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Introduction

According to the classical Bernoulli theorem, the relative frequency of
an event A in a sequence of independent trials converges (in probability) to
the probability of that event. In many applications, however, the need
arises to judge simultaneously the probabilities of events of an entire class S
from one and the same sample. Moreover, it is required that the relative
frequency of the events converge to the probability uniformly over the entire
class of events S. More precisely, it is required that the probability that the
maximum difference (over the class) between the relative frequency and the
probability exceed a given arbitrarily small positive constant should tend
to zero as the number of trials is increased indefinitely. It turns out that
even in the simplest of examples this sort of uniform convergence need not
hold. Therefore, one would like to have criteria on the basis of which one
could judge whether there is such convergence or not.

This paper first indicates sufficient conditions for such uniform con-
vergence which do not depend on the distribution properties and furnishes
an estimate for the speed of convergence. Then necessary and sufficient
conditions are deduced for the relative frequency to converge uniformly
to the probability. These conditions do depend on the distribution properties.

The main results of the paper were stated in [1].

Let X be a set of elementary events on which a probability measure
Py is defined. Let S be a collection of random events, i.e., of subsets of the
space X, which are measurable with respect to the measure Py. Let X?
denote the space of samples in X of size I. On the space X® we define a
probability measure P by

PlY, x Y, -+ x Y] = Py(Y))Px(Y,) - - - Py(Y),

where the Y; are measurable subsets of X.

Each sample x,, ---, x, and event 4 € S determines a relative frequency
for A equal to the quotient of the number n, of those elements of the sample
which belongs to A4 and the total size [ of the sample: v@(x,, -+, x;) = n,/L.
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Bernoulli’s theorem states that [v§ — P, % 0 (P, is the probability of
the event 4). We shall be interested in the maximum difference over the
class S between relative frequency and probability, namely,

¥ = sup |V — P,|.
AeS
The quantity n” is a point function in X’-space. We shall assume that this
function is measurable with respect to measure in X%, i.e., that 7" is a random
variable.

If the variable 7 converges in probability to zero as the sample size |
is increased indefinitely, then we shall say that the relative frequency of
events 4 € S tends (in probability) to the probability of these events uniformly
over the class S. The subsequent theorems are devoted to estimates for the
probability of the events{n” > ¢} and to a clarification of conditions under
which, for any e,

lim P{n® > ¢} = 0.

-0

1. Sufficient Conditions not Depending on Distribution Properties

1. Subsidiary definitions. Let X, = x,,---, x, be a finite sample of
elements in X. Each set 4 in S determines in this sample a subsample X4
= X;, ", X; consisting of those terms of the sample X, which belong to
A. We shall say that the set A induces the subsample X in the sample X,.
We denote the set of all different subsamples induced by the sets of S in the
sample X, by S(x,, -+, x,) or S(X,). The number of different subsamples
of the sample X, induced by the sets in S will be termed the index of the
system S with respect to the sample x,,---, x, and will be denoted by
AS(xy, -+, x,). Obviously, AS(x,, - -+, x,) is always at most 2". The function

mS(r) = max As(xl, R} xr)s

where the maximum is taken over all samples of size r, will be called the
growth function.

ExaMPpLE 1. Let X be a straight line and let S be the set of all rays of
the form x < a. In this case, m%(r) = r + 1.

EXAMPLE 2. X is the segment [0, 1]. S consists of all open sets. In this
case, m3(r) = 2".

Let us examine the following example which is important in the subse-
quent discussions.

ExaMPLE 3. Let X = E,, Euclidean n-space. The set S of events consists
of all half-spaces of the form (x, ¢) = 1, where ¢ is a fixed vector. Let us
evaluate the growth function m5(r).

Consider along with the space E, of vectors x, the space E, of vectors ¢.
To each vector x, € E,, there corresponds a partition of the space E, into
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the half-space (x;, @) = 1 and the half-space (x,, ¢) < 1. Conversely, each
vector ¢ determines some event in the system S.

Consider r vectors x,, -+, x,. They furnish a partition of E, into a
number of components such that the vectors ¢ inside each component
determine events A € S that induce one and the same subsample in the sample
X1yt s Xpe

Let ®(n,r) be the maximum number of components into which it is
possible to partition n-dimensional space by means of r hyperplanes.

