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Abstract

We introduce and analyze an abstract framework, and corresponding method, for compressed sensing
in infinite dimensions. This extends the existing theory from signals in finite-dimensional vectors spaces
to the case of separable Hilbert spaces. We explain why such a new theory is necessary, and demonstrate
that existing finite-dimensional techniques are ill-suited for solving a number of important problems.

This work stems from recent developments in generalized sampling theorems for classical (Nyquist
rate) sampling that allows for reconstructions in arbitrary bases. The main conclusion of this paper is that
one can extend these ideas to allow for significant subsampling of sparse or compressible signals. The
key to these developments is the introduction of two new concepts in sampling theory, the stable sampling
rate and the balancing property, which specify how to appropriately discretize the fundamentally infinite-
dimensional reconstruction problem.

1 Introduction

Compressed sensing (CS) has, with little doubt, been one of the great successes of applied mathematics in the
last decade [13, 17, 18, 20, 23, 24, 31]. It allows one to sample at rates dramatically lower than conventional
wisdom suggests—namely, the Nyquist rate—provided the signal to be recovered is sparse in a particular
basis, and the sampling vectors are relatively incoherent.

However, the standard theory of CS is finite dimensional. It concerns the recovery of vectors in some
finite-dimensional space (usually RV or C") whose nonzero entries with respect to a particular basis are
small in number in comparison to N. Herein lies a problem. Real-world signals are typically analog, or
continuous-time, and thus are modelled more faithfully in infinite-dimensional function spaces [10]. Any
finite-dimensional model may therefore not be well suited to such problems.

Although this issue has been widely recognized [22, 51, 55], there have been few attempts made thus far
to extend the existing theory to a more realistic, infinite-dimensional model (see §1.5). The purpose of this
paper is to provide such a generalization.

The first step in our approach is a move away from the usual matrix-vector model. In particular, we
consider the following more realistic scenario. A signal f is viewed as an element of a separable Hilbert
space H, and its measurements are modelled as a sequence of linear functionals (; : H — C. This gives rise
to the countable collection

Cl(f)7<2(f)’c3(f)a (1.1)

of samples of f. Now suppose that the signal f is sparse or compressible in some orthonormal basis {; } jen
of ‘H. The main question we answer in this paper are the following: can we recover f by subsampling from
the collection (1.1), and how can this realized by a numerical algorithm? In doing so, we obtain a full theory
for so-called infinite-dimensional compressed sensing, valid for (almost) arbitrary pairs of sampling schemes
{¢;}jen and reconstruction bases {¢; } .

The framework we introduce in this paper stems from recent developments in classical sampling of
signals. In [1, 2, 5] a new sampling theory, known as generalized sampling, was introduced for stable
reconstructions of signals in arbitrary bases {¢; };en from their samples (1.1) (see §1.4 and §4 for further
details). The contribution of this paper is a continuation of this work in which sparsity is exploited to allow
for substantial subsampling.



Before explaining the necessity for this work, let us first illustrate our infinite-dimensional CS framework
with an example of the type of result we prove in this paper:

Theorem 1.1. For f = Z;il ajp; write A = {j : aj # 0} C N and suppose that A C {1,..., M} for
some M € N. Let € > 0 be arbitrary. Then there exists an integer N € N (specific estimates will be given
in §7) depending on M and |A| only such that the following holds. If Q C {1,..., N}, || = m, is chosen
uniformly at random, then, with probability greater than 1 — €, f can be recovered exactly from the samples
{¢;(f) : § € QY whenever m is proportional to |A| - log(e~! + 1) - log(N M /| A]).

As we explain in §6 and §7, the values m, N are specified by a system of inequalities involving |A|,
M and e. The somewhat surprising result is that taking N = M will typically not be sufficient. As we
demonstrate in §2, there are straightforward examples where |A| may be very small, but choosing N = M
will give disastrous results. However, choosing a particular value N > M (specific bounds will be given
later) will allow for substantial subsampling (see §2.3).

Remark 1.1 The framework we propose in this paper for infinite-dimensional CS involves constructing
an appropriate measurement matrix and solving the resulting convex optimization problem. The informed
reader may well think it possible to establish a Restricted Isometry Property (RIP) for such matrices, and
therefore exploit existing finite-dimensional CS results to prove Theorem 1.1, for example. However, the
stumbling block is that the RIP is notoriously hard to verify. In addition, even in finite dimensions, the
best RIP results give sparse recoverability estimates which are known in some notable cases not to be sharp
[15, 31]. On the other hand, a so-called RIPless theory of finite-dimensional CS has recently been proposed
by Candes & Plan, which gives improved sparse recovery results using only the so-called, and easy to verify,
coherence of a measurement system [15]. The developments in this paper are in a similar spirit: we forgo the
RIP in favour of incoherence, and therefore obtain sharp theorems for subsampling with readily verifiable
conditions. Note that several of our results generalize those given in [15, 17] to the infinite-dimensional case.

1.1 An example

Magnetic Resonance Imaging (MRI) was one of the original motivations for CS [17]. Developed extensively
by the work of Lustig et al. [42], the application of CS techniques in MRI is now a subject of intensive
research.

However, the MRI problem is inherently infinite-dimensional. In MRI, an image, which is most faithfully
modelled as a function f € H := L?(R?), is measured by taking pointwise samples of its continuous
Fourier transform. If the samples are assumed to be taken on the usual Cartesian lattice, then the collection
of measurements {(;(f)},ew are precisely the continuous Fourier coefficients of f. To put this example into
the above formulation, one usually assumes that f is approximately sparse in an appropriate orthonormal
wavelet basis {¢; }jen.

On the other hand, a common approach when applying CS techniques to MRI is based on discretiza-
tion. Namely, one considers f as a finite vector (or array) of pixel values, and replaces the continuous
Fourier transform by its discrete analogue [32]. By doing so, obtains a finite-dimensional recovery problem
which can be addressed with existing CS tools. However, as we explain in §2.1, modelling the fundamen-
tally infinite-dimensional problem in this way can quite easily lead to problems, even in extremely simple
examples (see §2.1). This is an instance of the well-known “inverse crime” [35].

We note that the above continuous/infinite-dimensional formulation of the MRI reconstruction problem,
whilst uncommon in the CS literature, has recently been used to great effect by Guerquin-Kern, Haberlin,
Pruessmann & Unser [34, 35]. However, there are currently no recoverability guarantees for this problem
along the lines of Theorem 1.1 above. The general results we prove in this paper seek to address this gap.
Note that this type of continuous formulation was previously used successfully by Fessler et al. [53].

The MRI problem also illustrates another key point in this paper. Namely, in many problems of interest,
the samples {(;(f)} en are fixed, and cannot be altered. In MRI this is due to the particular design of the
physical scanning device. Although much of research in finite-dimensional CS has been devoted to the topic
of designing good sampling systems [13, 31], for many important problems one does not necessarily have
this luxury. Thus we require a theory, as well as techniques, for infinite-dimensional CS that allows one to
work with fixed measurements.



1.2 The need for a new general theory

Before going further, it worth first asking whether or not such a new theory is actually necessary. Given
the problem described above, one must at some stage discretize. It therefore seems plausible that finite-
dimensional CS techniques could be readily applied once one had restricted the problem from the underlying
Hilbert space H to a suitable finite-dimensional space. In particular, if f is sparse in an, albeit countably-
infinite, basis {¢; }jen (i.e. it only has finitely many nonzero coefficients in this basis), it seems plausible
that the corresponding sparse recovery problem is inherently finite-dimensional. In some limited cases this
is indeed the case: one may treat the problem solely in finite dimensions with existing CS tools. However,
as we discuss in §2, in general this problem cannot be tackled in such a way.

Indeed, ‘discretizing’ the problem—that is, reducing the infinite amounts of information contained in
the samples {(;(f)};en—so as to make it amenable to computations is fraught with difficulties (see §2).
The most obvious, and ultimately most naive, discretizations may well destroy the original structure of the
problem. This means that exact recovery may well not be possible with finite-dimensional techniques, since
the key structure that allows for subsampling is not carried over to the discretization. New techniques which
tackle the infinite-dimensional problem directly are therefore necessary, and this is what we shall provide.

1.3 Discretizing infinite-dimensional problems

In general, discretizing infinite-dimensional problems is a difficult and subtle issue which cannot be carried
out successfully without an understanding of the particular problem at hand. Unless done carefully, it is quite
possible to end up with a discretization whose properties contrast starkly with those of the original problem,
and consequently a numerical method that is neither stable nor convergent. With this in mind, our approach
is based on the following fundamental philosophy:

Keep the infinite-dimensional structure and crucial properties of the original problem when discretizing.
(Ph)
By correctly following this principle we obtain a framework for infinite-dimensional CS.

Notice that the approach we propose in this paper is somewhat at odds with the usual procedure in CS,
in which the original problem is often modelled as finite dimensional. However, this can easily lead to an
inverse crime when applied to real data. On the other hand, our initial step is to devise an appropriate infinite-
dimensional formulation of the sparse recovery problem. with truncation being carried out in the second step.
This leads to a finite-dimensional problem which retains the key features of the original problem, and which
can be solved numerically.

It is also worth mentioning that (Ph) is by no means unique to this particular problem. Whilst it is often
followed in numerical ODEs and PDEs, most relevantly for this paper it was recently employed in [37] to
solve the long-standing computational spectral problem. A number of ideas in this article stem from [37],
and the contributions of this paper may be viewed as a continuation of this work. Note that similar versions
of (Ph) have also been used by Stuart et al. for solving inverse problems [52].

1.4 Generalized sampling (GS)

The framework we propose in this paper has its direct origins in recent developments in classical, i.e. Nyquist
rate, sampling. Namely, the fundamental question of how to recover signals (not necessarily sparse or com-
pressible) in arbitrary bases from their samples (1.1).

By employing (Ph), a new approach to this problem, known as generalized sampling (GS), was developed
in [1, 2, 5]. GS is a new type of sampling theory which incorporates the critical issues of approximation and
stability, culminating in the so-called stable sampling rate [5]. The resulting numerical method allows for
guaranteed recovery of any signal in an arbitrary basis from a collection of its samples in a manner which is
both numerically stable and, in a certain sense, optimal. In this paper we build on this work in the following
way: we show that, in the case that the signal to be reconstructed is sparse or compressible, reconstruction
can also be performed with significant subsampling. We refer to the corresponding method as generalized
sampling with compressed sensing (GS—CS).

One important instance of both GS and GS—CS is the recovery of a function from its Fourier samples
(the MRI problem, in particular). Although the classical Shannon Sampling Theorem [39, 57] allows for
reconstruction in terms of an infinite series of sinc functions or complex exponentials, the slow convergence
of these series, as well as the appearance of the Gibbs phenomenon [40], means that such a reconstruction



is often not practical. Consequently, Shannon’s theorem may not be used in practice [57], even for Nyquist-
rate sampling. Nonetheless, in many circumstances it is well known that the given signal can be well-
represented (i.e. it is sparse or has rapidly decaying coefficients) in a new basis of functions; be they splines,
wavelets, curvelets, etc [29]. GS allows one to reconstruct in such a basis in manner that is both accurate and
numerically stable. The method we develop in this paper, GS—CS, permits one to undersample whenever the
signal is sparse or compressible.

1.5 Relation to other work and contributions of the paper

There have been a number of recent attempts to generalize CS to infinite dimensions. In [28, 44, 45], El-
dar et al. describe an infinite-dimensional CS approach for analog-to-digital conversion based on a union of
subspace signal model. This research is related to the previous work of finite rates of innovation by Vetterli
et al. [10, 25, 59]. In [38], the approach of Eldar et al. was applied to inverse and ill-posed problems. The
application of CS techniques to the recovery of functions was considered by Rauhut & Ward. By devising
an appropriate sampling distribution to ensure a restricted isometry property, they prove nearly-optimal re-
coverability results for functions which are sparse in Legendre polynomial [48] or spherical harmonic [47]
bases. Note that the sampling mechanism in this work is limited to pointwise samples of the function itself,
as opposed to its Fourier transform. Hence it is not applicable to the MRI problem, for example.

Besides medical imaging, continuous-time/analog problems are found other in applications including
radar, sonar, and remote sensing [51]. Use of standard, finite-dimensional CS in these problems is plagued by
the phenomenon of gridding error (or basis mismatch) [19]. Although the setting here is somewhat different
to that which we consider in this paper, the same issue arises: naive discretization of the infinite-dimensional
problem leads to inferior reconstructions. Recent works [30, 55] have sought to address this by applying
essentially the same principle (Ph). Closely related to this is the work of Candes & Fernandez—Granda on
super-resolution [14], wherein an analog model is used in the recovery of signals from low bandwidth Fourier
samples.

Note that most of the above works describe infinite-dimensional CS approaches for some particular class
of problems, and do not address the fundamental problem of reconstructing the coefficients {«;} e of a
function f = ).\ o, from fixed, but arbitrary, linear samples {(;(f)}jen (this is precisely the issue in
the infinite-dimensional MRI model in [34, 35]). Our GS—CS framework does precisely this. It is therefore
both rather general, and, in many senses, a natural and fundamental extension of finite-dimensional CS
theory. Specifically, we generalize the finite-dimensional setup of orthonormal bases in vector spaces to
that of separable Hilbert spaces. It should therefore not come as a surprise that results concerning finite-
dimensional CS are corollaries of our main theorems.

2  Why do we need a new approach?

Consider the following very simple model problem, which will form the primary example throughout this
paper:

Problem 2.1. Suppose that f € L*(R) has support contained in [—1, 1], and let {p; } jen be the orthonormal
basis of Haar wavelets on L?(—1,1). Define

G(f)=Ff(je), JjeL, 2.1)

to be the Fourier coefficients of f (this is an example of the type of sampling one encounters in MRI). Here
F f denotes the Fourier transform of f, and ¢ < % is arbitrary. Throughout, we shall take ¢ = % Assume
that f is sparse, or compressible, in the basis {¢;}jen of Haar wavelets. Thus, the problem is to recover f
from the measurements (2.1).

Recall that the classical Shannon Sampling Theorem (see §4) gives that f can be recovered exactly (in
the L? sense) from the infinite collection {¢;(f)};cz. However, since f is known to be sparse in the Haar
wavelet basis {¢; }jen, the question is as follows: is there a way to use this additional information to allow
f to be recovered from only a finite number of its samples? Moreover, if this is true, how many such samples
are required? These are questions we shall answer in this paper.



2.1 First example: the discrete model

Let us consider the simplest possible example: namely, let f = X[0,1/2) — X[1/2,1) be the Haar mother
wavelet. By definition, f is extremely sparse in the Haar basis. To recover f exactly from (2.1), at some
stage one needs to discretize, so as to reduce the infinite amounts of information to something finite. The
usual approach in sparse MRI [42] involves two steps. First, one replaces the infinite collection of samples
with the finite vector

y:C(f):{Cj(f):j:_N+17"'>N}7 N eN. (2.2)

Second, one uses a combination of the discrete Fourier and discrete wavelet transforms (DFT and DWT
respectively) to formulate the corresponding measurement matrix.

To this end, let Ugs, Vaw € C?V*2N be the matrices of these transforms. We proceed as follows. Note
first that the classical discrete approximation to the problem of inverting the Fourier transform is given by

y = Ugs,

where x is a vector approximating pointwise values of f on an equispaced grid in [—1, 1]. Since f is sparse
in the Haar basis it is very tempting to think that

Ty = Vawx

is also sparse, where Vg, is the discrete Haar transform. One should therefore be able to recover f perfectly
from only relatively few of its samples y = ((f) by using standard CS techniques. Specifically, if Q C
{1,...,2N}, Q| = m < 2N is chosen uniformly at random, then it is standard practice to solve the convex
optimization problem
min_||n]|;x subjectto PoUqeVi'n = Pay, (2.3)
neC2y

or some variant thereof in the case of noisy data. Here Pp : C2V — C?» denotes orthogonal the projection
onto span{e; : j € Q} and {e; }551 is the canonical basis for C2V. If ¢ is a minimizer of this problem,
then one could hope that ¢ agrees with the vector xy with high probability, and hence we could recover

T = Vd;lxo.
To test (2.3), let us consider the case where 2N = 256 and m = 130, i.e. we use nearly 50% of the
measurements in the range —N + 1,..., N. Write fy,, = 2351 &;pj, where £ is a minimizer of (2.3).

Note that fy ., takes the values of the vector Vd;lf at the grid points.

As Figure 1 demonstrates, the result of applying (2.3) to this example is extremely disappointing. The
function f is not recovered anywhere near exactly, and the reconstruction fy ,,, computed from (2.3) commits
rather large errors, especially near the jumps in f, i.e. x = —1,0, %, 1. To be more precise, even though f
only has one nonzero coefficient in the Haar wavelet basis, and despite the fact that we use m = 130 Fourier
samples of f, we do not get anywhere near to perfect recovery.

This now begs the following question: what went wrong? We give the answer in the next section.

2.1.1 The DFT destroys sparsity

The source of the failure of (2.3) is the discretization employed: namely, the DFT. The problem is that the
DFT is not exact. As a result, there is a mismatch between the data, which are continuous Fourier samples,
and their modelling as discrete Fourier samples.

