally, we can apply Lemma 5 to obtain 

I (4e(kn 1 ) P n )  kn(2d+3)+1 

Thus substituting this bound into the probability inequality 
above we get for n large enough 

1 "  
E l f ( X )  - YIP - - E I f ( X , )  - y31p 

j=1 

which goes to zero if 

ICnP? 1 0 d ~ n P n )  --+ 

n 
and almost sure convergence is guaranteed by the Borel- 
Cantelli lemma if the additional condition on knPn holds. 
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VIII. CONCLUDING REMARKS 
In this paper we developed some general tools for proving 

universal consistency in a very strong sense for estimators 
based on empirical risk minimization. We demonstrated the 
usefulness of the tools for two basic examples, namely, we 
established consistency of generalized linear estimators and 
neural network estimators. Finally, some remarks are in order. 

Remark 4 (Pattern Recognition): By the discussion in Re- 
marks 2 and 3 we see that L1 and L2 consistency imply 
consistency in error probability for classification functions. 
This means, using Theorems 2 and 3, that minimizing the 
empirical L1 or Lz errors lead to consistent generalized linear, 
or neural network classifiers. However, in order to obtain good 
classifiers, it may seem more natural to pick a classification 
rule that minimizes the empirical error probability, that is, the 
mean number of errors 

from a class of classifiers Gn. Indeed, it is easy to show 
examples, where if the class from which we pick is fixed, 
then minimizing an &-error yields much worse classifiers 
then minimizing the empirical error probability, even though, 
consistency can be obtained by appropriately increasing the 
class of functions. The method of minimizing the empirical 
error probability was extensively studied by Devroye [20], 
including series methods. For neural network classifiers Farag6 
and Lugosi [30] proved its consistency. Note that if the class 
of functions 3n contains binary-valued functions only, as in 
Vapnik’s book [70], then the two methods are equivalent, but 
our methods of proving consistency do not work in that case. 

Remark 5 (Algorithms): An important reason why mini- 
mizing the &-error is much more popular in practice than 
minimizing the empirical error probability for classification, is 
that usually it is algorithmically much simpler. For example, 
for series methods stochastic approximation algorithms are 
available. If the dimension of the generalized linear classifier 
k,, is fixed, then stochastic approximation asymptotically pro- 
vides the minimizing coefficients. For more information about 
these methods we refer to Robbins and Monro [ 5 8 ] ,  Aizerman, 
Braverman, and Rozonoer [ll-[3], Fabian [28], Gyorfi [41], as 
well as Ljung, Pflug, and Walk [50]. Gyorfi [40] introduced an 
algorithm for minimizing the Ll -error. Similarly, for training 
neural networks, attempting to minimize the squared error 
is the most widely used principle, mainly using the back- 
propagation method (see Rumelhart, Hinton, and Williams 
1591, White [74], Fabian [29]). 

Remark 6 (Rates of Convergence): We have considered the 
problem of distribution-free almost sure convergence of esti- 
mators, but not how fast the error of these estimators con- 
verges. Devroye [ 191 proved that there is no universal rate of 
convergence in pattern recognition, that is, there is no classifier 
whose error probability converges to the Bayes-risk at a certain 
rate for every possible distribution. By the inequalities in 
Remark 2 and Lemma 1, Devroye’s theorem applies for L1 
and L2 consistent estimators, too. Therefore, without imposing 
additional assumptions on the joint distribution of ( X .  Y ) ,  

there is no hope to obtain upper bounds for the rate of 
convergence. It is relatively straightforward to obtain upper 
bounds for the rate of convergence for the estimation error 
from our analysis, if one assumes some tail conditions for 
the distribution of Y .  Analysis of the rate of convergence 
of the approximation error is usually more involved. One 
typically has to take a closer look at the approximation 
properties of’Fn for the class of functions in which m* can lie, 
under the assumptions imposed on the distribution. For series 
methods these types of results can be found among results 
of classical approximation theory, while more recently, some 
remarkable approximation properties of neural networks have 
been explored by Barron [7]. To obtain upper bounds for the 
overall error one has to choose the parameters of Fn to balance 
the tradeoff between the approximation and estimation errors. 
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