By definition, m5(r) = ®(n, r). The following recurrence relation holds:

(1) omn,r)y=onr—1)+dn - 1,r—-1), ©0,r)=1, &n0) = 1.

In what follows essential use will be made of the function ®(n, r).
It is not hard to show that

y (’) ifr > n,
®(n,r) = =0\
2" ifr <n
Forn>0andr =20, ®(n,r) < r" + 1.
Throughout the following, we take (}) = 0ifn < k.

2. Properties of the growth function. The growth function for a class of
events S has the following property: it is either identically equal to 2" or is
majorized by the power function " + 1, where n is a constant equaling the
value of r for which the equality m5(r) = 2" is violated for the first time. To
prove this fact, we need a lemma.

Lemma 1. If for some sample of sizei:x,, --- , x;and numbern,1 < n < i,
Axy, -+, x) Z D, i),
then there exists a subsample x; , -- -, x; of this sample such that
AS(x; x;) = 2"

®(n, i) is defined by the recurrence relation (1).

e
19 »

ProOF. We shall prove the lemma by induction. For n = 1, as well as
for n = i, the statement of the lemma easily follows from the definition of
the index AS(x,, - - -, x;) and the fact that, fori = 1, ®(1, i) = 2 and ®(, i) = 2'.
Assume now that the lemma holds for all i < r and n £ i but is false for
i = r. In other words, let there exist a sample X, = x,, - -+, x, and a number
n < r such that

@ A¥xy, oo, x,) Z @n, )

and yet the relation A%(x,,, ---, x; ) = 2" does not hold for any subsample
of size n. Then this relation certainly does not hold for each subsample of
size n of the sample X,_; = x,, -+, X,_,. But, by assumption, the lemma is
valid for the sample X,_, and hence

(3) AS(xy, o+, x,_q) < D(n,r — 1).
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Further, all subsamples induced by the sets in S in the sample X,_, may be
split into two types. To the first type belongs every subsample ¢ induced by
S in X,_; such that only one of the subsamples is induced in the whole
sample X,: either ¢ or t, x,. To the second belong those ¢ for which both ¢
and t, x, are induced in the whole sample. Correspondingly, the set S is
partitioned into two subsets: the subset S’ which induces subsamples of the
first type and the subset S” which induces subsamples of the second type.

Let a be the number of elements in the set of subsamples of the first type
and b the number of elements in the set of subsamples of the second type.
Then the following relations hold:

(4) AS(XI,‘“,.X,_I):a-l-b,
(5 Axy, -+, x,) = a + 2b.

Taking (3)~(5) into consideration, we have
(6) AS(xy, -+, x,) < ®m,r — 1) + b.

Let us now estimate the quantity AS(x,, ---, x,_,;) = b. To this end, observe

that there exists no subsample x; , ---, x; _, of the sample x,, ---, x,_; for
which
) A (xj, ey x;, ) =2""1

Equation (7) is impossible since if it were valid, so would the equation

As(le, T xin—l’xr) =2"

be valid. The latter is impossible by virtue of the assumption made at the
outset of the proof of the lemma. Thus,

As"(le, ttt xjn—l) < 2”_1
for any subsample of X,_, of sizen — 1.

But the lemma holds for the sample X,_; and hence
(8) b=AS"('x19'”axr—1)<q)(n_ 19r_ 1)
Substituting (8) into (6), we obtain

AS(xy, -+, x,) <®nr—1)+®n—1,r —1).

Using (1), we have AS(X,) < ®(n, r). This inequality contradicts assumption
(2). The resultant contradiction thus proves the lemma.

Theorem 1. The growth function m*(r) is either identically equal to 2" or
else is majorized by the power function r* + 1, where n is a positive constant
equaling the value of r for which the equation

mS(r) = 2"

is violated for the first time.
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PROOF. Asalready mentioned, m5(r) < 2'. Suppose m5(r)is not identically
equal to 2" and suppose n is the first value of r for which mS(r) # 2". Then,
for any sample of size r > n,

AS(xy, -+, x,) < ®(n,r).