To explain this mismatch and its effect, consider U, d?. This matrix maps the vector of Fourier coefficients
¢(f) of a function f to a vector consisting of pointwise values on an equispaced 2/N-grid in [—1, 1]. However,
this mapping commits an error: for an arbitrary function f, the result is only an approximation to the grid
values of f. The question is, how large is this error, and how does it affect (2.3) and its solutions?

Consider the vector x € C2V defined by

Uaer = ¢(f)-
It is simple to see that x consists precisely of the values of the function
N .
Ny =€ > Ff(Gee*m ", e=1/2, (2.4)
j=—N+1
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Figure 1: The figure shows the rather disappointing fn,m (¢) (left) and f(t) — fn,m (¢) (right) against ¢ for 2N = 256
and m = 130, where fn m(t) = ij__vl &p;(t) and € = {&}2Y] is a minimizer of (2.3).

on the equispaced 2N-grid. However, this function is nothing more than the truncated Fourier series of
f, and therefore the approximation resulting from modelling the continuous Fourier transform with Ugy is
equivalent to replacing a function f by its partial Fourier series fy.

Let us now consider the discrete wavelet transform zg € C2N of z:

xg = Vawe.
The right-hand side of the equality constraint in (2.3) now reads
PoUat Vi wo.

Thus, for the method (2.3) to be successful we require zg = Vg to be a sparse vector. However, this can
never happen. Sparsity of xq is equivalent to stipulating that the partial Fourier series fy be sparse in the
Haar wavelet basis. The function fy consists of smooth complex exponentials, and thus cannot have a sparse
representation in a basis of piecewise smooth functions. Therefore, although it has a unitary and incoherent
measurement matrix, (2.3) is not a sparse recovery problem. Consequently, there is little or no hope of
recovering the sparse vector «« of Haar wavelet coefficients of f from (2.3). This explains the complete
failure witnessed in Figure 1.

From this argument, we now conclude the following. By forming the approximation (2.4), we have
destroyed important structure of the original problem: namely, the sparsity. In particular, we have violated
the guiding principle (Ph).

Remark 2.1 Note that this loss of sparsity is not exclusive to the Haar wavelet basis. In fact, if f is sparse
in any basis of compactly supported wavelets then, by insisting on using the Shannon Sampling Theorem,
we also witness the same problem: namely, f can never be sparse in the same basis.

2.1.2 The DFT leads to the Gibbs phenomenon

Whilst the loss of sparsity is significant, there is another important issue with this setup. Given that 7 is not
sparse in Haar wavelets, suppose now, as an exercise, we forgo any subsampling. That is, we let m = 2N.
The problem (2.3) now has a unique solution 7. However, by the arguments given above, the entries of 7
are not the Haar wavelet coefficients of f, but rather coefficients of the approximation fx. Thus, by solving
(2.3) (both with and without subsampling) we are not actually computing Haar wavelet coefficients of f, but
those of the partial Fourier series fx instead. Thus, we cannot hope to obtain a better (i.e. more accurate)
reconstruction of f than fy.

The question is, how good an approximation is fx? Since f is piecewise smooth, it turns out to be
very poor. In fact, as N — oo, fy does not converge uniformly to f, and only converges very slowly
in the weaker L? norm. One also witnesses the unpleasant Gibbs phenomenon, with its associated O (1)
oscillations, near each jump in f. These effects are visualized in Figure 2. The fact that (2.3) leads to a Haar
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Figure 2: The figure shows fn () (left) and f(t) — fn(t) (right) against ¢ for 2N = 256.

wavelet approximation to fp, as opposed to f, can be observed by comparing the left panels in Figures 2
and 1 respectively.

Of course, one may attempt various remedies to this problem, such as increasing N or using the total
variation norm instead. However, the key point is, regardless of how clever we are, if we insist on performing
the discretization via Ug¢, then we cannot hope to obtain any better than the (extremely poor) approximation
fn, the partial Fourier series.

2.1.3 Relation to the inverse crime

As mentioned, the poor reconstruction witnessed above is due to basis mismatch, i.e. continuous Fourier
data being modelled as discrete Fourier data. Had this data actually been simulated using the discrete Fourier
transform, then no such problems would have occurred, and one would have seen a vastly improved recon-
struction (in this case, perfect recovery). However, this improvement is artificial and an example of the
well-known inverse crime [35]. That is to say, inappropriate simulation of data leads to spuriously good
reconstructions, but when applied to real data, such as in the above examples, the reconstruction quality
substantially declines.

2.1.4 The operation zo = V4,2 may commit the wavelet crime

The Discrete wavelet transform is an infinite-dimensional operation that takes as input the coefficients of
the expansion of the function corresponding to the scaling function. The output of the discrete wavelet
transform are the wavelet coefficients as well as the scaling coefficients corresponding to the next level. In
the discretization model above the vector = contains approximate pointwise samples of the function f. Thus,
at best we can interpret x as the coefficient vector corresponding to an expansion using the scaling function
of the Haar wavelet (which is the step function). However, in all other cases of Daubechies wavelets (where
the scaling is different from the step function), the vector g = Viw has therefore very little to do with
the actual wavelet coefficients of f. This is referred to as the “wavelet crime” by Strang and Nguyen [50, p.
232]. Note that there is no inverse or wavelet crime in the new infinite-dimensional setup introduced in §2.3.

2.2 Second example: a common pitfall

The failure of (2.3) can be interpreted as a violation of the fundamental principle (Ph). In particular, the
crucial property that f is sparse in the Haar wavelet basis is destroyed when the DFT is applied. With this
in mind, it may seem to the reader that, since f is a finite sum of Haar wavelets, there is a simple remedy to
this problem. Specifically, replace the DFT and DWT by the measurement matrix

Cilpr) -+ Clpan)
Uy = : : , (2.5)

CGn(pr) - Can(pan)
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Figure 3: The figure shows the disastrous error f(t) — fn,m(t) against ¢ (left) as well as the much more pleasant error
f(t) — gz - (t) (right). Note that fn ., requires m = 760 samples whereas g5 , requires only /72 = 50 samples.

randomly sample 2 C {1,...,2N} with |[©2| = m, obtain a minimizer ¢ to the problem
min_|[n|[; subjectto PoUnn = Pa((f), (2.6)
ecay

and form the reconstruction fy ., = 22‘51 &;j; (note that in this case we have, for convenience, reindexed in
the natural way the Fourier samples {(; } jew over N rather than Z). Clearly this approach, which corresponds
to replacing the DFT and DWT by their continuous analogues, preserves the sparsity of the original problem,
unlike (2.3).

Let us consider an example of (2.6). Suppose that f(¢) = Z?ZZVI a;p;(t), where 2N = 768. We have
chosen a function f such that |supp(f)| = [{e; : o # 0}| = 5. Note that f is very sparse in the Haar
wavelet basis. In Figure 3 we display the reconstruction given by (2.6) using m = 760. As is evident, f is
recovered extremely poorly by (2.6): although we have used nearly 98% of its Fourier samples in the range
1,...,2N, the reconstruction error || f — fn,m|| is very large (roughly 2.43 and || f|| = 3.21). We repeated
the experiment fifty times with the same outcome.

This example is disastrous. Despite altering the standard CS approach (2.3) to ensure that sparsity is
preserved, we still obtain an extremely poor reconstruction. Indeed, since f is sparse in the Haar basis and
we sample using nearly all its Fourier samples in the range 1,...,2N, one may have reasonably hoped to
recover f perfectly in this example. However, as seen in Figure 3, this is certainly not the case.

From a conventional CS viewpoint, this failure appears quite surprising. We have formed a measure-
ment matrix in a standard way by taking inner products of one orthonormal basis (the complex exponentials
{ez’ﬁ’“'}g:_ ~N41) With another (Haar wavelets). Surely the standard finite-dimensional results should ap-
ply? However, they clearly do not, as evidenced by Figure 3. The question is why?

As it transpires, the explanation is simple, and lies with the change of basis matrix (2.5):

e The matrix Uy is not an isometry. Nor is it close to an isometry: its condition number is at least 1016,

e In general, a matrix Uy of the form (2.5) is an isometry if and only if the IV basis elements span the
same space. This is clearly not the case in (2.5), where the sampling and reconstruction bases consist
of the first N (smooth) complex exponentials and (piecewise constant) Haar wavelets respectively.

This lack of isometric structure highlights the underlying infinite-dimensionality of the problem. In partic-
ular, one needs infinitely many complex exponentials to span a space large enough so that it will contain
finitely many Haar wavelets (or vice versa).

From this discussion, we now draw the following conclusion. Simply thinking (since f has only finitely
many non-zero Haar wavelet coefficients) that the problem can somehow be embedded in C"V and solved
using finite-dimensional CS is incorrect. In fact this failure can also be interpreted as a violation of (Ph). As



noted above, Uy is not an isometry, whereas the ‘infinite change of basis matrix’

Cilp1) Ci(p2)
U=| Glp1) Glp2) - | 2.7)

formed by combining the full countably-infinite bases does have this property (both Haar wavelets and
complex exponentials form orthonormal bases for the infinite-dimensional Hilbert space L?(—1,1)). It is
precisely the loss of this structure when ‘discretizing’ U via Uy that is the source of the failure observed
above.

Remark 2.2 The reader at this stage may wonder whether the absence of an isometry, and the resulting poor
reconstruction, is a phenomenon isolated to the particular choice of reconstruction system (Haar wavelets).
Perhaps a different choice, e.g. a basis of smoother wavelets, leads to a matrix Uy which is closer to an
isometry? This is not the case. In [4] it was proved that the matrix (2.5) is has an exponentially large
condition number as N — oo for essentially any wavelet basis. An analogous result for polynomial bases
was proved in [7].

2.3 Third example: a new approach

With these examples in mind, the purpose of the remainder of this paper is to describe a new approach for
infinite-dimensional CS, known as generalized sampling with compressed sensing (GS—CS), which over-
comes the aforementioned failings. This brings us to the purpose of this section, and really the essence
of this paper: namely, why infinite dimensions? Put simply, this is because the search for the coefficients
a = {ay,as,...} of f results in an infinite system of equations. By formulating reconstruction directly in an
infinite-dimensional way, and then discretizing (as opposed to discretizing first), we are able to completely
avoid the pitfalls described above.

This new approach will be explained in detail in the next sections. However, we first demonstrate that it

overcomes the above issues. Let f(t) = Z]Ai1 a;;(t) be as in §2.2, and let U be given by (2.7). Let Px

denote the projection onto span{es, .. .,ex}, where {ex }xen is the canonical basis for I?(N). For N € N,
we now choose 2 C {1, ..., N} uniformly at random, with |Q2| = m, and numerically compute a minimizer
¢ to
eilfllfN) [nllix subjectto PoPgUPym = Pay,  y={G(f),G(f),...}, (2.8)
7

where M € N, and let g5 5 = Zj\il &;p; be the reconstructed approximation to f. In Figure 3 we

apply this algorithm with N = 1351 and 7o = 50, and M = 768. Note the significant improvement over
the approach of §2.2. In particular, when averaged over 50 trials, the error |[f — g5 ; [[r2 is found to be
1.15 x 10~ in comparison to roughly 2.43 for the previous approach. Moreover, the GS—CS reconstruction
uses less than 7% of the number of sampled Fourier coefficients that were used to form the extremely poor
reconstruction in (2.6).

The aim of remainder of this paper is to explain why (2.8) leads to such a marked improvement. As we
shall see, the key to this is the judicious choice of the parameter N, which is selected according to what we
refer to as the balancing property (see §6.2). As we discuss, this property ensures a faithful discretization
of the operator U. We shall present further numerical examples illustrating the effectiveness of this new
approach in §8.

3 Infinite-dimensional compressed sensing

Before developing our theory of infinite-dimensional compressed sensing, let us now formally introduce the
problem we shall solve in this paper, as well as the types of signal models we shall consider.

Suppose that # is a separable Hilbert space over C (throughout this paper we shall work with complex
spaces). Let {¢;} en be an orthonormal basis, and let f = Z(;il ojp; be the signal we wish to recover.
Suppose that we have access to the countable collection of samples

Cl(f)»g2(f>7<3<f)""’ (31)

where (; : H — C are continuous linear functionals on /. The problem throughout this paper will be to
recover f in terms of {¢;}jen from a small number of the samples (3.1).



3.1 Sparsity and compressibility

Compressed sensing is a theory concerning sparse signals. In infinite dimensions, we say that f is sparse in
the basis {; }jen if there exists an M € N such that

A =supp(f) C {1,..., M}, (3.2)

where
supp(f) = {j € N: a; # 0},

denotes the support of the infinite vector « (throughout this paper, when is meaning is clear, we shall write
A for supp(f)). If |A| = r, we say that f is (r, M )-sparse in the basis {¢; } jen. Naturally, we do not know
A, however, we may have information about M.

In practice, the assumption that f is perfectly sparse is often unrealistic. In finite-dimensional CS, it is
standard to consider compressible signals, i.e. those whose r-term approximation error decays rapidly. In the
infinite-dimensional setting, we require a slightly different notion that takes into account the bandwidth M .
Let

orm (@) = min{|la — 9l : nis (r, M)-sparse},

correspond to the error of the best approximation of f by a (r, M)-sparse vector. Loosely speaking, we shall
say that f is compressible if this term is small.

3.2 Models
The models we consider in this paper are as follows:

(1) Semi-infinite dimensional model. Here we assume f is either sparse with bandwidth M, or that f =
g + h, where

f=g9+h,  A=supp(g) C{l,...,M}, supp(h)={1,...,M}. (3.3)

In other words, f is (r, M )-compressible for some 7 and oy ps(x) = 0. This model is semi-infinite
dimensional: although f has only finite support in {¢;};en, we draw samples from the countable
collection (3.1).

(i) Fully-infinite dimensional model. Here we consider the significantly more general setting:
f=g+h, A =supp(g) C {1,...,M}, |supp(h)| = . 3.4

This model is termed fully infinite-dimensional since both the set of samples and the support of f have
infinite cardinality.

Note that whenever f is exactly sparse (i.e. the first case in model (i)) the goal is to recover f perfectly by
subsampling the measurements (3.1). In all other cases, one cannot expect perfect recovery with subsam-
pling. As is typical in finite-dimensional CS, the aim here is to show to show perfect recovery up to an error
proportional to o, ps (). Note that this is substantially more challenging in case (ii), since the support of the
nonsparse component h is infinite.

4 Generalized sampling: guaranteed recovery in arbitrary bases

Before discussing how to recover infinite-dimensional sparse or compressible signals, it is first necessary
to consider the more classical case where no sparsity is assumed. The question is, how does one actually
reconstruct an arbitrary signal f from its measurements {{;(f)};en? Or in other words, if f = Z;’;l a;0;,
how do we recover the infinite vector &« = {1, ag, . . .} from the samples {1 (f), C2(f), - -.? Only once this
problem has been solved can one tackle the issue of subsampling. Fortunately, the technique of generalized
sampling (GS) was developed precisely for this problem [1, 2, 5, 3]. We now recap this approach.

Under some assumptions on {(; } jen (e.g. each ¢; is continuous and {¢;(f)};en € I*(N), Vf € H), we
can view the full recovery problem as the infinite-dimensional system of linear equations

Ua = ((f), (4.1)
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where a = {1, ag, ...}, C(f) = {G(f), (f), - . .} and U is the infinite measurement matrix

Gilp1) Glp2) -
U= Glp1) Glp2) - |. (4.2)

Clearly, if we were able to invert U, and provided we had access to all samples of f, then we could recover
« (and hence f) exactly. However, this is never the case in practice. Instead, we must consider truncations
of (4.1), and look to compute approximations &, . . ., &y to the first N coefficients of a.

It goes without saying that whatever strategy we use for computing such approximate coefficients, it
must be stable in the presence of noise. Moreover, the resulting reconstruction &N = {a1,...,ay} € CV
must be a good approximation to the first N exact coefficients oy, ..., an. Recall that the whole premise
for recovering f in the basis {;};en is that we know that f is well represented in this basis. In other
words, the coefficients {«;};cn decay rapidly as j — oo, or, in the case where f is sparse, only a finite
number are nonzero. Therefore, whichever method we use for solving (4.1), it is important that the error
| Pna — alN1||;2, be small (here and later, for convenience, we shall not make a distinction between the
finite vector !N = {ay,...,ax} € CV and its imbedding {1, ...,ax,0,0,...} in (>(N)). Clearly, the
examples of §2 violate this condition.

4.1 Finite sections: a warning from spectral theory

The most obvious approach for discretizing (4.1) follows from taking finite sections of U. In other words,
if Py : [>(N) — span{e; : j = 1,..., N} is the orthogonal projection, we consider solutions all to the
N x N system of equations

PyUPnaN! = Pr((f). 4.3)
Note that
Clpr) - Glen)
PNUPN = : : )
Cn(p1) - Cwvlen)

is nothing more than the leading N x N submatrix (i.e. the finite section) of U.

Finite sections are extremely widely used in practice [11, 12, 36]. However, for general operators U
there is no guarantee that &/ need either exist, or that GV (if it exists) actually converges to o as N — oo.
In fact, it is easy to devise pairs of bases {¢;};en and sampling schemes {(;};en for which the error
[l — @&™||;2 blows up as N — oo, whenever &V is the result of the finite section method [1, 5].

Another significant issue is that the finite section matrix PyU Py € CV*YN may be extremely poorly
conditioned, even though U and its inverse U ~! are bounded. Examples of operators U whose finite sections
exhibit exponentially poor conditioning were given in [1, 5]. In particular, the measurement matrix formed by
sampling in the Fourier basis and reconstructing in Haar wavelets (the principal example of this paper) suffers
from this phenomenon. As a result, the numerical method based on finite sections is not just nonconvergent,
it is also extremely unstable and highly sensitive to noise.

The failure of the finite section method for solving (4.1) can be viewed as a violation of the principle (Ph).
Finite sections have been studied extensively from the viewpoint of computational spectral theory. Therein
one typically wishes to gain information about the spectrum of U by considering discretizations of the form
PnUPp [9, 36]. The main conclusion is that, unless U satisfies some very stringent restrictions (such as
positive self-adjointness), its finite sections Py U Py may have wildly different (spectral) properties. This
violates (Ph), and thus makes finite sections typically unsuitable for solving (4.1).

The key structure that operator U of the form (4.2) possess is that they are isometries. Specifically,
if measurements (;(f) = (f,1;) give rise to an orthonormal basis {1} cn (as is the case with Fourier
sampling) the matrix U is a isometry on [?(N). Yet this structure is not usually inherited by the finite
sections Py U Py, in violation of (Ph).

Note that the finite section Py U Pp is precisely the measurement matrix (2.5) encountered in the finite-
dimensional CS approach (2.6). As commented in §2.2, the loss of the isometry property of U accounts for
the failure seen therein.
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4.2 Uneven sections and generalized sampling (GS)

Fortunately, there is a simple, albeit far less common, way to overcome the failure of finite section method,
based on taking rectangular, as opposed to square, sections of U. In [1, 2] it was proposed to replace (4.3)
with

AaM = Py U*PNC(f), A= PyU*PNUPy, (4.4)
where M € N (the number of coefficients &, . .., & computed) is appropriately chosen (typically M <
N). The result is known as generalized sampling (GS). Note that A = (PyUPy;)*PyU Py, where
PxUPy; isthe N x M uneven section of U.

The main idea is that, by allowing M and N to vary independently—in particular, selecting M < N
sufficiently small—one can obtain both a numerically stable and accurate reconstruction of the first M co-
efficients a, ..., apr. Note that this means that we typically recover fewer of the coefficients oy, g, . . .
than in the finite section method. However, unlike the latter, it is possible to guarantee both the stability and
accuracy of this approach. In other words, by being less greedy in the number of coefficients we seek to
recover, we actually obtain a far better result.

The main theorem proved in [1, 5] is as follows:

Theorem 4.1. Let U € B(I?(N)) be an isometry and suppose that o € 1?(N) satisfies Ua = ((f) for some
C(f) € I3(N). Then for each M € N there exists an Ny € N independent of o € 1?(N) such that, for every
N > Ny, there is a unique solution alMl 1o (4.4). Furthermore, we have the sharp bound

1
loe = 6| <~ | Py (4.5)
V1-=Cnwum M
where
CN,M = HP]\,{ — PN[U*PNUPJMH. (46)

Specifically, Ny is the least N such that Cy pr < 1.

It can be shown that the quantity Cy, s — 0 as N — oo, for any fixed M. Thus, one deduces from (4.5)
that &[] can be made arbitrarily close to Py;a—the best approximation to o from Py, (12(N))—by varying
N suitably. Hence, a good reconstruction can always be guaranteed with this approach. Furthermore, the
resulting method is also stable. The condition number of the matrix A scales like ——L___ [5]. Thatis

V1-Cn,m

to say, precisely the same quantity that ensures accuracy of the reconstruction also guarantees numerical
stability.

To connect generalized sampling with the principle (Ph), note that the uneven section Py U Py inherits
the structure of U, whenever M and N are chosen suitably. In fact, for fixed M,

PMU*PNUPM—)P]VIU*UP]\/[:PM, N—)OO,

where I : [?(N) — [2(N) is the identity. Thus, PxU Py is also an isometry on the range of Py in the limit
N — oo.

Remark 4.1 Theorem 4.1 is stated in a way such that M is fixed and N is varied, as are the results we
give later in §7. Depending on the particular application, one may prefer to consider N, the total number of
samples, being fixed and M being varied. Mathematically, however, this is completely equivalent.

4.3 The stable sampling rate

Theorem 4.1 proves that stable recovery is possible, provided N is chosen sufficiently large in comparison
to M (or M sufficiently small in comparison to N). In practice, we need a way in which to quantify this
scaling. In [5], the stable sampling rate

O(M;0) =min {N e N: Oy <1-0%}, 6€(0,1), 4.7)

was introduced. The stable sampling rate determines how tall to take the uneven section Py U Py, for a given
width, to ensure that (Ph) holds. In particular, sampling at a rate N > ©(M; 0) ensures that /1 — Cy as >
6, and therefore stability and accuracy of @™} up to the magnitude of 6.

Note that O (M ; §) can be easily computed numerically [5], since Cn a7 is just the norm of an M x M
matrix (see (4.6)). Hence the conditions of Theorem 4.1 can be verified a priori via a straightforward
calculation. Having said this, in numerous circumstances of interest one can also obtain analytical bounds
[1,2,4,5].
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4.4 A generalized Shannon Sampling Theorem

One of the main instances of GS, and a central reason for its development, is the case where {(;(f)};ez
corresponds to the Fourier samples (2.1) (we replace the index set N with Z in this instance). Although
the famous Shannon Sampling Theorem ensures that both f and its Fourier transform F f can be recovered
exactly via the infinite sums

10 = eSS FfGaeT . F) = Y Fijesine (t +€ je) :

JEL JEL )

(note that the first converges in L2, whereas the second converges both uniformly and in L?), in practice one
has to truncate these series, leading to the approximations

LN/2) N LN/2] Fr e
fn@®)=e > Ff@eem9t  Ffnt)= > ]—'f(je)sinc( ) (4.8)

j=—1N/2) j=—N/2] ¢

As discussed, these are typically very poor reconstructions of f and JF f respectively.

However, suppose now we know another basis {¢;};en in which f is well represented. Then we can
apply GS to obtain an improved reconstruction in this basis. This leads to the following generalization of
Shannon’s theorem:

Theorem 4.2 (Generalized Sampling Theorem [1]). Let F denote the Fourier transform on R, and suppose
that {0} jen is an orthonormal set in L*(R) satisfying supp(p;) C [T, T] for all j € N and some T > 0.
For0<e< % let

G(f) = VeFflpli)e), jeZ, feL*R),

where p : N — 7 is some bijection, and suppose that U is given by (4.2). Then, for each M € N there is an
N € N such that there exists a unique solution ™ € CM 10 (4.4), for any f € span{y;}jen. Moreover, if

M M
v = Zd]‘(ﬁj, gNM = Zdj]:%y 4.9
i=1 i=1

then 1

If = fvmllre® € ———I1Pirflr2m),

1-Cn.um
and
V2T
lg —gnmllLzm) < ||,P]\L4f||L2(R)7

1-Cnwm

)

where g = F f, Cn i is given by (4.6) and Py denotes the projection onto spanf{p1, ..., o}

Note that this theorem is just the special case of Theorem 4.1 corresponding to Fourier samples. It is
also a straightforward exercise to extend it to the multivariate setting, where J corresponds to the Fourier
transform on L?(R?) [1]. This theory extends the classical Shannon Sampling Theorem as well as a number
of its fundamental generalizations [8, 27, 57, 58]. The key point is that, if we know that f is well-represented
in {¢;} e, then we can recover f optimally (up to a multiplicative constant) in terms of the first M basis
function (1, . .., s using only its first NV Fourier coefficients.

An important issue that was addressed in [1, 2, 4, 5] is how the stable sampling rate ©(1M; 0) behaves
in this setting. In [4] it was proved that ©(M;60) ~ c¢(0)M for Fourier sampling with wavelets as the
reconstruction system, i.e. the principal example of this paper. Typically, ¢(#), whilst greater than one, is not
too large. However, any attempt to sample much below this rate necessarily fails. In [4] it was also shown
that setting N = M (this corresponds to the finite section), or in fact N = ¢M for any c less than some
critical threshold ¢y > 1, leads to exponential instability and divergence.
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Figure 4: The figure shows the disappointing error f(¢) — fn(¢) against ¢ (left) and the more pleasant error f(t) —
fn,a(t) (right) for N = 51 and M = 12. Note that fx and fn, ar use exactly the same samples.

4.5 Example: the effectiveness of generalized sampling

To demonstrate the use of generalized sampling let us consider the following function
fit)y=tet, tel[-1,1].

Suppose we can sample the Fourier coefficients of f: in particular, we have access to {F f(je)};ez for
e = 1/2. To reconstruct f from these samples we will consider two different techniques. First, we test
the truncated Fourier series fx defined in (4.8). Due to the fact that f is not periodic we cannot expect
rapid convergence of fy to f. However, the Generalized Sampling Theorem 4.2 allows us to reconstruct
in any basis. Thus, (due to analyticity of f) we will choose the reconstruction basis {¢;};en consisting of
orthonormal Legendre polynomials on [—1, 1]. In particular, we define fn as as in (4.9), where p : N — N
is given by

p(1)=0,p(2) =1,p(3) = —1,p(4) =2,p(5) = —-2.... (4.10)

In Figure 4 we have displayed the errors f — fx and f — fy as. Note that both reconstructions, fy and
fn ar, use the same samples, yet the improvement of fx as compared to fy is dramatic. In particular, we
go from an O (1) error to roughly machine precision. We remark that for this choice of reconstruction basis
the stable sampling rate ©(M; 0) is quadratic in M [2]. Moreover, a lower scaling (in particular, N = M)
results in extreme ill-conditioning [7].

We now repeat the experiment above with the function

L
Ft) =sin(5t) + > ajibi(t),  te[-1,1],

j=1

where {9; }jen are the Haar wavelets on [—1,1], L = 1700 and the «;’s are some arbitrarily chosen coeffi-
cients. We will assume, as above, that we can sample the Fourier coefficients { f(je)} ez of f (withe = 3
once more). Due to the vast number of discontinuities of f we cannot expect the truncated Fourier series
fn to be a good approximation to f. However, by the Generalized Sampling Theorem 4.2 we can choose
the reconstruction basis {¢;};en to be the Haar wavelets, and construct fx as as in (4.9). In Figure 5 we
have displayed the errors f — fx and f — fn as. Note that both reconstructions, fy and fn ar, use the same

samples, yet the improvement of fx, s compared to f is substantial.

5 Generalized sampling with compressed sensing (GS-CS)
An immediate consequence of Theorems 4.1 and 4.2 is that if we know that f is sparse in {¢; };en—i.e.

supp(f) C {1,..., M}—then we can recover f perfectly from its first N samples, whenever N > M
is taken according to the stable sampling rate. However, by combining the same ideas with standard CS

14



x10°

60 5
40
20

0
0
20
40

-5

1 -05 0 05 1 1 -05 0 05 1

Figure 5: The figure shows the large error f(t) — fn(t) against ¢ (left) as well as the substantially smaller error
f(&) = fn,m(t) (right) for N = 2401 and M = 1750. Note that fx and fn a use exactly the same samples.

techniques, we can actually achieve perfect recovery using far fewer measurements. The key is to follow
a similar approach, again based on uneven sections, to formulate the reconstruction appropriately. The
resulting method is known as generalized sampling with compressed sensing (GS—CS).

Let us suppose that f = Z;}il a;p; is sampled via {(; } jen. As opposed to the failed approaches of §2,
which were loosely based on discretizing first, the technique we now propose involves first formulating the
sparse recovery problem in infinite dimensions. To this end, let 2 C N be of size |2] = m € N and consider
the (infinite-dimensional) optimization problem

min_||n||;x subject to PoUn = Pol(f), (5.1
nel! (N)

where U is the infinite measurement matrix (4.2) and ¢(f) = {¢i(f),(2(f), ...} is the infinite vector of
samples.

Recall that GS relies on a well-posed infinite-dimensional recovery problem (4.1) before discretization
can proceed. Seeking similar notions for (5.1), we are led to the following questions:

(i) How do we choose €2? Obviously there is no unique choice, but it makes sense to choose €2 uniformly
at random from {1,..., N}, where N € N. This raises the question following question: how large
must N be?

(ii) Suppose that 7 is a minimizer of (5.1) (note that 1 need not be unique). How large is || — «||, where «
is the infinite vector of coefficients of f in the basis {(; } jen. In particular, how does || — «|| depend
on both m (the total number of samples) and N (the range from which the samples are drawn)?

(iii) If f is exactly sparse in {¢; } jen, do we recover its coefficient vector « exactly (with high probability)
from (5.1), and what are the conditions on m and N that ensure this recovery?

Let us suppose for the moment that we have answers to these questions. Besides some special circum-
stances, we cannot solve (5.1) numerically, hence we must discretize. For this, we follow the same ideas that
lead to generalized sampling. Thus, we introduce a parameter £ € N and consider the finite-dimensional
optimization problem

nIél('éIAl/I [In];» subject to PoU Prn = Pal(f). (5.2)

We shall refer to this as generalized sampling with compressed sensing. This formulation of course leads to
another set of questions:

(iv) When will (5.2) have a solution? Note that (5.2) need not have a solution for all k, since Po((f) need
not be in the range of PoU P, (although, as we shall show, this is always the case for sufficiently large
k). However, this raises the following question: will solutions of (5.2) converge to solutions of (5.1)?
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(v) If f is not sparse but compressible, how large is the error || — «|| when 7 is a solution to (5.2) and «
is the vector of coefficients of f? In particular, if f belongs to either of the models (3.3) or (3.4), can
[ln — a|| be bounded above in terms of o pr(f)?

Answers to these questions will be provided in §7, where we state the main results of this paper.

6 Notation and definitions

6.1 Notation

We now introduce some additional notation that will be used in the remainder of this paper. Let H = [2(N)
be the standard space of square-summable sequences in C, and let ||-|| be the standard norm on H. All other
norms will be specified. Let {e;};cn be the natural basis on (?(N), and, if ' C N, define Pr to be the
orthogonal projection onto cl(span{e; : j € I'}). If I' = {1,..., N'}, then we simply write Py.

If ¢ € Hand j € N, then £(j) = (£, e;) (we will also sometimes use the notation ¢;). For I' C N, we
denote the natural embedding operator by ¢ : [2(I') — H. Note that ¢jn = n|r for n € H. For any vector
& € H we write supp(§) = {j € N : £(j) # 0}. We also define the sign sgn(§) € 1*°(N) of £ € *°(N) as
follows:

§)/1EGN it &) # 0

0 otherwise.

sgn(§)(j) = {
For an operator U € B(H) we define coherence parameter

v(U) = sup |usjl, ui; = (Uej, e;), (6.1)
i,jEN
i.e. the max norm of the operator U with respect to {e; }jen. Also, if U = {u;;}:jen is an infinite matrix,
we define the maximum row norm of U by

U e = sup [ Juig]2.
1€N jeN

This quantity forms a vector space norm on the vector space of all infinite matrices (although not an algebra
norm). Finally, for convenience, we will define the following crucial function that will be used frequently in
the exposition. For M € Nand U € B(H) let @y : {1,..., M} x Ry x N — N be given by

(Z)]\/[’U(T, S,N) = 1e€N HPFIU*PFQUei” > S . (62)
r

: max
T C{l,...,M},|Ty|=
rc{1,..,N}

Observe also that the mapping s — @, (1, s, V) is a decreasing function.

6.2 Key definition: the balancing property

For GS, the stable sampling rate (4.7) determines how to discretize the recovery problem in line with (Ph),
by determining how to choose N for a given M. For GS—CS we require an analogous quantity, known as the
balancing property:

Definition 6.1. Let U € B(H) be an isometry. Then N and m satisfy the weak Balancing Property with
respect to U, M and |A| if

—1
|PaU* PyUPy — Py < (4\/Iog2 (4N«/|A/m)> , (6.3)

1
Py PrU*PyUPr || e < .
rimia B, IPME U P UF] VI 6:4)
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We say that N and m satisfy the strong Balancing Property with respect to U, M and |A| if (6.3) holds, and
(6.4) is replaced by

}IIP%U*PNUPerr < (6.5)

1
JRCRVATA
Remark 6.1 The inequality in (6.4) is somewhat inconvenient. However, it can be replaced by the far
simpler, although stronger, condition

max
ID|=|A[TC{1,...M

1
| PasU* PnU Py — diag(PyU* PnU Pag) e £ —— (6.6)

)

Here diag(B) denotes part of the matrix B. In particular, condition (6.6) is the requirement on the magnitude
of the off-diagonal entries of the matrix Py;U* PyUPy;. In much the same manner, (6.5) can also be
replaced by the much more convenient (however much stronger) condition

1
|U*PyU Py — diag(U* PNU Pyy) |lmr € —==

-~ 8VIA]
The following proposition establishes that the balancing property is well defined:

Proposition 6.2. If U, M and |A| are as in Definition 6.1, then there always exists integers N and m that
satisfy the weak and strong Balancing Properties with respect to U, M and |A|.