Otherwise, on the basis of the statement of the lemma, a subsample x; , - -+, x;,
could be found such that

©) A¥(xy,, o0y ) = 20

But (9) is impossible, since by assumption m5(n) # 2". Thus m%(r) is either
identically equal to 2" or else is majorized by ®(n, r). In turn, for r > 0, ®(n, r)
<r+ 1L

3. Main lemma. Let a sample of size 2/ be taken: X, = {x;, - -, x|,
Xi+1> > Xy and suppose the relative frequencies of the event A € S have
been calculated in the first semi-sample x;, ---, x; = X; and the second
semi-sample x;,, -+, X5, = X|. Let the respective frequencies be denoted
by v/, and v/ and consider the difference of these quantities p@ = |v/, — v}|.
We are interested in the maximum difference between these quantities over
all events in class S,

p® = sup p%.
AeS

Observe that sup .5 p¥ = max g p¥ since, for fixed [, p'¥ takes on only
a finite number of values. Throughout the following we shall assume that
p® is a measurable function.

In this subsection, we shall show that if p'’ — 0 as | - oo, then so does
7 B 0 and that the estimates for p® lead to estimates for n¥.

It is convenient to introduce the following notation:

Q={n">¢, C={p"z13

Lemma 2. For | > 2/¢?,
P(C) = 3P{Q}.

ProoF. By definition,

1 forz=0,

® _ ) 4P, where 6(z ={
p 2) @ 0 forz<O.

m@:f 0

Xx@b

Taking into account that X" is the direct product X'® x X", where
X'® is the space of the first semi-samples X; and X”® the space of the second
semi-samples X, we have by Fubini’s theorem that

P(C) = dvf B&W—%dw.
X' X" 2
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Replacing the integration over the whole space X' by integration over the
event Q, we obtain

(10) P(C) = f dP’f o(pm—f) dp".
o) X" 2

By definition, to each fixed semi-sample X; belonging to Q, there exists
an event Ap€ S such that |P, — v}, | > & Thus, to satisfy the condition
pY = ¢/2 or, equivalently, the condition |v/,, — v/ | = &/2, we merely have
to require that |v}y, — P, | < ¢/2.

Coming back to inequality (10), we estimate the inner integral obtaining

j H(p(” _ f) dpP” gf e(pg; - —) P’ > f e(f — vy, — PAol) dp".
b LU 2 X" 2 X" 2

The right-hand side of this last inequality stands for the probability that the
difference between the relative frequency and the probability of a fixed event
does not exceed 1, i.e.,

&
f o(f — WV — PAOI) AP’ =1 — P(|v;qo — P, > ~).
X 2 3

By Chebyshev’s inequality applied to the binomial distribution,

4(1 - PAO)PAO 1

Therefore, for | = 2/¢?,

f e(f — IV, — PAOI) P’ >
X'/(l) 2

From this it immediately follows that, for [ > 2/¢2,

P(C) z 1/2P(Q).

The lemma is proved.

4. Sufficient conditions for uniform convergence

Theorem 2. The probability that the relative frequency of at least one
event in class S differs from its probability in an experiment of size | by more
then ¢, for | = 2/e?, satisfies the inequality

P(n? > ) < 4mS(2l) e~ Y8,
Corollary. A sufficient condition for the relative frequencies of events in

class S to converge uniformly over S (in probability) to their corresponding
probabilities is that there exist a finite n such that m5(l) < I" + 1 for all I.
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Proor. By virtue of Lemma 2, it suffices to estimate

& &
P(p® 2 = =f 0|p® — 2| dP,
G RIS

where p® is viewed as a function of the sequence
XZI = (x19 ey X Xp41s x21)'

Consider the mapping of the space X?” onto itself resulting from some
permutation T; of the elements of the sequence X ,,. By virtue of the symmetry
of the definition of the measure P on XY, the following relation holds for
any integrable function f(X,)):

f(X3)dP = S(T:X ) dP.
x@eb x@2n
Therefore,
€

11 P<{p® >~ =f 0(“TX ———) ap,
(1) {p = 2} o am o
where the summation is over all (2])! permutations.

Observe further that

€ € €
"(”"’ - 5) - "(i‘i?'”'f* Vil - 5) = "(‘”’A Gl z)'