Proof. Note that since Py — I strongly as N — oo we have that PyU — U strongly. However, for any
I’ ¢ N with |T'| < co we have by compactness that PyU Pr — U Pr in norm as N — oco. The fact that U is
an isometry yields the assertion. O

Before stating our main results, let us briefly comment on the balancing property. Condition (6.3) ensures
that PyU Py is close to an isometry, and is very similar to the stable sampling rate in the non-subsampled
case. Since results proved in [4] establish that the stable sampling rate cannot be avoided for essentially
any recovery algorithm, (6.3) is a natural, and most likely necessary condition. Having said this it may be
possible to slightly improve the right-hand side. Condition (6.4) states that the matrix U should be close to
an isometry on the support of all sparse vectors. Again, we suspect that this condition cannot be removed,
although it may be possible to weaken it somewhat.

7 Main results

We now present the main results on GS—CS. Proofs of these results form the content of the remainder of
this paper. To avoid pathological examples we will throughout the remainder of the paper assume that the
sparsity r = |A] > 3.

7.1 The semi-infinite dimensional model

The first results concern the semi-infinite dimensional model (see §3.2):

Theorem 7.1. Let U € B(H) be an isometry, M € N, € > 0 and suppose that xq € I*(N) with supp(xq) =
A, where A C {1,...,M}. Suppose that N and m satisfy the weak Balancing Property with respect to U,
M and |A|, and let Q C {1,..., N} be chosen uniformly at random with || = m. If ¢ = Uz then, with
probability exceeding 1 — ¢, the problem

inf H?]Hll subject to  PoU Pym = Pad, 7.1
nell(N)

has a unique solution & and this solution coincides with xq, provided that m satisfies

m>C-N-v*(U)-|Al- (log (e7') + 1) - log (JV[wa> , (7.2)

for some universal constant C. Furthermore, if m = N then £ is unique and & = x with probability 1.
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The main conclusion of this theorem is as follows: a sparse signal x( can be recovered perfectly (with
high probability) by subsampling from the coefficients ¢, provided (6.3), (6.4) and (7.2) hold. Note that this
result gives answers to the questions (i) and (iii) posed in §5. Moreover, Theorem 7.1 establishes Theorem
1.1 of §1.

Recall that the second scenario in the semi-infinite dimensional model corresponds to signals yo = zg+h,
where xg is sparse and supp(h) C {1,..., M }. The following theorem concerns this case:

Theorem 7.2. Let U € B(H) be an isometry, M € N, € > 0 and suppose that yo € I*(N) with supp(yo) C
{1,..., M}. Suppose that N and m satisfy the weak Balancing Property with respect to U, M and |A|, and
let Q C {1,..., N} be chosen uniformly at random with |Q)| = m. If { = Uyo and & € H is a minimizer of
(7.1) then, with probability exceeding 1 — €, we have that

2N
o=l <8 (14 2 ) onaat). = 1Al a3)

provided m satisfies (7.2). If m = N then (7.3) holds with probability 1.

This theorem demonstrates recovery for compressible signals of the form (3.3). Specifically, we witness
perfect recovery, up to an error determined by the best (r, M)-term approximation. In particular, this result
answers part of question (v) posed previously.

Remark 7.1 It is important to notice that there need not be a unique solution to (7.1). However, this is not
an issue. Theorem 7.2, and, in particular, equation (7.3), states that al/ solutions to (7.1) will be close to yg
in norm.

7.2 The fully infinite-dimensional model

Recall that the semi-infinite dimensional model (3.3) places the restriction that the support of the nonsparse
term h is contained in {1,..., M}. As discussed in §3, this assumption is quite rare in practice, and a more
realistic setting is provided by the fully infinite-dimensional model. Here we assume that yg = x¢ + h, where
xo is sparse and |supp(h)| is infinite.

To address this setting, it is first necessary to scrutinize an infinite-dimensional optimization problem of
the form (5.1):

Theorem 7.3. Let U € B(H) be an isometry, M € N, € > 0 and suppose that yo € I*(N). Suppose that
N and m satisfy the strong Balancing Property with respect to U, M and |A|, for some M and A, and let
Q c{1,..., N} be chosen uniformly at random with |Q| = m. If { = Uy and & € H is a minimizer of

inf |nlln subjectto PoUn = Poc, (7.4)
nelt(N)

then, with probability exceeding 1 — ¢, we have that
le-wl <8 (14 2 ) onustn). r=1al @s)
provided that m satisfies
m>C-N-0v*U)-|A|- (log (') + 1) - log (“%/W) , (7.6)

m

S =
128N +/|Allog(ete—1)

for some universal constant C (recall oy, from (6.2)). If m = N then (7.5) holds with probability 1.

w = (Z)M7U(|A|,S,N),

Remark 7.2 The quantity w in (7.6) can also be replaced by a much more convenient (and of course much
less sharp) estimate. In particular we have that w < M, where

—~ m
M =min{r € N: |[|PyU*Py||||PNvUPE|| < .
{ 121 Py | 128N\/|A|10g(e46—1)}

Note that M is finite, since |PNUPE|| — 0asr — oo. for fixed N.
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This theorem, much like Theorem 7.2, confirms recovery of yo up to an error determined solely by
orm(Yo). Note that it provides answers to questions (i)—(iii) posed in §5. However, observe that the
optimization problem (7.4) is infinite-dimensional. In practice, one always replaces (7.4) with the finite-
dimensional problem

inf ||nllx  subjectto PoUPyn = Poc, 7.7
n€lt (N)
where k£ € N is suitably chosen. The obvious question now arises: how do solutions of (7.7) compare to
those of (7.4) as k — oco0? For this we have the following:

Proposition 7.4. Let U € B(H), zo € I1(N) and Pq be a finite rank projection. Then, for all sufficiently
large k € N, there exists an &, € H satisfying

kallll = inf {H’r]Hll . PQUPkT] = PQU.’)S()} .
nelt(N)

Moreover, for every € > 0 there is a K € N such that, for all k > K, we have ||, — gk||l1 < ¢, where &,
satisfies ~
||£k||ll = inf {||77||l1 : PQU'I] = PQU.%‘()}. (7.8)
nelt(N)

In particular, if there exists a unique minimizer z of (7.8), then &, — z in the I* norm.

This proposition states that the computed solutions of (7.7) will be approximate minimizers of (7.4)
for all sufficiently large k. In particular, computed solutions will approximately satisfy (7.5). Note that it
addresses question (iv) posed in §5.

Let us now make several further remarks on these theorems:

Remark 7.3 The error bounds (7.3) and (7.5) are nearly optimal in the sense that they involve the best
approximation error o, »s(yo) multiplied by a factor proportional to N/m. The latter term is the reciprocal
subsampling percentage, and in practice will usually not be much larger than 100 in magnitude (this would
correspond to 1% subsampling). We suspect, however, that it is possible to remove this term altogether.

Remark 7.4 Neither the bandwidth M nor the sparsity » = |A| need be known in either Theorem 7.2 or 7.3.
Specifically, these results state the following: given m and N (the parameters of the sampling), any vector
Yo 18 recovered up to an error proportional to o, ar(yo), where r and M are determined implicitly through
the balancing property and (7.6). This is typical in applications such as MRI, where the sampling resolution
N is fixed (due to the physical limitations of the scanner), as is the total number of samples m.

Remark 7.5 In all the theorems, the amount of subsampling depends on the coherence parameter v(U ). For
a specific operator U this is fixed, although it can be arbitrarily small. The fact that it is fixed suggests that
for large enough M and N subsampling will not be possible—i.e. we must take m = N. However, if U has
the property that v(U P-), v(P+U) — 0 as k — oo, then one can actually circumvent this problem. This is
achieved via multilevel subsampling techniques. This is not within the scope of this paper but will be treated
elsewhere [6]. Note that [6] will also address the issue of noisy measurements. Again, this is a topic outside
the scope of this paper.

7.3 Theorems on finite-dimensional CS

As mentioned, GS—CS extends standard finite-dimensional CS to an infinite-dimensional setting. It is there-
fore unsurprising, but important to note nonetheless, that results concerning the latter can be obtained as
straightforward corollaries of Theorems 7.1-7.3. In particular, we have

Theorem 7.5. Let U € C™*" be an isometry, and suppose that xy € C™ with supp(zo) = A. Fore > 0
suppose that m € N is such that

m>C-n-v*U)-|A|- (log(e™") +1) - logn, (7.9)

for some universal constant C, and let Q C {1,...,n} be chosen uniformly at random with |Q)| = m. If
¢ = Uxq then, with probability exceeding 1 — ¢, the problem

min ||n||x subject to PoUn = Poc,
necr

has a unique solution & and this solution coincides with .
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Theorem 7.6. Let U € C™*™ be an isometry, and suppose that yo = xo + h € C" with supp(zg) = A.
For € > 0 suppose that m € N satisfies (7.9), and let Q C {1,...,n} be chosen uniformly at random with
|Q = m. If { = Uyq then, with probability exceeding 1 — €, any minimizer & of the problem

min |7 subject to PaUn = Pod,
necn

satisfies

2n
€ = voll <8 (1 ; ) 1Al
m

Proof of Theorems 7.5 and 7.6. U extends in the obvious way to a partial isometry U on H. Note that
(U)*PyU = Py, for N = n. We may, in an obvious way extend U to an isometry U on H such that
v(ﬁ ) = v(U). Therefore, the weak balancing property is automatically satisfied for M = N and any
m € N. We now apply Theorem 7.1 or Theorem 7.2. O

Remark 7.6 Similar results on finite-dimensional CS has recently been proved by Candes & Plan [15]. The
main contribution of this paper is to extend this to infinite dimensions by the judicious use of uneven section
techniques and the key concept of the balancing property.

8 Numerical examples

Before giving proofs of these theorems, it is useful to present some further examples of GS—CS. We will
demonstrate the main premise of this paper in practice: namely, provided one knows that the function f has
a good representation in terms of a different basis then one can obtain a far better reconstruction of f than
that guaranteed by the Shannon Sampling Theorem. Consider the problem of reconstructing g = F f and f
from the samples {(;(f)};jen where (;(f) = Ff(p(j)e), € > 0 (we will use € = 1/2) and p is defined in
(4.10). We now compare three methods for approximating f and g:

(i) The partial Fourier series fy and gy (see (4.8)).
(ii) The GS reconstructions fx s and gy, ar (see Theorem 4.2).
(iii) The GS-CS reconstructions

k k
INmk(t) = Zaj@j(t)a IN,m k(t) = Zaj]:@j(t),
j=1 j=1

where & = {ay, ..., a} is computed via the convex optimization problem (5.2).

Note that fn as and gy, use exactly the same samples as fy and gy, yet fy m, r and gn,m,k use only a
subset of those samples.

If f is sparse or has rapidly decaying coefficients in Haar wavelets, then we expect (i) to give a very poor
reconstruction. However, both the GS and GS—CS methods should give very good reconstructions, with the
latter taking advantage of the sparsity to reduce the number of Fourier coefficients sampled (recall that GS
does not exploit any sparsity—it offers guaranteed recovery for all functions f by using the full range of
Fourier coefficients). Note that in both examples below the samples in the case of GS—CS are chosen such
that half of them are fixed (from the first indices) and the other half is chosen uniformly at random. This is
to improve results because of incoherence issues (see Remark 7.5).

8.1 First example

As a first example, let us consider the function g = F f

200
f@) = Z a;pi(t) + COS(QW‘%)X[%,%]@), t € [0,1], 8.1)

j=1
where {¢; } jen are Haar wavelets on [0, 1] and x[1 o is the indicator function of the interval [1,2]. Sup-

pose that [{j : c; # 0}| = 25, so that f can be decomposed into a sparse component and a remainder. Note
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Figure 6: The figure displays the errors |g(t) — gn (t)| (left), |g(¢) — gn,a (¢)| (middle) and |g(t) — g m & (t)]
(right) against ¢, for N = 601, M = 200, m = 230 and k£ = 650.

N [lg—gnllre lg — gn,nllLee g — gn.m.k L (avg. 20 trls)
601 1.43 4.74 x 107° (M = 200)  4.73 x 107°, (m = 230, k = 550)
1201 0.85 2.36 x 1075, (M = 400) 2.38 x 107°, (m = 460, k = 1400)

Table 1: The tables displays the errors for the reconstructions gy, g, v and gy, m, k-

that the remainder has infinite support in the Haar wavelet basis, so this function belongs to the fully-infinite
dimensional model (see §3.2).

In Figure 6 we display the errors committed by the approximations (i)—(iii) for this function. As expected,
the expansion in sinc functions (i) gives an extremely poor reconstruction, whereas both the GS and GS-CS
give far better approximations. Specifically, by replacing the sinc series (i) with either (ii) or (iii) one reduces
the error by a factor of roughly 10, 000. Moreover, and also as expected, the GS—CS approximation attains
the same numerical error as the GS approximation using only around 38% of the Fourier samples. These
observations are confirmed in Table 1.

Whilst the GS and GS—CS methods give very similar numerical errors it is important to notice that
the reconstructions fy ps and fn ., are typically very different. In particular, in GS one reconstructs
approximately the first M Haar wavelet coefficients «;,...,ap, where M < N. On the other hand, in
GS-CS one computes k such coefficients, where typically (although not always) k& > N.

This discrepancy can be explained by examining the equations (4.4) and (5.2). In GS, which corresponds
to (4.4), one requires M < N to ensure invertibility of the operator A. On the other hand, unless k is taken
sufficiently large, (5.2) need not have a solution, since the right-hand side Po((f) may not lie in the range
of the (finite-dimensional) section

PoUP, : CF — 9.

In particular, this may well be the case whenever k& < N. Fortunately, as shown in Proposition 7.4, this
cannot happen if k is sufficiently large. The effect of increasing k for the example (8.1) is illustrated in Table
2: once k is sufficiently large, the problem (5.2) has a solution, and this error drops accordingly.

8.2 Second example

Consider the function
500

f(t) = Z ajp;(t), (8.2)

where |{j : @; # 0}| = 100. This function is sparse in the Haar wavelet basis (and hence is an example of
the semi-infinite dimensional model). The task is to reconstruct f from its Fourier samples.

Unlike the previous example, we expect exact reconstruction of this function using both the GS and GS-
CS approaches, provided the parameters are chosen correctly. This is confirmed in Table 3. Observe that the
Fourier series of f requires over 50, 000 Fourier samples to achieve four digits of accuracy. Conversely, the
GS approximation recovers f exactly using only 1501 such samples. Furthermore, the GS—CS approximation
improves over GS by a factor of three: it requires only 450 Fourier samples in total.
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N EN,m,k = |9 — gn,m,k|| Lo (avg. 20 trials)

601  En230200 =00 FEn230,350 =00  En 230,550 = 4.759 x 107°  En 230,850 = 4.727 x 107°
1201 En,460,400 = 00 EnN,60,500 = 00 En,160,1000 = 2.384 x 107°  En 160,1300 = 2-392 x 107°

Table 2: The table shows the error ||g—gn,m, k|| o for different values of N, m and k (the notation En , ;; =
oo means that (5.2) does not have a solution).

N = fullee I = foall 2 If = fnumkllL2 (avg. 20 trials)
1001 4.19 8.47 x 1072, (M = 500)  5.53 x 107*, (m = 450, k = 900)
1501 1.43 4.74 x 107 (M = 500)  1.06 x 10™'° (m = 450, k = 900)
2001 1.39 4.33 x 1071 (M =500)  1.99 x 107'%, (m = 450, k = 900)
3001 1.37 4.45 x 1071 (M = 500) 1.98 x 107'% (m = 450, k = 900)

50001 2.84 x 107%

Table 3: The table shows the error corresponding to the reconstructions fn, fn,a and fa m, i of the function
(8.2).

8.3 Interlude: the remainder of the paper

In the first half of this paper we introduced the new framework GS—CS for compressed sensing in infinite
dimensions, and explained why it is needed. The main recovery results concerning GS—CS were stated in
§7. We devote the remainder of the paper to the proofs of these results.

9 Infinite-dimensional optimization and Proposition 7.4

We begin the second half of this paper with a proof of Proposition 7.4. As the informed reader will have
noticed, this is really an question of infinite-dimensional optimization: in particular, showing the existence
of minimizers to the finite-rank discretizations of an infinite-dimensional optimization problem, and their
convergence to minimizers of that problem. For this reason, we now recap some of the basics of this field.
The well-informed reader may proceed directly to Proposition 9.4. Also, some of the results below, although
new, are included only for completeness, and the reader only interested in the proof of the main theorems
may go directly to Proposition 10.4.

9.1 Infinite-dimensional optimization

The field of infinite-dimensional convex optimization is certainly not new [26, 46]. However, it is much less
standard than the more thoroughly investigated topic of finite-dimensional convex optimization. We will
now cover some of the basic tools that will subsequently prove useful.

In this paper we will consider complex vector spaces. Standard optimization theory is usually considered
over the reals, and this is also the case in [26] (the main reference we consider herein for the field of infinite-
dimensional optimization). To be able to able to quote [26] freely we use the standard trick and consider any
complex Banach space X as a real vector space. In particular, if X is the real Banach space induced by X
then _

X" ={Re(z"): 2" € X*}.
This follows by the observation that if 2* € X* and u = Re(z*) then w is a real linear functional. Also, if

uwe X* and z* : X — Cis defined by z* (z) = u(z) — iu(iz), then z* € X*. To avoid unnecessary clutter
we will (with slight abuse of notation) use X as the notation for X.

Definition 9.1. Let X be a Banach space and let F : X — R. The polar function F* : X* — R is defined
by
F*(a") = sup{Re(z" (z)) — F(x)},
reX

where R = R U {—00, 00}.
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Definition 9.2. Let X be a Banach space, F : X — R be convex and consider the following problem
(P): inf{F(z):ze X}.

IfY is a Banach space and ® : X x Y — R U {oo} is a convex lower semi-continuous function such that
®(x,0) = F(x) for all x € X, then the dual problem P* with respect to ® is defined by

(P*): sup{—2*(0,y") :y* € Y*}.
If ® is not specified we will say that (P*) is a dual problem for (P).
Let X and Y be Banach spaces and suppose that T € B(X,Y) and yo € Y. Consider the problem

(Pr): inf{|jz||:z € X, Tx=yo}.
Note that (P;) can be written as the equivalent convex optimization problem:
(P): inf{F(z)+ G(Tz),z € X}, (9.1)

where F(r) = [|z|| and G : Y — R U {oo} is defined by G(z) = d701(2 — yo). Here the function
doc 1Y — RU{oo}, where C C Y is convex, is defined by dc(z) = 0if z € C and §¢(2) = 0 if z ¢ C.
Moreover, by letting & : X x Y — R U {co} be defined by

O(x,y) = F(x) + G(Tz +y), 9.2)

and observing that
(2", y") = F* (2" = T'y") + G*(y"),

where 77 : Y* — X* denotes the dual mapping, we also obtain the following dual problem with respect to
d:
(P7): sup{—F"(-T'y") - G"(y") :y" € Y"}.

Much like (P;) and (Py), the dual problem (P;") also has an equivalent form. In fact, since F*(z*) = 0 if
[|[z*]|x~ <1and F*(z*) = oo if ||z*||x~ > 1, together with the observation that

G*(y*) = sup{Re(y*(y)) — 503 (¥ — %0),y € Y} = Re(y" (v0)),

we find that
(P7): sup{Re(y"(y0)) : 1Ty |l x- <1, y" € Y™}

Using these ideas we obtain the following well-known result [26]:

Proposition 9.3. Let X and Y be Banach spaces and suppose that T € B(X,Y) and yo € Y. If T is onto,
then
inf{||lz]| : z € X, Tz = yo} = sup{Re(y*(yo)) : |[T"v"||x~ <1, y* € Y*}.

Proof. Let F, G and ® be as in (9.1) and (9.2) respectively, and define h : Y — R U {oco} by
h(y) = inf @(z,y).

Then h is convex and, since T’ is onto, A is finite for all y € Y. Therefore, by convexity, A is also continuous,
and, in particular continuous at zero. The result follows now by [26, Prop. 3.3.5]. O

9.2 Proof of Proposition 7.4

We are now in a position to prove Proposition 7.4. We first require the following:

Lemma 94. Let U € B(H) and P be a finite rank projection. Then, for every x € Ran(PU), there exists
& € H satisfying

inf subject to PUn = y.
nell(N)”"”“ j n=X
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Proof. Recall that (cp)* = I'. By weak™ compactness there is a sequence {{x} C ! and a ¢ € I! such that
PU&, = x, ||€ellir Ny inf{||n]|;x : PUn = x}and (&, e;) — (€, ;) ask — oo forall j € N. It follows that
[1€]l;r < limg—yo0 ||€k i1 - Since & — & weakly as elements in # it follows by the fact that PU is compact
(since P is of finite rank) that PU&, — PUE. Hence, PUE = ¥, as required. O

We now give a proof of Proposition 7.4:

Proof of Proposition 7.4. To see the existence of &, for large k it suffices to observe that Ran(PoU) and
Ran(PqU Py) coincide for all sufficiently large k, since Py, has finite rank.

For the second part of the proposition, it is easy to see that it suffices to show that every subsequence of
{&1 }ken has a convergent subsequence in the /' norm with limit £ satisfying

1€l = inf {{Inl[n : PaUn = PoUzo} . (9.3)
neH

Let therefore {&; } ren be a subsequence of the original sequence (we use the same notation for simplicity).
Since ||€x|[;1 > [|€k+1]|in for all large k it follows that {£;} is bounded. So by weak™ compactness of the
I ball we have that, by possibly passing to a subsequence, there is a & € H such that £, — ¢ weakly (as
elements in H) as £ — oco. By compactness of PoU we find that PoU&, — PoUE as k — oo, and, since
PoU&, = PoUxy, it follows that PoU¢& = PoUxg.

To see that ¢ satisfies (9.3) we argue as follows. We claim that for any A > 0 we have

léxlln < int (= Palln = PaUzo} + A ©4)

for all sufficiently large k. Let r = dim(Ran(PqU)) < oo, and let éy, .. ., é. be coordinate vectors such
that span{PoUé;}’_; = Ran(PoU). Then every ) € Ran(PqU) with ||| = 1 can be written as n =
c1PoUé + ... + ¢, PoUeé,, where the c;s are bounded by, say, 1 < ¢ < oo. Now let f be a minimizer
of (9.3) (the existence of such a minimizer is guarantied by Proposition 9.4), and choose k so large that
{é;}5=1 C Ran(FPy), PoUPEE|| < A/(2er) and ||PE€]| < A/2. Let ¢y, ..., ¢, be chosen such that
PoUPEE)||PQUPLE|| = 1 PaUéy + ...+ ¢, PoUé,, and set fj = Pyé + (c161 + . .. ¢,é,)|| PQUP-E]]. 1t
follows that PoU7j = PoUE = PoUxo, ||iillin < ||€]l;x + A and 77 € Ran(Py). Hence ||| < [|€]l;n + A
and we have shown (9.4). Now choose m € N such that || P5¢||;n < A. Then [|€]|;n < || P&l + | P5ENn-
But P,,{, — P& and &, satisfies (9.4), thus [|£]|;x < infpep{[Inllin : PoUn = PoUxo} + 2X for any
A > 0. Therefore ¢ satisfies (9.3), as required.

For the final part of the proof, we are required to show that ||{x — £||;x — 0 as k& — oo. By possibly
passing to another subsequence, it follows by (9.4) that

€]l < T;g[{nnnll : PoUn = PoUxo} + 1/k. 9.5)

Note also that, for fixed m € N, we have P,,, (§x — &) — 0 as k — oo. But by (9.5) we also have || P, &k |[;n +
[Pl < [[Pmélli + | P&llin +1/k. So

lim limsup ||Pl&|l;r = 0.
M= k00
It thus follows that £, — & (in {') as k — oo, and we are done. O

9.3 Existence of unique minimizers

In what follows it will be useful to have several results on the existence of unique minimizers of such
problems. The finite-dimensional version of the following proposition has become standard for showing
existence of unique minimizers for finite-dimensional problems found in CS [17]. Fortunately, the extension
to infinite dimensions is rather straightforward:

Proposition 9.5. Let U € B(H) be unitary and let Q, A C N be such that |Q|,|A] < co. Suppose that
xo € H and that supp(xg) = A. Consider the optimization problem

in7f{ Inllix subject to PaUn = PoUxy. 9.6)
ne

Suppose that there exists a vector p € H such that
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(i) p=U*Pqnforsomen € H
(ii) <P7 e]> = <Sgn($0)>€j>a .7 €A
and in addition PaU Pa : PAH — PoH has full rank, then x is the unique minimizer of (9.6).

This proposition (for a proof, see the Appendix) may be a little hard to work with in practice. However,
a more convenient result with somewhat relaxed assumptions can also be obtained.

Proposition 9.6. Let U € B(H) with ||U|| < 1 and suppose that A and ) are finite subsets of N. Let xy € ‘H
such that supp(xo) = A. Let M € N and suppose that M is so large that A C {1,...,M}. Let £,& € H
such that
€[22 = inf {[|n[ln : PoUn = PoUxo},
neH

sl = inf {[inllx + PaUParn = Palizo}-
Suppose that there is a p € ran(U* Pq) and a q > 0 with the following properties
(i) [l ' PAU*PoUPs — Pall <1/2,

(ii) [|[Pap — sgn(zo)ll < \/q/4,

(iii) || PA plli < 1/2,
then & = xq. Also, if (i) and (ii) are satisfied and (iii) is replaced with || Pps Px p||1= < 1/2 then €31 = x
Proof. Let ( = & — xy. We will show that ( = 0. We begin by showing that || PAC|| < \/gHPi-CH This
follows from some simple observations. First note that by a small computation and (i) we have

[1PaUPAC|I* = a(1 — llg~ ' PAU* PaU Pa — Pal)|| Pacll* > gIIPACIIQ'

Also, by assumption, we obviously have || PA (|| > ||PoUPA(||. Thus, if | PaC]| > \/%||PKC|| we get

|PaUPAC|| > ||PAC|| > [|[PoUPAC]-

Since PoU( = 0 this is a contradiction.
Let us now note the following: for j € A we have

(o + Q)G = [1(o) ()] + C(F)sgn(zo) ()] = |(0) (4)] + Re(C(5)sgn(0) (4))-
Since supp(zg) = A we obtain
lzo + Cllir > [lzolln + Re(¢, sgn(wo)) + Y 1¢(4) 9.7
JEA®

where A° = N\A. Also, by the assumption that p € ran(U*P) and the fact that PoU¢ = 0, it follows
that { L p. Thus, using (9.7) we obtain (by applying (ii), (iii), Holder’s inequality and finally the observation

IPacll < \/2I1PACID
o +Cllis > lzollis + Re(c, sgn(ao) + Pisen(Q) — o)
> Jlzolln + IPACH — (1(C,sen(zo) — Pap)| + [, PEp)])

> llzolla + |PECs — (\fnPAcnp ; ||PA<11> ©.8)

/3
> ||lzollin + 1P Clle — <||PAC|11 + 5 1PaClle

Thus, if ¢ # 0 this gives ||zo + |lx > ||zol|;» contradicting the fact that ||£]|;2 < ||zo||;2. Hence ¢ = 0,
and this gives the first part of the proposition. The argument for the second part of the proposition is almost
identical. By letting ( = &y — x¢ we may use exactly the same analysis as previously, except for the
transition from the second line in (9.8) to the third line. In that case, since ¢ € ran(Pys), we only need the
requirement that || Py PA pll1 < 1/2. O
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10 Stability analysis for infinite-dimensional convex optimization

In the previous section we established conditions that guarantee recovery of 2o € I*(N) by solving

min_||n||;x subjectto PoUn = PoUxyg, (10.1)
nelt(N)

and its finite-dimensional approximations

min _||n||; subject to PoU Pin = PoUxy. (10.2)
n€elt(N)
In particular, we gave a proof of Proposition 7.4.

We now consider the issue of stability in such optimization problems. In other words, we consider the
effect of replacing zg by ¢ + h, where h is small in norm, on the minimizers £ and &, of (10.1) and (10.2)
respectively. Note that this is the first step towards a proof of Theorems 7.2 and 7.3 concerning the recovery
of compressible signals which are described by the semi/fully infinite-dimensional models §3. However,
at this moment we do not consider either sparsity or randomness. This comes in §11, in which the results
proved in this and the previous section are applied to the sparse recovery problems (7.1) and (7.4) to yield
proofs of Theorems 7.1-7.3.

10.1 Stability
Stability turns out to be a rather subtle issue. We now illustrate why.

Definition 10.1. Let 2, A be finite subsets of N, U € B(H) and let f : Ry — Ry be a continuous function
such that lim;_,q f(t) = 0. If € € H, supp(§) = A, is the unique minimizer of

inf{[|nlls, : PaUn = PaUE}, (10.3)
and for any € > 0 and ¢ € H such that ||§ — (i, < € we have that

[l = &l < f(e),

where x is a minimizer of inf{||n||;, : PoUn = PoUC(}, then we say that {U,Q2, A} is locally f-stable at €.
If f(t) = Ct for some constant C > 0 then {U,Q, A} is said to be locally linearly stable at §. We say that
{U,Q, A} is globally f-stable (linearly stable) if the above statements hold for all £ € H, supp(§) = A,
such that & is the unique minimizer of (10.3).

Proposition 10.2. Ler U € B(H) be unitary and let 0, A be finite subsets of N. Suppose that {U, ), A} is
globally f-stable. Suppose also that there exists © € H, supp(x) = A, such that x is the unique minimizer
of inf{|nlli, : PaUn = PoUz}. Then, if (PoU PA)* PoU Pa|pyw is invertible, and y € H, supp(y) = A,
is arbitrary, then y is the unique minimizer of inf{||n|;, : PaUn = PaUy}.

Proposition 10.3. Let U € B(H) be unitary and let Q, A be finite subsets of N. Suppose that for any
& € H, supp(§) = A, then & is the unique minimizer of inf{||n||;, : PoUn = PqU&}, and also that
(PQU PA)* PQU Pa | pa# is invertible. Then, {U, Q, A} is globally linearly stable.

These results establish the relationship between global stability and the existence of unique minimizers
(proofs are given in the Appendix). In particular, existence of unique minimizers for all y with supp(y) = A
is (almost) equivalent to global stability. Thus, global stability is a rather strict condition and may be difficult
to achieve. However, we will be concerned with a fixed signal to recover and hence global stability may not
be necessary. Conditions in order to establish local stability are the topic in the next section.

10.2 The key result
The key result of this section, which will later lead to the proofs of Theorems 7.1-7.3, is the following:

Proposition 10.4. Ler U € B(H) with ||U|| < 1, and suppose that A and Q are finite subsets of N. Let
xo,h € H be such that supp(xo) = A, supp(h) N A = 0 and ||h||p < oo, and suppose that A C
{1,..., M} for some M € N. Let £,&p € H satisfy

€l = égqf_l{”n”ll 1 PoUn = PoU(x0 + )}, (10.4)
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I€arlli = inf {lnlln - PaUParn = PaU(wo + Parh)}-
If there exists p € ran(U* Pq) and q > 0 with the following properties:
(i) (g7 PAU* PaUPa)7H| < 2,
(i) |[Pap — sgn(zo)|l < q/8,
(iii) || Papli= <1/2,

then 16
le—aall < (2247) . (10,5
Also, if (i) and (ii) hold and (iii) is replaced with || Pry PA plli < 1/2 then
16
leas — 0l < (52 +7) Il (10.6

Proof. Note that (10.4) and (i) yield

PoU(wg — Paé) = PoU(Px& — h)
=  PAU"PoU(zg — PA§) = PAU*PQU(Pif —h) (10.7)
= g — PAE = (PAU*PQUPA) ' PAU*PoU(PA € — h).
(note that (i) implies that PAU* PqoU P is invertible). Hence, from (i) and (10.7), and by using the fact that

U]l <1 we obtain
|zo — Pa&|l < 2/q| P& — hl|. (10.8)

Thus,
2 2 2
oo - €1l < 212 — 1+ 1gel < (24 1) hrgel + 2 bl (109
The rest of the proof is therefore devoted to showing that || Px £|;: is bounded by a constant times ||A/|;:.

Note that the fact that p € ran(U*Pq) and PoU (§ — (zo + h)) = 0 implies that (£, p) = (xo + h, p).
Thus, it follows, by appealing to (iii), that

Re((x0. p)) + Re({h, }) = Re((€. p)) < Re((€, Pap) + 3 3 €G3 (10.10)
JEAC

Thus, since supp(h) N A = (), we have

1
Re (wg — &, Pap) = Re (20, p) — Re (£, Pap) < —Re (h,p) + iHPi_ngl

1
—Re (h, PAp) + 5| PA€]n

IN

1
3 (Ihlle + 1P €N ) - (10.11)

We will return to this equation, but for the meantime we will continue to investigate the quantity Re({xo —
&, Pap)). Note that

Re (zg — &, Pap) = Re (zo — &, Pap — sgn(wzo)) + [|zoll;r — Re (&, sgn(zo))
> Re (zo — &, Pap —sgn(wo)) + |lzollin — [[Padlln
= Re (zg — Pa&, Pap — sgn(zo0)) + [[zolln — €]l + || PA €]l

Since ||z + h||;x > [|£]|;2 we obtain

Re (z9 — & Pap) = Re (20 — & Pap — sgn(wo)) — [|hlln + | Pa€]ln- (10.12)
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Moreover, using (ii) and (10.8), we get

1
(w0 — Pag, Pap —sgn(wo))| < 7[1Px€ = Al

Hence, substituting this into (10.12) now gives

V

1
Re (zg — & Pap) 2 *ZHPK& = hll = [lAlln + || Pa€[ln

v

5 3
=5 Ihlle + S 11Pa€lln. (10.13)
Combining (10.11) and (10.13) and rearranging now gives
| PAEln < 7Rl

Substituting this into (10.9) now yields (10.5). The proof of (10.6) is almost identical, and we omit the
details. O

11 Proofs of the main results

11.1 The Idea

Before we present proofs of Theorems 7.1-7.3, we would like to sketch the key ideas. Our approach is to
use Proposition 10.4 to show the existence of some p € ran(U* Py) with the following properties

(i) |07 PAU*PQUPA — Pal| < 1/2, (i) | Pap — sgn(xo) | < 6/8  (iid) | ParPapli= < 1/2,

for some 6 > 0 (recall the setup in Theorems 7.1 and 7.2).

Throughout the paper we will be concerned with randomly choosing a set Q@ C {1,...,N}. In our
models we will choose (2 uniformly at random, however, in some of the proofs we will also use another
approach that renders the analysis possible, whilst not affecting the model unduly. We will typically take a
sequence {d1,...dy } of independent identically distributed Bernoulli random variables taking values 0 and
1withP(6; = 1) = g forall j and let 2 = {j : §; = 1}. We will refer to this type of random selection of
as the Bernoulli model and we will denote such a procedure by {N,...,1} D Q ~ Ber(q).