Clearly, if two sets 4; and A, induce the same subsample in a sample
(xl, RS x,,x,_,.l, MY le), then

v:h(TEXZI) = V(T X 2), V:«’t,(Tixzt) = Vii,(T:.X 2)

and hence, p@(T;X ;) = pL(T;X ;) for any permutation T;. This implies that
if we choose the subsystem S’ = S consisting of all the sets 4 that induce
essentially different subsamples in the sample X ,;, then

f €
SAUIS7 H(Pf«i)(TiXu) - 5) = iugo(/’%)(ﬂle) -3 Z B(PA(TXzz) - —)

2 AeS’

(the number of elements in S’ is equal to AS'(x,, ---, x5;)). These relations
enable us to estimate the integrand in (11):

@t

) (21), Z SUP B(PA(TXu) - 5)

1 2
<2 [(21)' 2 0(" A(TX2) = _)]

The expression in brackets denotes the quotient of the number of arrange-
ments in a sample (of fixed composition), for which |V, — v%| < 1e, and the

1% (T,
(21)'29( (T; Xzz)—z
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overall number of permutations. It is easy to see that it is equal to

(m)(Zl m .

I = 25
k:{|2k/1—m[l| 2 £/2} ()

where m is the number of elements in the sample x,, - - -, x,, belonging to A.
This expression satisfies the estimate I' < 2e~*"%. This estimate can be
derived by a simple but long computation and so we omit the proof.

Thus,

@

(21)' Z 9( (”(TXZI) _ _) < Z 2e—e2l/8 — 2AS(x1’ e, x2,) e—e2l/8

AeS’
< 2mSQ2l) e Y8,

Substituting this estimate in the integral (11), we obtain
P{p(” > %} < 2mS(2l) e~ U8,

By virtue of Lemma 2, this yields
P{n® > ¢} < 4mSQ2l) e~ **!/8,
To complete the proof, it remains for us to observe that

m 2 <)+ 1,  limP{n® > &} < 4lim [1 + ()] e~ *¥8 = 0.
1= -0

The resultant sufficient condition does not depend on the distribution
properties.

5. On uniform convergence with probability one and estimation of the
sample size. In the preceding subsection, we gave sufficient conditions for the
relative frequencies to converge uniformly over the class of events S to the
probabilities. In this subsection, we shall show that the resultant conditions
assure uniform convergence almost surely. In proving this, we make use of
the following well-known lemma of probability theory (cf. [2]):

If for any positive ¢

Y P& — Cl > ¢ < oo,
then
P - O =1
Theorem 3. If m5(l) < I" + 1, then P(n¥) - 0) = 1.
Proor. Since

P(r® > ¢) < 4m®(2l) e~ ¥V®
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for I > I* = 2/¢2, the series

o I* 0
YPr?>e < Y P@O > +4 Y [+ 1]e 8
1=1 =1 l=1*+1

is convergent for any ¢. By the lemma, this implies that
P(r - 0) = 1.

ExaMpPLE (Glivenko’s theorem). As in Example 1 of Subsection 1, let
X be the real line, —o0 < x < oo. The set S is given by all rays of the form
x = a.

As was shown, in this case m5(l) = | + 1 and hence uniform convergence
holds with probability one. Set

A={x<a}, P,=Fa)); Vi = F®,

In this notation, the fact that there is uniform convergence with probability
one may be written in the form

P(sup |F,(a) — F(a)] - 0) = L.

This formula makes up the content of Glivenko’s theorem (cf. [2]).

In a similar way, we can satisfy ourselves that uniform convergence
with probability one also holds for the class of events considered in Example 3
of Subsection 1.

The class of events considered in Example 2 does not satisfy the sufficient
conditions.

In many applications, it is important to know what the sample size
must be in order that, with probability at least (1 — #), one could assert
that the relative frequencies differ from their corresponding probabilities by
an amount less than ¢ simultaneously over the entire class of events.

In other words, beginning with what value [, does the following inequality
hold:

AmS2h e 8 <y i mS() < I" + 12

It is possible to show that this inequality holds when

2. Necessary and Sufficient Conditions

6. Some additional properties of the index. Observe first that the defini-
tion of an index immediately implies that

(12) As(xla ey Xgy X1 0 ,xl) é As(xla ’xk)AS(xk+1a et xl)‘
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Hence it follows that

(13) lOgZ As(xla.”9xkaxk+ls""xl)
< logy AS(xy, -+, xp) + logy A¥(xpyy, -+, X)).

In what follows it will be assumed that the index AS(x,, - - -, x;) viewed as a
function of X, = {x,, ---, x;} is measurable with respect to the measure P.
Let

FOz) = P(log, A%(x,, -+, x) < 2),  Elog, AS(xy, -+, x)) = H¥()).
H5(]) is the entropy of the system of events S in samples of size [.
Inequality (13) implies that
H%(l, + 1,) £ H(1y) + H(1,).
The following lemma is proved in the same way as in [3].

Lemma 3. The sequence H5(l)/l has a limit ¢,0 < ¢ £ 1, as | - 0.
Let us now show that for large [ the distribution of the random
variable é® = 7! log, A5(x,, - -+, x;) is concentrated near c.

Lemma 4. lim,_, , P(&Y — ¢| > &) = 0 for & > 0.
Proor. Denote P(|EP — ¢ > &) by P(l, ), P(E? — ¢ > &) by P*(l, ¢) and
P(c — &9 > ¢) by P7(l, ¢). Accordingly,
P(l,e) = P*(l,e) + P~ (1, ¢).

Lemma 3 implies the existence of an [, such that

H5(1,) e
—cl<-.
Iy 4
We first estimate P* (1, 4¢) with | = nl, (n an integer).
From (13) it follows that

(14

n—1

log, As(xxa e X)) S Z log, As(xilo+1a cr X+ 1))
i=0

From this we obtain

1 "2} €
(15) P+("lo,%8) SP{— Z log, As(xilo+1: ey X(i+1)zo) —Cc>=r.
nly =0 2

Let
n—1

Y= 2. logy AXugs 1, 5 X 1y10)
0i=0

and observe that

n—1
Z log, As(xilo+1’ T, x(i+1)lo)
i=0
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is a sum of independent random variables with expectation H5(l,) and a
certain variance D. Hence it follows that

H%(1 D
lo nlg
Using inequality (14) and Chebyshev’s inequality, we obtain
& H5(ly,) e € 16D
Ply — - =Ply — >—| ZPlly— My >-] £ —=.
(y c>2)— (y L s SEY M=) = e

This with the help of (15) leads to

Ey

I3 16D I3
P+ l = _<— l + ‘1 -o.
(" 0> 2) = i and Lim P (nlo, 2) 0

Let us now prove that
lim P*(l,¢) = 0.

add

For arbitrary | > [,, let n be such that nl, < | < (n + 1)l,. We have

1 1
—log, AS(x,, -+ -, X+ 1)) > 108, A¥xy, -, Xy).
nly l
This leads to
1
P(~——n + gt blo 5 ¢ 4 s) > P*(l,¢).
nlo

But, for sufficiently large n,

1
P(_n_—’;_é(n+l)lo >c+ 8) < P(é(n+1)lo >c + %) — P+((n + 1)10’5)
n

Therefore,
(16) lim P*(l,e) = 0.
-

We next prove that P7([,&) > 0as [ — oo.
From the properties of expectation and the fact that EE? = HS()/I, it

follows that
HSO | jS(] 1 HS(
17) f ( 0 - E) dF; = f & — l( )) dF;.

0 ! HS@)/1

Denoting the right-hand side of (17) by R, and the left-hand side by R,,
we estimate them assuming that [ is so large that |[H5(l)/l — c| < ¢/2 and
obtain first

e ¢ g
18 R, = —f dF. = —-P~ .
( ) 1 = > o & 3 (l, 8)
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Let 6 be a positive number. Then

c+o HS I 1 HS I
(19) HS() +
S() +
Slc+6— i + P*(l,9).
Combining the estimates (18) and (19), we have
2 H5(
P (le) £ E['c + 06— l() + P*(l, 5)].

This in conjunction with Lemma 3 and (16) implies that

26
limP (g £ —

1= ©

and since ¢ is arbitrary, that

(20) lim P7(L,e) =0
1=

Finally, according to (16) and (20),
lim P(l,¢) = 0.
1= ©

The lemma is proved.

7. Necessary and sufficient conditions

Theorem 4. A necessary and sufficient condition for the relative frequencies
to converge (in probability) to the probabilities uniformly over the class of
events S is that

1) tim 20

- l

= 0.