We will assume that {N,...,1} D 2 ~ Ber(6), for some finite N € N. However, we will construct 2
in an equivalent, but slightly different way. Namely, we let

QZQl UQQU"'UQ[La QjNBer(q.j)7

where the specific value of 1 will be determined later. Note that as long as the g;s are chosen according to ¢
this is equivalent to letting 2 ~ Ber(6). Indeed, we have that  ~ Ber(6) is equivalent to 2¢ ~ Ber(1 — ).
So, for k € {1,..., N}, we have

Pk € Q°) = (1-0),

where Q°¢ = {1,..., N}\Q. But
Plke (@ uUQU---UQ,))=1-q)1-q) - (1-g).

Thus, if we let
I-g)1—-g) - (1-g)=(1-0) (11.1)

it is easy to see (by independence) that the two models are equivalent. Note that, obviously, there might be
overlaps between the €2;s. This automatically gives us the following:

Grq+...+q >0

This fact will be used several times in the arguments that follow and is a very crucial observation. We can
now present the Golfing Scheme.
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11.2 The Golfing Scheme

Let U € B(H) be an isometry and let {N,...,1} D Q; ~ Ber(g;) for j = 1,..., u for some 1 € N where
the g;s satisfy (11.1) for some 0 < § < 1. Suppose also that o € H. Define the operator

EQj:U*PQjU, j=1... .
The construction of p is based on the following idea. Let
p=Y, Y= Zq;lEQijq

j=1
Zi = sgn(xo) — PAE, ZO = SgIl(SCO)7

(11.2)

where the specific value of i, will be determined later. The construction suggested in (11.2) will be referred to
as the golfing scheme, and is a variant of the extremely useful original golfing scheme introduced in [33] by
David Gross. The actual construction will differ slightly from the one suggested here, however, this should
give the reader an idea about the approach. Before we can prove the theorems we need to establish some
results that will be crucial in the construction of p.

11.3 The Proofs

We first require the following three results. Proofs are found in the Appendix:

Proposition 11.1. Let U € B(H)) be an isometry. Let {N, ..., 1} D Q ~ Ber(q) for some 0 < q < 1, and
A C Nwith |A| < 00. Also, let M € N be so large that A C {1,..., M} and define Eq = U* PoU. Then,
forne Handt,v>0

P (|lg~' PasPa EoPanlli > (t + | Par PAU* P U Pallme)[0]]) < v (11.3)
provided
4 2v2 4
02 <t2+ ;fﬁ) tog (414%0 1,00, MY ) (O,
Also,
P (g~ Pa EqPanllie > (t+ [|PAUPNUPAlme)[10l]) < (11.4)
whenever

q> <t \/K> log (4w/7) - v*(U),

where w = @pru (|Al, tg, N) (recall Opp,u from (6.2)). In addition, if ¢ = 1,the left-hand sides of (11.3) and
(11.4) are equal to zero.

This proposition states that, for a sparse vector 7 supported in A, the vector U* PoU1n cannot be too large
outside the support of 7.

Proposition 11.2. Let U € B(H)) be an isometry, A C N with |A| < oo and {N,...,1} D £ ~ Ber(q)
for some 0 < q < 1. Then, for fixedn € Hand 0 < t,y < 1, we have

P (|[(g7 ' PaU*PoUPA — Pa) || > (t + |PaU*PnUPA — Pal)) In]l) < 7,

provided
g1 —q)™t 2472 *(U) - A,
and

log (1 + i) > %max{q_1 — 1,1} -0*(U) - |A] - log <3> )
~y

where K is the constant in Talagrand’s Theorem (Theorem 13.2).
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Theorem 11.3. There exists a constant C' > 0 with the following property. Suppose that U € B(H) is an
isometry, A a finite subset of N and {N,...,1} D Q ~ Ber(0) for some 0 < 6 < 1. Then, for e > 0 and
v > 1 we have that

1
P <||01PAU*PQUPA — Pal| = 5 + ||PAU* PyUPA — PA||) <, (11.5)

provided that
0> C-vy-v*(U)-|A[-log(|A]),

1\ ! (11.6)
02C~7~02(U)~|A~log(061)~<10g<1+4’y)> .

If 0 = 1 then the left hand side of (11.5) is equal to zero.
With these results presented, we can now embark on the task of proving the main theorems of this paper.

Proof of Theorem 7.1 and Theorem 7.2. The set @ C {1,..., N} is chosen uniformly at random with
|2] = m. By Proposition 10.4 it suffices to show that there exists a p € ran(U* Pp) such that

(i) |07 PAU PoUPA—Pall < 1/2,  (id) | Pap—sgn(o)l| < 8/8,  (iii) | ParPaplli= < 1/2, (11.7)

with large probability. Note that we may (without loss of generality) replace this way of choosing €2 with the
model that {N,...,1} D Q ~ Ber(#) for § = m/N (0 will have this value throughout the proof). Doing
so may only change the constant C' in (7.2). This trick has almost become standard in the literature and
we will thus skip the specifics (see [16, 17] for details). Note that, as discussed in Section 11.1, the model
{N,...,1} D Q ~ Ber(#) is equivalent to choosing {2 as

nglLJQQU"'UQ#, QjNBer(qj),
for some 1 € N with
(1-q)1—q2)--(1—qu)=(1-0). (11.8)
The latter model is the one we will use throughout the proof and the specific value of y will be chosen later.
The theorems will follow if we can show that the conditions in (11.7) occur with probability exceeding 1 — e,
and what follows is a setup to ensure this eventually. We will focus on (ii) and (iii) in (11.7) and deal with
(i) at the end of the proof. The proof proceeds in a number of steps.
Step I (The construction of p): Let v be a positive number such that v < g and let {a,...,c,} and

{B1,..., B} be sequences of positive numbers. The values of y, v, {a;},_; and {3;}/-_; will be carefully
chosen later in the proof. Consider now the following construction of p : let

Zy = sgn(zo),
and define recursively the sequences {Z;}!" ; C H, {Y;}/;, C H and {©;}}"; C N as follows: first define
Zi = sgn(wo) — PaYj, Y, = qu_lEQij—l, i=1,2,
j=1

where Eq, = U*Pq,U, and {q1,...,q,} stem from (11.8). The precise values of the ¢;’s will be chosen
later. Let also ©1 = {1} and ©2 = {1, 2}. Then define recursively, for ¢ > 3, the following:

O, U{i} if||(Pa— ¢ 'PaBq,Pa) Zi1|| < ;|| Zia]l,
0; = and ||q; ' PyyPA Eq, PaZi—1 | o < Bill Zi-al, (11.9)
O;_1 otherwise,

v Zjeeiqj*lEszj,l ifi € 9;,
! Y1 otherwise,

7 - sgn(xzg) — PAY; ifi € ©;,
! Zi_1 otherwise.
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Now, let {A4;}?_, and {B;}}_, denote the following events

Ai: |[(Pa—q'PaEQ,Pa) Zia|| < il Ziall,  i=1,2,
B; : Py PrEq PAZ;_ < Bil1Z;_ i =1,2
7 qu ML LQ AL 1”100_61” [ 1H7 1 3 4y (1110)
Bs : ©u > v,
By : (N1 A) N (N, By),

where |©,,| denotes the length of ©,,.
Also, let 7(j) denote the j*" element in ©,, (e.g. 7(1) = 1,7(2) = 2 etc. We also let 7(0) = 0.) and
finally define p by

)Y if By occurs
sgn(zg) otherwise.

Note that, clearly, p € ran(U*P) if B4 occurs. Now make the following observations. Note that the fact
that Z, = sgn(x) yields, fori < |0,

)

Zr(i) = sgn(xo) — Pa (q;(ll)EQ,mSgH(fo) + Q;(lg)EQ,(Z) Zi+...+ qT_&)EQT(i)ZT(i—l))

(11.11)
—1 —1
=Zr(i-1) — ¢ iyPaEa, PaZri-1) = (Pa — ¢, PaEa, o Pa) Zr(i-1).-
Hence, if the event B4 occurs, we have
1Pap — sgn(@o)ll = 1 Zrow) | < VIAI[] i) (11.12)
i=1
1Pa Pa pllise < Nl sy PrrPa Ba. gy Zegiy i
= (11.13)

v v i—1
<Y BrllZei-nl < VIATY By [T ariiys
i=1 i=1 j=1

and p € ran(U*Py) (note that in the above equation we interpret cg = 1). We will now show that with a
certain choice of parameters v, {3; }9‘:1 and {¢; }9‘:1 then (ii) and (iii) in (11.7) are satisfied when the event
By occurs. We delay specifying a the value for p until Step IV. Let L > 2, (we will give a value for L in a
moment) and

1
2 logé/ (L) ’
1 B log, (40=1/|A])

51:52:m7 Bi 4\/@ , << .

ud A
VAT oy = -2
=1

~ 2vlogy(L)’

Q] =g = a;=1/2, 3<i<uy,

It follows that

Hence, if
v = [bgz (89—1 \A\ﬂ, (11.14)
then it follows by (11.12) that
1Pap — sgu(zo)|| < 0/8

(recall that L > 2) yielding (ii) in (11.7). Also, after inserting the values of v, {3;}%_, and {a;}}_; into
(11.13) we get:

v i—1
VIADY . By [T w6
i=1 j=1

<1+1 1 Llogy (461 A | 1logy(40~VIA) 1 1og2(401L)|A|)>

210gt/%(L) 4 logy(L) 8 logy(L) 2t ogy(

IA
DO = ] =
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if we let L = 46~1,/|A|. Thus, by (11.13) we have
1Par Paplii <1/2,

yielding (iii) in (11.7). In particular, we have showed that, if v, {;}//_, and {a;}}_, are chosen as above,
then (ii) and (iii) are satisfied when B4 occurs.
Thus, we have now obtained a framework for proving (ii) and (iii) in (11.7) with a certain probability.
To do this, we will make a careful choice of p and then provide bounds on P(B5). The way this latter step is
carried out is by giving estimates for P(A§ U A$), P(B§ U BS) and P(BS). This is the content of Steps II-IV.
Step II: We claim that, if v > 0, then P(A§ U AS) < 2+, provided N, q1, g2 are chosen such that

|PAU* PxUPA — Pa|| < (11.15)

1
4logy'*(40-1/[A])

and
g =q2>C-03U)-|A]- (log (7_1) + 1) -log (9_1 |A|) , (11.16)

for some universal constant C' > 0. Also, if ¢ = g2 = 1, then P(A U AS) = 0.
To deduce the claim, we first observe that by Proposition 6.2 these requirements are well defined. Now
note that Proposition 11.2 gives, fori = 1,2 and 0 < ¢,y < 1 that

P (|[(g; ' PaU*Po,UPA — Pa) Zi—1|| > (t + [|PAU*PyUPx — Pa|)) || Zi-1]) <7, (11.17)
if
gi(1—q)~' =472 *(U) - |A], (11.18)
and
t 2K 3
log (1 + 4) > Tmabx{q*1 — 1,1} -0*(U) - |A] - log (7> , (11.19)

where K is the constant in Talagrand’s Theorem (Theorem 13.2). Thus, by (11.17), (11.18) and (11.19) (and
a small computation using Taylor’s Theorem), we can choose ¢ = «; /2 and deduce the first assertion in Step
II. As for the second assertion, clearly, if ¢ = g2 = 1 then the right hand side of (11.17) is zero, and hence
the last assertion follows.

Step III: We claim that, for v > 0, then P(B{ U BS) < 2+, if N, ¢ and g2 are chosen such that

1
| Pry PAU* Py U PA ||y < : (11.20)
WIN
and
=g >C-v*(U)-|Al- (log (v 'M) +1), (11.21)

for some universal constant C' > 0. Also, if ¢; = g2 = 1, then P(Bf U BS) = 0.
To prove the claim, recall that Proposition 11.1 gives, for¢ = 1,2 and ¢,y > 0, that

P (||¢; " PrPa Eo,PaZi—1|,n > (t+ [Py PAU* PNUPA|lwr) | Zi-1]]) < 7,

4 22 4
0> ( ; ;tf\m) tog (214°0 (1, MY ) (O,
Choosing ¢t = 3;/2 automatically yields the first assertion in Step III. Also, the fact that
P(Bf U B;) =0, n=q=1

follows automatically from Proposition 11.1.
Step I'V: We claim that, for y > 0, then P(Bg) < ~, if u, (recall p and v from Step I) V and {g3, ..., q,}
are chosen such that
p=8[3v+log(y 1], (11.22)

|PAU* PxUPA — Pal| < 1/4, (11.23)
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and
log, (40~ /|A])

| Par PxU* PNUPA || < , (11.24)
CRVAPAY
and also g3 = q4 = ... = q, = q, where
log (M
0> )| [ —2e M) L) (11.25)
log,(40-1/|Al)
for some universal constant C' > 0. Also, if g3 = g4 = ... = ¢, = 1, then P(BS) = 0.

To prove the claim we start by determining the condition (11.22) on u. Define the random variables
Xl, .. .X,J,Q by

_ )0 Zia# Zjp,
/ ]. Zj+2 = Zj+1.

We immediately observe that
P(BS) =P(|0, <v)=PXi+...+ X2 >p—v).

However, the random variables X,... X, _o are not independent. Thus, to use standard tools such as
Chernoff’s inequality we must apply a couple of tricks. Observe that

PXi+..+ X, 0>p—v)

(2=2)
< Z ]P)(Xﬂ"(l)l = 1,Xﬂ(l)2 =1,...+ X'n’(l)#_y = 1)
1=1
(+22)
= ]P)(X‘“'(l)u—u =1 | Xﬂ'(l)l =1,... 7X7r(l)“,_l,_1 = 1)P(X7r(l)1 =1,... ,Xﬂ-(l)u_u_l = 1) (11.26)
=1
(+22)
== ]P)(Xﬂ.(l)”_u = ]. | Xﬂ(l)l = ]., e 7Xﬂ.(l)ﬂ_y_1 == ].)
=1
X P(X‘n'(l)“,u,l =1 |X7r(l)1 = 1, e ’Xﬂ—(l)‘u,71/72 = 1) .. 'P(Xﬂ'(l)l = 1)
where 7 : {1,..., (ﬁ:i)} — N1~ ranges over all (ﬁ:i) ordered subsets of {1,...,u — 2} of size p — v.
Let P > 0 (a specific value for P will be assigned later) be such that
P>P(Xaqy, ey = HXa@y = Lo X,y ny = D (11.27)
P>P(Xqqy, = 1), ’
-2
I=1,..., (“ ) G=0,... . p—v—2,
w—v
then, by (11.26),
-2
P(Xy+...+ X, 0> p—v)< (“ >P“‘”. (11.28)
0w—v

Now let X7, ... JZ’H,Q be independent binary random variables, with ]P’()~(k =1) = Pand IP’()?;C =0) =
1 — P for each k. From Lemma 13.3 and (11.28), we have that

pn—2 (L—2)-e (n—v) w2
P(@u<u)=P<ZXi2u_y>g(“ﬂ_y> P(ZXiZ/j,—V>. (11.29)
=1 =1

Note that by the standard Chernoff bound ([43, Theorem 2.1]) it follows that, for ¢t > 0,

P (5(1 o+ X > (=2 P)) < e 22, (11.30)
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If welett = (u—v)/(u — 2) — P, then (11.30) and (11.29) gives that

n—2
P(ZXiZu—u> < (11.31)

i=1

whenever

e 2(n— 2)t+(p—v)(log( L= 2)+1) <.

Hence, by observing that log((x — 2)/(p — v)) + 1 < (p — 2)/(1r — v), we have that (11.31) is satisfied
whenever

2
r—v r—2
> — — — -1/2 —
0>z, (x—2) <x —3 P> log (7 ) 5 0 (11.32)

where « is the largest root satisfying (11.32). In particular, we have shown that P(B§) < ~ when (11.32) is
satisfied. Choosing P = 1/4 will yield 2 < 8[3v 4 log(y~'/?)]. Hence (11.22) yields (11.32).

For the rest of the proof of Step IV we need to determine the conditions on NV and {gs, .. ., g, } such that
(11.27) is satisfied with P = 1/4. Note that X = 1 if and only if one of the following events occur:

Di: ||(Pa—a; ' PaBa,Pa) Zia|| > aj | Zjall. j=k+2

L : (11.33)
Dy: gy PuPyEo,PaZialle > BilZiall,  G=k+2

Observe that we may argue exactly as in the proof of Step II (via Proposition 11.2) and regardless of the
vector Z;_1, we may deduce that P(D;) < 1/8 when N and g¢;, are chosen such that
||PAU*PNUPA — PAH < Ozj/2,

2 -2 ) (11.34)
g > C- v (U)-|A]-a;" - (log (24) +1), j=k+2,

for some universal constant C' > 0. Observe also that we may argue exactly as in the proof of Step III (via
Proposition 11.1) and regardless of the vector Z;_;, we may deduce that P(D) < 1/8 when N and g; are
chosen such that

| Par PXU* PyUPA|lmar < B5/2,

(11.35)
qj > C-v*(U)- (ﬂ2+ﬂ\/|A> (log(32M)+1), j=k+2,
J
for some universal constant C' > 0. Thus, for [ = 1,..., (5:3) and 7 = 0,...,u — v — 2, by letting
k= W(Z)u—u—iv
P(Xﬂ'(l)“_,,_,; == 1 ‘ X‘n’(l)l == 1, ey Xﬂ'(l)u—u—(i+l) = 1)

SP(DlLJDQ‘Xﬂ.(l)I =1,...,X

T(Dp—v—(it1) <P

and similarly, by letting k = 7 (l);
P(X,), =1) <P(DyUDy) < P

whenever (11.34) and (11.35) are satisfied. In particular, (11.34) and (11.35) imply (11.27). But (11.34) and
(11.35) follow from (11.23), (11.24) and (11.25) (with a possibly different, however universal, C) and thus,
the first part of the claim is proved. The fact that if g5 = g4 = ... = g, = 1 then P(B$) = 0 follows from
Propositions 11.2 and 11.1.