Observe that, by Lemma 4, condition (21) is equivalent to the fact that

1
(22) lim P 710g2 AS(xy,-+,x) >8] =0

-0
for all 6 > 0.

PROOF OF SUFFICIENCY. Suppose

. H%)
lim
1= l

It will be recalled that, by the lemma, 2P(C) = 1P(Q). Let us estimate
the probability of event C.

=0.
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As we showed in Subsection 4,
4 @

1 €
P(C) = o 2! Jyan i; ( PUTX ) — 5) dpP.

Let 6 = €2/16 and split the region of integration into two parts: XV
= {log, AS(X,)) < 26} and X%V = X® — X, Then

(1))

1
CREN D)

1 2n! o
0 T.X,) — =| dP.
+mem§( (T:X2) )

Since the integrand does not exceed unity, we have

¢%nxm-—3dP

21

PO = |

X§

a1 2 > 0( NTX,) — —) dP + P*(21,9).

In Subsection 4 it was shown that
2!

(21)' z 6( (l)(TX2I) - f) = 2As(x1, cey Xgy) e U8,

Using the fact that AS(x,, - -+, x,;) < 2%%in the region of integration, we have
P(C) < 2.2%% =58 1 P¥(2] 8) = 2(2/e)* V8 + P*(21, ).

But, by Lemma 4, lim,_, ., P*(21, ) = 0. Hence it follows that lim,_, , P(C) =
and so lim,_, , P(Q) = 0. The sufficiency is proved.

PROOF OF NECESSITY. 1°. Suppose

(23) tim 70

1> l

=c¢>0.

To prove the necessity, we must show that there exists a positive ¢ such
that

11m P(Q) = hm P{suplv‘” P, > ¢} #0.

It suffices to estimate the probability of the event
= {suppy — v%l > 2¢}.

Indeed, we shall show that from a lower estimate for the probability of event
C’ will follow a lower estimate for P(Q). Suppose that x,, ---, x,; is a given
sample and that the event Q does not occur on both semi-samples, i.e.,

supjvy — P,/ =&  suph} — P =<e
AeS AeS

Then automatically sup,.|v), — v4| £ 2¢. Thus, taking into account the
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independence of the semi-samples, we obtain
1 - P(C) =z (1 - PQ)ie, P(C) < 2P(Q) — P*(Q).
A weakening of this inequality yields P(Q) = 1P(C").
2°. Observe now that, by virtue of Lemma 1, one can find a subsample
Xi,*++, X;, of X, such that S induces in it all possible subsamples providing
24) Axy, o0y xp) Z O(n, ).

We assign some ¢, 0 < g < 1, and we estimate the probability of (24)
holding for n = [gl]. It is not hard to see that, for ¢ < £ and n = [gl],

n l) ! 21[411
=2, (i < 2(n) < v

In what follows, we shall assume that [ > 1/q. Thus [ql] = iql. Applying
Stirling’s formula, we obtain the estimate

2e\4
®(n, l) < 2(—").
q
Now for the probability that (24) holds, we obtain the estimate
2e\¢
P{As(xl, ttt xl) g (I)(na l)} g P{AS(XI) > (_) }
q

_ P{logz AS(xll, o, x)

2¢ 1
>q10g2;+7 .

Since lim,_, , H5(l)/l = ¢, we can choose a sufficiently small positive ¢
such that

2
(25) qlog, 2 <c
q
Assuming further that (25) is satisfied, we can apply Lemma 4 to obtain
(26) lim P{AS(xy, -+, x) > ®(n, )} = 1.
-0

3°. To complete the proof of the necessity, we just have to estimate

1
P(C) = f O(sup|v)y — vy — 2¢)dP = — 3 0(p(T.X,) — 2¢)dP
x@ezn  AeS x@b (21)' i=1
for e > 0.
Choose a g satisfying (25) and let B denote the set of those samples for
which AS(x,, - -+, x,;) = ®([2q[], 2]). Then

@n!

P(C/) g f (3[)—' Z e(p(l)(T;XZI) - 28) dP = fBZ dP.
B ci=1

Let us examine the integrand Z assuming that X ,, € B.
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Observe that all permutations T; can be classified into groups R;
corresponding to the same partition into the first and second semi-sample.
The value of p(T;X ,;) does not change within the framework of one group.
The number of permutations in all the groups is the same and equal to (I!)%.
The number of groups is (3!). Thus,

)
1
Z = (2,) Z 0(p(R;X 5)) — 2¢).