Step V: We claim that for v > 0, then

P (|[Pap —sgu(zo)[| > 6/8 U[|PyPapli= > 1/2) <57, (11.36)
when N € N and 6 > 0 are chosen according to (6.3), (6.4) and

0> C-02(U)-|A|- (log (v) + 1) -log (Ma—l |A|> : (11.37)
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for some universal constant C' > 0. Also, if # = 1 then the left hand side of (11.36) is equal to zero.

To prove this, recall the events A1, Ao, By, B2, B3, B4 from Step I. We have already established in Step
I that if the event B, occurs then || Pap — sgn(zo)|| < 6/8 and || Py PAplli= < 1/2. It therefore suffices to
show that, given the conditions (6.3), (6.4) and (11.37), it holds that

P (Bf) < 5. (11.38)
To do this we begin by making some observations. First
P (Bf) <P(A] U AS) + P(Bf U BS) + P(B3), (11.39)
and second

GA Gt g >0 (11.40)

Recall from Step II we have that P(A§ U AS) < 2 whenever (11.15) and (11.16) are satisfied. Also, by
Step IIL, P(B{ U BS) < 2 whenever (11.20) and (11.21) are fulfilled. Finally, from Step IV we have that
P(BS) < ~ provided

=8 [1og(7—1)+3 [log2 (89—1 \A|)H, (11.41)

and (11.23), (11.24) and (11.25) are satisfied. In particular, using (11.39) we find that (11.38) follows from
(11.15), (11.16), (11.20), (11.21), (11.23), (11.24) and (11.25). Thus, we must then show that these equations
follow from (6.3), (6.4) and (11.37). Now let ¢; = g2 = /4. Then, by (11.37), we have that (11.16) follows
(with a possibly different constant), and similarly (11.21) follows. Let ¢ = g3 = ... = g,,. By (11.40) and
(11.41) we have

16¢ [1og(7—1)+3 [1og2 (89—1 |A|)H >0,

and hence (11.25) follows. The only thing left to do is to deal with the requirements on V. In particular, we
need to show that (11.15), (11.20), (11.23) and (11.24) follow when (6.3) and (6.4) are satisfied. Note that
(11.23) and (11.24) are weaker than (11.15) and (11.20). Thus, we only need to concentrate on (11.15) and
(11.20). To see that (6.3) and (6.4) imply (11.15) and (11.20), note that (since Py; > Pa)

PAU*PNUPA — Pa = Pa(PyU*PyUPy — Pag)Pa,

and so
|PAU* PnUPA — Pa|| < ||PyU* PnU Py — Pyl

Hence (11.15) follows from (6.3). The fact that (11.20) follows from (6.4) is clear. Also, the fact that the
left-hand side of (11.36) is equal to zero when 6 = 1 follows from Steps II - IV and the fact that when § = 1
wehaveqy = ... =¢q, = 1.
Step VI: We claim that, for v > 0,
P(|07! PAU*PoUPA — Pal| > 1/2) < 7, (11.42)
when NV € N and 6 > 0 are chosen such that
|PAU*PNUPA — Pal| < 1/4, 6> C-0*(U)-|A|- (log (v HA]) + 1),

for some universal constant C'. Also, if § = 1 then the left hand side of (11.42) is equal to zero.
To prove this claim note that, by Theorem 11.3, there is a K > 0 such that

P <||9_1(PQUPA)*PQUPA — PAH > i + ||PAU*PyUPa — PA|> <7,
provided
0> AK - v*(U) - |A| - log(|A]),
and

0 > 4K -0*(U) - |A] -log(Cy 1) - <1og (1 + fﬁ)) - .
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This yields the asserted claim. The fact that the left hand side of (11.42) is equal to zero when 6 = 1 is clear.

Step VII: In this final step we will patch the different parts of the proof together. Recall that our initial
goal was to show that (11.7) follows with probability exceeding 1 — €. Note that in Step V we have shown that
if v > 0, then (ii) and (iii) in (11.7) are satisfied with probability exceeding 1 — 5, provided (6.3), (6.3) and
(11.37) are satisfied. We are thus only left to show that (i) follows with a certain probability. However, we
immediately recognize that the conditions in Step VI follow from (6.4) and (11.37), and hence (i) in (11.7)
follows with probability exceeding 1 — . This implies that (i), (ii) and (iii) in (11.7) hold with probability
exceeding 1 — 6. By choosing y such that 6y = € we observe that (11.37) follows (with possibly a different
C) from the conditions in Theorems 7.1 and 7.2 and we have finally proved the first assertions in Theorem
7.1 and Theorem 7.2. The last assertions follow by the fact that 6 = 1 when m = N, (and hence also
g1=...=¢q,=1)and Step V - VL. O

Proof of Theorem 7.3. We will follow the recipe from the of proof of Theorem 7.2 almost word for word,
and we will only point out where the differences lie. The first such difference is the set of conditions provided
by Proposition 10.4. In particular we must show that there exists a p € ran(U* Py) such that

(i) |0~ PAU* PQUPA — Pal| < 1/2, (i) ||Pap — sgn(xo)|| < 0/8  (iid) | Paplli= < 1/2, (11.43)

is true with probability exceeding 1 — e. (Note that only condition (iii) is changed from the proof of Theorem
7.2).
Step I: Almost as in the proof of Theorem 7.2, except that (11.9) should read

©;_1U{i} if ||(Pa — ¢ 'PaBq,Pa) Zi1|| < ;|| Zia]l,
0, = and ||qi_1PAJ‘EQ,;PAZ¢—1Hlm < Bill Zi-1l
0,1 otherwise,

and the events By and Bs in (11.10) should be
B : \|g; ' Pa Ba, PaZj1|,.. <BillZjl, j=12.

Also, (11.13) must be changed to

||}Di_p‘|l°O § Z ”qu(t)Pi_EQ-r(b) Z7'('i—1)||l°O

=1
v v 1—1
<Y Br@llZeinl < VIATY Briiy [T ariiy-
i=1 i=1 j=1

Step II: Exactly as in the proof of Theorem 7.1.
Step III: We claim that, for v > 0, then P(B$ U BS) < 2+, if N, ¢; and g» are chosen such that

1
|PAU* PNUPA[lime € ——, (11.44)
8v/1A]
and
@ =q>C -0*U) |A|- (log (v 'wi) +1), (11.45)
where

w1 = (:)M,U(|A|a Q1(8 V |A|)717 N)a

(recall @y, from (6.2)) for some universal constant C' > 0. Also, if ¢; = g2 = 1, then P(Bf U B§) = 0.
The claim follows exactly as in the proof of Step III in the proof of Theorem 7.1 by using the last part of
Proposition 11.1.
Step I'V: We claim that, for v > 0, then P(Bg) < ~, if u, (recall p and v from StepI) NV and {g3, ..., q,}
are chosen according to (11.22), (11.23) and

-1
HPKU*PNUPAHmr < M

(11.46)
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and also that g3 = g4 = ... = ¢, = ¢, where

1
0> O U)-|A] [0 L) (11.47)
log,(40-1/[Al)
and
B log, (46~ 1\/|A
W2 = WMm,U |A‘7QM7N )

CRVAPAY
(recall Wy, from (6.2)) for some universal constant C' > 0. Also, if g3 = ¢4 = ... = ¢, = 1, then
P(BS) = 0.

The proof is almost as in the proof of Theorem 7.2, except that the last part of (11.33) should read

Dy: |lg; ' PxEo,PaZi . > BillZj—all,  j=k+2,
and (11.35) should be
|PAU* PnU Pal|me < B5/2,

! 1\/K|> (log (32w2) + 1), j=k+2.

g > C-*(U)- (62+5,
3 b

Step V: We claim that, for v > 0,

P (|| Pap —sgn(zo)|| > 0/8 U[|PA plli= > 1/2) < 57, (11.48)
when N € N and 6 > 0 are chosen according to (6.3), (6.5) and
0> C-02(U)-|A]- (log (v) + 1) - log (wofl |A\) : (11.49)

where

6
s = ,
1284/|Allog(ety~1)

and Wy y is defined in (6.2), for some universal constant C' > 0. Also, if § = 1 then the left hand side of
(11.48) is equal to zero.

The strategy is almost as in the proof of Step V in Theorem 7.1. In particular, we argue by using Step II
-1V that P (B§) < 5y when (11.15), (11.16), (11.44), (11.45), (11.23), (11.46) and (11.47) are satisfied, and
thus (11.48) follows. We then need to show that these equations follow from (6.3), (6.5) and (11.49). To do
this, let g1 = g2 = 0/4. Then, by (11.49), we have that (11.16) follows (with a possibly different constant).
To show that (11.45) is implied by (11.49) it suffices to show that w > w;. This will follow by the definition
(6.2) of Wy, p (recall that the mapping s — s, (JA[, s, N) is a decreasing function), and by observing that

(8VIA) " > s = 0 (128 [Alog(ey )

To show that (11.47) follows from (11.49) it suffices to show that w > w». To do this (as argued above) it is
sufficient to prove that

w = (:)M’U(‘A‘,S,N),

log (40~ IA]) _

>s
8v/ A

To see why the latter inequality is true, note that
a+e+...+q. >0.
So, by recalling the value of p (from (11.22)) from Step IV and noting that ¢ = g3 = ... = g, we get

164 [log(’fl) +3 [1og2 (89*1 |A|>H > 0.

(11.50)

In particular, it follows that
0log, (40~ 1/]A]) y 9
16(log(v~1) + 3log,(80-1\/JA]) + 1) ~ 8log(ety~1)

qlog,(4071V/|A]) > (11.51)
Thus, we have shown (11.50).
We are now left with the task of showing that (11.15), (11.44), (11.45), (11.23) and (11.46) follow from
(6.3) and (6.5), and this follows by arguing exactly as in the proof of Step V in the proof of Theorem 7.1
Step VI and Step VII: Exactly as in the proof of Theorem 7.1. O
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13 Appendix

The appendix contains all the proofs that have not been displayed so far. However, before do this, there are
two results that are absolutely crucial. The first is a due to Rudelson [49].

Lemma 13.1. (Rudelson) Let 1y, ...,ny € C" andleteq, . ..z be independent Bernoulli variables taking
values 1, —1 with probability 1/2. Then

M
Zfiﬁi @ n;
i=1

M
Z i & 1i
i=1

3
< Z .
) < 2%13%%”771“

where p = max{2,2log(n)}.

Note that the original lemma in [49] does not apply in this case. Actually, we need the complex version
proved in [56]. We will, however, still refer to it as Rudelson’s Lemma. The following theorem is also
indispensable (note that we deliberately forgo the use of any vector/matrix Bernstein inequalities and prefer
Talagrand’s result instead. This allows for more flexibility in the infinite-dimensional setting):

Theorem 13.2. (Talagrand [54, 41]) There exists a number K with the following property. Consider n inde-
pendent random variables X; valued in a measurable space ). Let F be a (countable) class of measurable
functions on ) and consider the random variable Z = sup;c 7 >, f(X;). Let

S=sup|flle,  V=supE [ f(X;)?
feF fer

i<n

IfE(f(X;)) =0forall f € F andi < n, then, for each t > 0, we have

B(1Z — E(Z)| > 1) < 3exp (_;;log (1 " Viqu(Z))) ,

where 7 = SUp e x | Eign F(X))-
We also require the following lemma:

Lemma 13.3. Let {X j }é\le be independent binary variables taking values 0 and 1, such that X j = 1 with

probability P. Then,
N —k
P (Z X > k;) > <Nke> (]Z>Pk. (13.1)
=1

Proof. First observe that
N—k

P <_N Xz k) - i (V)rra-pre= 3 (T, )P pee

1=0

Pz(l . P)N*k*i

s (N = k)
> (N—i—k)(i+ k)

(
) (Z)Pk :V_: (Ni_ k>Pi<1 — PN K“];’f)]l
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The result now follows because 1 o* (V7%) Pi(1 — P)N =+~ = 1 and fori = 0,..., N — k, we have that

(V=) < ()

where the first inequality follows from Stirling’s approximation (see [21], p. 1186). O

Proof of Proposition 9.5. By the assumptions, there is a p € [*°(N) such that p = U* Pqy for some y €
PoH and ||pl;= < 1. Also, by (ii)

Re({PaUPazo,y)) = Re((zo, Pap)) = Y sign((zo, ¢;)){wo, ;) = |lzo]ln-
JjeA

Thus, by using duality (recall Proposition 9.3), in particular the fact that PoU : H — Po#H is onto (this
follows since U is unitary) and that

inf{||z]|n : PoUz = PoUxo} = sup{Re({PaUxo,v)) : U Paylli= < 1},

it follows that ¢ is a minimizer. But (p, e;) < 1 for j ¢ A so if £ is another minimizer then supp(§) = A.
However, PoU P has full rank, so & = xg. O

Proof of Proposition 10.2. Let o = |A| and also w = {w; }$_; be a sequence, where w; € C. Now define
Vo =Ia-® S, : PxH @ PAH — PrH @ PaH, (13.2)

where S, = diag({w;}7_;) on PaH and Iac is the identity on PxH. Define U(w) = UV,,. Note that to
prove our claim it suffices to show that V,z is the unique minimizer of inf{||n|;, : PaUn = PoU (w)z} for
all w, where

weA={(e",... e%)eC*:0;,€0,2r),1<j<a}. (13.3)

Indeed, if that is the case then, by Proposition 9.5, for every w € A there exists (,, € PoH such that
Tw = U"Paly, Pam, =sgn(V,z), ||[Pacmw|ie < 1. (13.4)

Thus, for any y € H such that supp(y) = A choose w € A such that sgn(y) = sgn(V,,z). Then, since
(PaU PA)* PoU Pa [ p, 4 is invertible it follows by 13.4 and Proposition 9.5 that y is the unique minimizer
of inf{||n];, : PoUn = PqUy}. Note also that if w € A then V,, is clearly unitary and also an isometry on
I*(N). Thus, it is easy to see that V,,¢ is a minimizer of inf{||n||;, : PoUn = PqU(w)x} if and only if ¢
is a minimizer of inf{||n||;, : PoU(w)n = PoU(w)z}. We will therefore consider the latter minimization
problem and show that x is the unique minimizer for that for all w € A. To do that, it suffices, by Proposition
9.5 and the fact that U (w) is unitary, to show that there exists a vector p € H such that

Po:U(w)p =0, Pap=sgn(z), |[Pacplli= <1. (13.5)

Now, for e > 0 (we will specify the value of e later), define the function ¢ : UgeaB(a,€) — R, where
B(a, €) denotes the e-ball around a, in the following way. Let

W =1IA & PocUPac : PAH ® PacH — PAH & PocH,

and define

p(w) = inf{||Pacpllie : Wp = tasgn(x) & —PaU(w)Patasgn(z)},

where ta : PAH — H is the inclusion operator. Then (13.5) is satisfied if and only if p(w) < 1. Thus, to
show 13.5 we must show that p(w) < 1 forall w € A.

Suppose for the moment that € is chosen such that ¢ is defined on its domain. We will show that ¢ is
continuous. It suffices to show that ¢ is continuous on B(a, €) for a € A. Note that, by the fact that B(a, )
is open it suffices to show that ¢ is convex. To see that  is convex, let wy,ws € B(a,€) and ¢ € (0,1). Let
also &, n € H such that

WE = asgn(z) & —PocU(wy)Patasgn(z),

Wn = isgn(z) ® —PaeU(ws) Patasgn(x).
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Note that the existence of such vectors is guaranteed by the assumption that ¢ is defined on its domain. Now,
observe that

pltwr + (1 = twz) < [[Pac(t + (1= )n)[liee < tl[Pacgfliee + (1= )[|Pacn]i.

Thus, taking infimum on the right hand side yields ¢(tw; + (1 — t)ws) < to(wr) + (1 — t)p(ws), and
we have shown the assertion that ¢ is convex. Returning to the question on the domain of ¢, note that if
(PQUPA)*PQUPA rPAH is invertible, then

PoU(w)Pa)" PoU(w)Pa [pan
is invertible if ||U (@) — U(w)|| is small and & € A. Letting
p=U(w) PaU(w)Pa((PoU(w)Pa) PaU(w)Pa Ipan)” 'sgn(@)

we get
PQCUPACP = —PQc U(UJ)PASgH(SE).

Thus, ¢ is defined on its domain for small €.