By Lemma 1, taking into consideration that X ,, satisfies (24) we can
pick out a subsample y in this sample of size n such that S induces all possible
subsamples in it. The partition R, is completely prescribed if the partition N,
of the subsample y and the partition M; of the subsample X ,, — y are given.

Let R; = N;M;. Let r(k) be the number of elements in the subsample
y which belong, under the partition N,, to the first semi-sample and s(j)
the number of elements of subsample X,, — y which belong, under partition
M, to the first semi-sample. Clearly, (k) + s(j) = I for k and j corresponding
to the same partition R;. We have

Z z G(PU)(N M ;X 2) — 2¢),

NGk
where )} is summation over just those j for which S(j) = I — r(k), and
1 1
Z= (21) 2 Z Y 00N M;X ) — 2ef,
r=0 Jj

where ), is summation over just those k for which r(k) = r. For each N,,
we can specify a set A(k) € S such that A(k) includes exactly the elements of
subsample y which belong under partition N, to the first semi-sample.

Introduce the notation: t(k) is the number of elements in subsample
X,, — y belonging to A(k), u(k,j) is the number of elements in X,;, — y in
A(k) belonging, under partition M;, to the first semi-sample. Then vy,
= (r + u)/l and v/, = (t — u)/l. Correspondingly,

PlA(k) = [Viw — Vawl = " Y2u +r — 4.

We further take into account that sup .5 04 = p 4, and replacing sup 4.5 0 4
by p 4 We estimate Z to obtain

(21) ZO; (Z 0™ Qu(k, j) + r — t(k)) — 28))

Observe that the number of partitions N satisfying the condition S(j) = | — r
for fixed r is (**7124) and the number of partitions N; which in addition
correspond to the same u for fixed r and A(k) is

(t(k)) ( 2~ [240] — (k)|

l—r—u
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Using these relations, we obtain
(t(k))(Zl—[qu]—t(k))

1
21 [2 ) u l=r—u
; 21 Z . )Z Z (21[—[2:11]) ’
r= -r

u

where )/ is summation over just those u for which ! “N2u + r + tk)| > 2e.
The expression in the last sum is nothing else than the probability of drawing
u black balls from an urn containing 2/ — [2ql] balls of which ¢ are black,
assuming that | — r balls altogether are drawn without replacement.
Moreover (cf. [4]),

l—r

Eu=—"—t; Du <1
* T 21— T24] ‘=
Now applying Chebyshev’s inequality, we obtain
M(u) — u
Pl———[Z¢| 21 —-—
( z 8) =T
or
o QCTENTY L
= (21 [2ql]) = - 8—1’

where the summation is over all u satisfying

(I — <
— [241)

By direct verification it is easy to show that, for 7e < r/l < g + eand | > 1/e,

inequality (27) implies that |[2u + r — t| > 2¢l for all ¢, 0 < t < 21 — [2q]].
Thus, under these conditions,

(27)

()C'Ba 1
Z (21 [2ql]) 2 1 72

u

le
Coming back to the estimation of Z, we obtain for [ > 1/¢
7z > _1_ 21— [2ql] 11 — _1_
25 2 ChENY p
(l)7£§r/l__<_q+e k le

=(_1_ﬂ y (217 (24 1240)

21
(l) Tesr/lSq+t+e

Observe that

1
lim—— Y (L2 g

- (21) Tesrllsq+e
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(see, for example, the estimation of I' in Subsection 4) if
(28) 0<e<q/l.

Finally, assuming that (28) holds, we have for [ > 1/¢
(21 [2ql]) ([qu])

(21) P(B )

P(C')=dePg(1——

and
lim P(C) = lim P(B) = lim P(AS(x,, - - -, x5;) > ®([2q[]2)).
-0 - o0

[ Rade)
We showed in 2° that this last limit has the value 1. Hence it follows that
lim,, , P(C’) = 1. According to 1°, this then means that

(29) lim P{suplvA P, > ¢} =

[ Aadee}

providing
q 2e
e<—- and glog,— <ec
7 q

Thus, it is possible to choose a positive ¢ so that (29) holds. The theorem is
proved.
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