Let I" denote the subset of all w € A such that z is the unique minimizer of inf{||n||;, : PoU(w)n =
PoU(w)x}. Note that T is closed. Indeed, if w € T and {w,,} C T is a sequence such that w,, — w then
w € I'. To see that, observe that since {U, 2, A} is weakly f stable, it follows that for { € H satisfying

1€l = mf{[Inlls, : PoU(w)n = PoU(w)x}

we have
1€ —zlln < f(llw —wnlli=), VneN.

Thus, £ = x and hence w € T'.

Note also that I' is open. Indeed, for if @ € I' then there exist p € H such that p satisfies 13.5
(with w replaced by @) e.g. (@) < 1. But, by continuity of ¢ it follows that ¢ is strictly less than
one on a neighborhood of @. Since (PoUPA)*PqoUPa [p,3 is invertible, then it is easy to see that
PoU(w)Pa)*PoU(w)Pa | py is invertible, for all w € A thus it follows by Proposition 9.5 that (13.5) is
satisfied for all w € A in a neighborhood of & and hence I' is open.

The fact that T is open and closed yields that either I' = (J or I' = A. The fact that {1,...,1} € T by
assumption yields the theorem. O

Proof of Proposition 10.3. Let V,, and A be defined as in (13.2) and (13.3) respectively. Suppose thaty € H
such that supp(y) = A. Then, by assumption, V,y is the unique minimizer of inf{||n||;, : PaUn =
PqUV,y}. Thus, by Proposition 9.5 it follows that there exists a p,, € H such that

PQCUpw =0, Ppr = Sgn(vw )7 ”PAprHlOO <1 (13.6)

Let 5 = sup,,cp{||Pacpw|lie}. Note that 8 < 1, since A is closed. Thus, for every y € H with supp(y) =
A there exists p,, € H satisfying (13.6) where || Pacp,|ji= < 8. It is now easy to show that (see the proof
of Lemma 2.1 in [18]) there exists a constant C' > 0 (depending on £3) such that, if £ € H, supp(§) = A, is
the unique minimizer of inf{||n||;, : PaUn = PoU¢}, ¢ € H and z is a minimizer of inf{||n||;, : PoUn =
PqU(} then || Pacxll;, < Cl|€ = (]|i,- Thus, since

PQUPA(IL‘ - f) = PQU(C - f) - PQUPAc$7
and (PqU Pa)* PoU Pa|p, 1s invertible, the proposition follows. O

Proof of Proposition 11.1. Without loss of generality we may assume that ||| = 1. Let {4}/, be random
Bernoulli variables with P(§; = 1) = ¢. We will split the proof into two steps, where we will prove the
finite-dimensional part of the proposition in Step I, and then tweak these ideas to fit the infinite-dimensional
part of the proposition in Step II.

Step I: We start by noting that, clearly (by using the fact that U is an isometry), we have

N
q ' PyPrEqPan=q'> PyPAU"8;(e; ® e;)UPan

=t (13.7)

N
=q ! Z Py PAU*(6; — q)(ej ® e;)UPan + Ppy PxU* Py U Pan.
j=1
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Our goal is to eventually use Bernstein’s inequality and the following is therefore a setup for that. Define,
for 1 < j < N the random variables

Y; =q 'PyPAU*(5; — q)(e; ® e;)UPan,

X = (¢ 'U*(6; — q)(e; ® ¢;)UPAn, €;), ie A°N{l,...,M}.
Thus, by (13.7) it follows that for s > 0 we have

N
P (||¢ " PuPa EaPan| . > s) =P (||Y_Y; + PyPAU*PYUPan|| >
j=1

loc

N
< > P DX} + (PyPAU*PUPAn,e;)| > s
i€eAen{l,...,M} j=1

N
< Z P ZX_; >S—||PMPALU*PNUPA||HH 5
i€Aen{1,...,M} Jj=1

where we have used the fact that U is an isometry and hence
Py PrU*PNUPA = —Py PAU* P UPa.

Thus, by choosing s = t + || Pas P U* PxU PA || it follows that

N
P (g ' PauPa BoPanl, > t + [|IPMPAUPNUPAllme) < Y P[|D_Xj|>¢]. (138)
ieAen{l,..., M} j=1

To get a bound on the right hand side of (13.8) we will be using Bernstein’s inequality, and in order to do
that we need a couple of observations. First note that

E (1X]1*) = ¢ °E ((UPan, (6; — q)(e; @ €;)Ue;)|?)
=g ’E((6; — 9)%) (U Pan, e;)(Uei, e5)[*
=q (1 - q)|(UPan,e;)(Ue;,e;)|?, i€ A°N{l,...,M}.
Thus

N
Y E(IXP) <q (1= lnlP*(U) = ¢ 1 - (),  i€A°n{l,...,M}. (13.9)

j=1
Also, observe that
X5 = a7 — @)l[{n, PaU(¢j @ ¢5)Ue;)| < max{(1 — q)/q, 1}0*(U)V/|A], (13.10)

for1 <j < Nandi € A°N{l,...,M}. Now applying Bernstein’s inequality to Re(X?),...,Re(X%)
and Im(X7),...,Im(X%) we get that

- x t2/4
P jz::lXj >t) <4dexp <_q1(1q)UQ(U)+maX{q1(1q)71}v2(U)\/|Kt/3\/§>, (13.11)

foralli € A°N{l,..., M}. Thus, by invoking (13.11) and (13.8) it follows that
-1 L1 Lrr=
P (|l¢~ ' PuPaEqPan||,.c > t+ [|PuPAU*PNUPAl|me) <7

when

4 22 4. ..
q=> <2+3t\/m> log <7A m{lvaM}|> 'UQ(U)
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and the first part of the proposition follows. The fact that the left hand side of (11.3) when ¢ = 1 is clear
from (13.9) and (13.10).

Step II: To prove the second part of the proposition we will use the same ideas, however, we are now
faced with the problem that Px EqPan (contrary to Py PA EqPan) actually has infinitely many com-
ponents. This is an obstacle since the proof of the bound on PMPA- EqPaAn was based on bounding the
probability of the deviation of every component of Py PR EqPan and thus, if there are infinitely many
components to take care of, the task would be impossible. To overcome this obstacle we proceed as follows.
Note that, just as argued in the previous case in Step I, we have that

N
¢ 'PxEqPan = ZY;- + PAU*PxUPan, Y; = ¢ 'PaU*(6; — q)(e; @ e,)UPan.  (13.12)

j=1
Define (as we did above) the random variables
X;={a'U"(6; —a)ej @ e;)UPan.ei), i€ A"

Note that we now have infinitely many X}s, however, suppose for a moment that for every ¢ > 0 there exists
a non-empty set A; C N such that

N
Plsup D Xi|>t]=0 [A°\ A< o0 (13.13)

i€A: j=1

Then, if that was the case, we would immediately get (by arguing as in Step I and using (13.12) and the
assumption that ||n|| = 1) that

P (|l¢ ' PaEaPan||,. > t+ |PAU*PnUPal|mr)

N
=P (D Y+ PAU'PYUPAn|| > t+ |PAU"PyUPAl|m:
j=1 oo
N
< D P oxi>t],
P€|AC\A| Jj=1

Thus, we could use the analysis provided above, via (13.11), and deduce that
P (¢ ' PAEaPan| ;. >t + [|PAUPyUPA|lmr) <

when
q> (i-}—z;’ii\/A) log (j/ |AC\At|> V3 (U). (13.14)

Hence, if we could show the existence of A; and provide a bound on |A°\ A;| we could appeal to (13.12)
and (13.14) and be done. To do that, define

N
At: Z¢A]P) ZPAU*éj(ej(@ej)Uei Stq =1
Jj=1

Note that (ej ® ej)Uei — 0as¢ — oo forall j < N. Thus, Ay # (). Moreover, we also automatically
get that |[A°\ Ay| < co. Note also that (13.13) follows by the fact that X! = (1, ¢~ PAU*8;(e; ® e;)Ue;)
and the Cauchy-Schwartz inequality. With the existence of A; established, we now continue with the task
of estimating |A¢ \ A|. Note that to estimate |A° \ A;| we need information about the location of A which
is not assumed. We only assume the knowledge of some M € N such that Py; > Pa. Thus, (although an
estimate of |A€\ A;| would be sharper than what we will eventually obtain) we define

A(|A|, M, t) =L ieN: Pr,U*Pp,Ue;|| <t
a([Al M) = i rreq 3 L P U7 PR U] < tg

r.c{1,...,N}
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Note that it is straightforward to show that A, (|A|, M, ) C A;. Also, A,(|A|, M, t) depends only on known
quantities. Observe that, clearly, forany I'y C {1,...,M}andT's C {1,..., N} then |Pr,U*Pr,Ue;| —
o0 as ¢ — oo. Thus, |[A°\ A, (JA], M, )| < oo and since A, (|A], M, t) C A, it follows that

[A\ Ag(AE)| < |CieN max |Pr,U* Pr,Ue;|| > tq

TSI Yy W) N
rac{1,..., N}

and the second part of the proposition follows. The fact that the left hand side of (11.4) is zero when ¢ = 1
is clear from (13.9) and (13.10).
O

Proof of Proposition 11.2. Without loss of generality we may assume that ||| = 1. Let {;}}_, be random
Bernoulli variables with P(0; = 1) = ¢. Let also, for k € N, & = (UPa)*e. Observe that, since U is an
isometry,

N o
¢ (PoUPA)*"PoUPA =Y q "0k @&, Pa=) & ®&, (13.15)
k=1 k=1

and

1
H (q(PQUPA)*PQUPA — PA) 77H < + ||(PAU*PNUPA — PA)UH,

N
(Z(q_15k -1)&® §k> n

k=1

(13.16)

where the infinite series in (13.15) converges in operator norm. Also, (13.16) follows directly from (13.15).
To get the desired result we first focus on getting bounds on ||(ZkN:1(q_15k — 1)& ® & )n|| The goal is to
use Talagrand’s formula, and the following is really a setup for that. In particular, let { € H be a unit vector,
and denote the mapping H > & — Re((£,()) by C. Also, let F be a countable collection of unit vectors such
that for any £ € H we have that [[{]| = sup;c (). Now define

N
Z = X||, X = sz, Zr = ((q7 "0k — )&k @ &)1
k=1

Observe that the following is clear (and note how this immediately gives us the setup for Talagrand’s Theo-

rem)
N ) /N N
<Z(q_l5k = D& ®5k> n| = ?2}3( (/; Zk) = CSEEZC(ZQ-

k=1 k=1

7 =

To use Talagrand’s Theorem we must estimate the following quantities:

N

>z

k=1

N
o« ; 2 o« - _
V—bupE<kz_:1C(Zk) > S—zggll(llm, R—E<

CeFr
Note that for V' we get the following estimate:
al 2
supE | Y C(Ze)? | < supE [ D> (¢710k — 1) (& O 1(Gk )
C&F \k=1 C&F \k<N

<q M 1—q) Y kI I(er, UPan)?
k<N

<q {1 - (U)A]

where we have used the fact that U is an isometry in the step going from the second to the third inequality.
And S can be estimated as follows. Note that

C(Z) = | (g7 0k = 1) [, Ol{Ersm)| < max{q ™" = 1,1}0°(U)|A], k<N, (13.17)
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thus
S <max{q! —1,1}0*(U)|A]|, (13.18)

where (13.18) is a direct consequence of (13.17). Finally, we can estimate R as follows

N 2

S

k=1

E ZE 1Zll?) + Y E(Zi, Z3)) < a7 (L= a) D 1€kl [(ex, UPan)|?

k#j k<N
<q (1 -q*(U)|A],

again using the fact that U is an isometry. Therefore,

2

E((YZ|| < [E|[D] 2| | < Va1 -qu2(U)A] (13.19)

k<N k<N

With the estimates on V, .S and R now established we may appeal to Theorem 13.2 and deduce that there is
a constant ' > 0 such that for § > 0 it follows that as long as ¢ is chosen such that the right hand side of
(13.19) is bounded by 1 (this is guarantied by the assumptions of the proposition),

N
P (H (Z(q15k -1)& @ gk) n
=1

< 3exp <—[9((max{q1 —1,1}02(U)|A]) " log (1 + Z)) .

>0+ /g '(1- q)vQ(U)AI>
(13.20)

But by (13.16) it follows that for any » > 0, we have

1
(Grorrnens )

N
<P (H (Z(qlak ~ 1) ®€k> 1
k=1

Therefore, by appealing to (13.21) and (13.20) we obtain that for § > 0

(13.21)

Z r— ||(PAU*PNUPA PA)”) .

(| Gornwrs v - pa) | 2 04 V= gewal +2)
< 3exp <—f{(max{q_1 —1,1}0%(U)|A]) " tlog (1 + g)) ;

where = = ||(PaU*PyUPa — Pa)||. Choosing 6 = t/2 yields the proposition. O

Proof of Theorem 11.3. The proof is quite similar to the proof of Proposition 11.2. Let {4; }é\le be random
Bernoulli variables with P(6; = 1) = 6. Note that we may argue as in (13.15) and observe that

N

Z 1o — 16, ® &

k=1

|6~ (PoUPA)*PoUPs — Pal| < + |[(PAU*PNUPA — Pa)||, (13.22)

where { = (UPa)"er. To get the desired result we first focus on getting bounds on || Zi\;l(ﬁ_lék -
1)&k ® &||- As in the proof of Proposition 11.2 the goal is to use Talagrand’s powerful inequality and the

first step is to estimate E (|| Z]|) , where Z = Zgzl(ﬁ_lék — )&k ® &
Claim: We claim that

E (| Z]])* < 48 max{log(|A[), 1}0~ v*(U)|A], (13.23)

when
6 > 18 max{log(|A]), 1}v?(U)|A].
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To prove the claim we simply rework the techniques used in [49]. This is now standard and has also been
used in [16, 56]. ~ ~
We we start by observing that by letting § = {8 }2_, be independent copies of § = {J;}2_,. Then

Es (12]]) = Es ( Z —E; <Z (971& - 1) &k ®§k> H)
Es (Eg < Z—Z (9_15k —1) & ® & )) ;
k=1

by Jensen’s inequality. Let ¢ = {¢; };VZI be a sequence of Bernoulli variables taking values 1 with proba-
bility 1/2. Then, by (13.24), symmetry, Fubini’s Theorem and the triangle inequality, it follows that

o oo )

(13.24)

( 1o — 9_15k> & ® &

(13.25)
< 25, <E ( )) .
k=1
Now, by Lemma 13.1 we get that
N B _
E. < ;aﬁ*wkfk ® &k ) < 3\/max{210g(|A|),2}0*1 12}%)(]\7 [IY] > ~16,6, @ & ||. (13.26)

And hence, by using (13.25) and (13.26), it follows that

E;s ([|2]l) < 3v/max{2log(]A]), 2}0~102(U)[A| Z+ ka ® &k

)

Thus, by using the easy calculus fact that if 7 > 0, ¢ < 1 and » < c¢/r+ 1 then we have that r <
c(1++/5)/2, and the fact that U is an isometry (so that || Zk,:l £ @& || < 1), itis easy to see that the claim
follows.
To be able to use Talagrands formula there are some preparations that have to be done. First write

N
Z = sz Zi=(07"6, — 1) & ® &

Clearly, since Z is self-adjoint, we have that ||Z|| = sup, ¢ [(Z7, )|, where G is a countable set of unit
vectors. Let, for n € G, the mappings B(H) > T — (Tn,n) and B(H) > T — —(Tn,n) be de-
noted by 7j; and 7j2 respectively. Letting F denote the family of all these mappings we have that | Z]| =
Supj, e 7 < 1i(Zk), and the setup for Talagrand’s theorem is ready. Then, for k = 1,..., N we have

7:(Zi)| = [(07 0k — 1)[ (6 ® &) mom)| < 07H[1€]1%.
Thus, after restricting 7); to the ball of radius 6~ maxg< n [|€x|? it follows that

S = sup [[fiflec <67 mafokll2 <67 (U)IA] (13.27)

n:€F

Also, note that

V =sup E Z (Z)? | < sup E Z (0716, — 1)2 (&, m)[*

i E€F E<N ner k<N
_ 13.2
< max &) (07 — 1) sup 3 |{ex, UPan)[? (13.28)
PN N€F k<N

< (071 = maxle]* < (671 = 1) *(U)|A],
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where the third inequality follows from the fact that U is an isometry. It follows by Talagrand’s inequality
(Theorem 13.2), by using the claim (and requiring that the right hand side of (13.23) is bounded by one,
which is guarantied by the assumption of the theorem), the first part of the assumed (11.6), (13.27) and
(13.28), that there is a constant ' > 0 such that for ¢ > 0

&

But by (13.22) it follows that for any r» > 0, we have

N

2(97151@- —1)& ® &,

k=1

> ¢4 48 1og(|A|)91u2(U)|A)
(13.29)

< 3exp <—;{(91v2(U)A)1 log <1 + ;)) .

)

Z T — ||(PAU*PNUPA PA)”) .

1
P (HH(PQUPA)*PQUPA — Pa

<z

Therefore, by appealing to (13.30) and (13.29) we obtain that for ¢ > 0

(13.30)

N
D076 — 1)k @ &k
k=1

1
P (HH(PQUPA)*PQUPA — Pa

>t +481log(|A])0 1 (U)|A| + E>

t t
—E(9*1u2(U)|A|)*1 log <1 + 2)) , Z=|(PAU*PNUPA. — Pp)|.

< 3exp<

Choosing t = % yields the first part of the theorem. The last statement of the theorem is clear. O
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