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Motivation

Magnetic Resonance Imaging (MRI)
Let F denote the Fourier Transform. In particular,

(Fg)(ω) =

∫
g(x)e−2πiωx

Let
f = Fg .

We want to recover g (completely) from samples of f .
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Compressed Sensing

Let U ∈ Cn×n, x0 ∈ Cn and consider

y = Ux0.

We want to recover x0 from y . This is obvious if U is invertible
and we know y .
What if we do not know y , but rather

PΩy ,

where PΩ is the projection onto span{ej}j∈Ω and Ω ⊂ {1, . . . , n}
with |Ω| = m and Ω is randomly chosen.
Can we recover x0 from PΩy?
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Where

Magnetic Resonance Imaging (MRI)
Let U be the discrete Fourier Transform and x0 be an image of the
brain. The question is now: How to reconstruct x0 from the
measurement vector y . In particular, we have:

x0 = y = Ux0,
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Sparsity

Given x0 ∈ Cn let

∆ = {k ∈ N : 〈x0, ek〉 6= 0}.

Want to find a strategy so that x0 can be reconstructed from
PΩUx0, where |Ω| = m, with high probability. In particular we
would like to know how large m must be as a function of n and |∆|.
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Convex Optimization

Want to recover x0 from PΩUx0 by finding

inf
x
‖x‖l0 , PΩUx = PΩUx0 (1)

where ‖x‖l0 = |{j : xj 6= 0}| or

inf
x
‖x‖l1 , PΩUx = PΩUx0, (2)

where ‖x‖l1 =
∑n

j=1 |xj |. Note that (1) is a non-convex
optimization problem and (2) is a convex optimization problem.
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Theoretical Results

Theorem
(Candes, Romberg, Tao) Let x0 ∈ Cn be a discrete signal
supported on an unknown set ∆, and choose Ω of size |Ω| = m
uniformly at random. For a given accuracy parameter M there is a
constant CM such that if

m ≥ CM · |∆| · log(n)

then with probability at least

1−O(n−M),

the minimizer to the problem (2) is unique and is equal to x0 .
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The Shannon Sampling Theorem

Suppose that
f = Fg , g ∈ L2(R),

and supp(g) ⊂ [−T ,T ] for some T > 0. If ε ≤ 1
2T (the Nyquist

rate) then

f (t) =
∞∑

k=−∞
f (kε)sinc

(
t + kε

ε

)
, L2 and unif. conv., (3)

g = ε

∞∑
k=−∞

f (kε)e2πiεk·, L2 convergence. (4)

In practice, one forms the approximations

fN =
N∑

k=−N

f (kε)sinc
(

t + kε

ε

)
, gN = ε

N∑
k=−N

f (kε)e2πiεk·.
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Example:

Let g be
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The Shannon Sampling Theorem
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Figure: The figure displays gN (left) as well as the error g − gN (right).
N = 128
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The Shannon Sampling Theorem

(i) gN does NOT converge uniformly to g .

(ii) gN converges VERY slowly to g in the L2 norm.
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The Discrete Problem

Note that

gN = ε

N∑
k=−N+1

f (kε)e2πiεk·.

can be written as

y = Udf x , Udf ∈ C2N×2N , y , x ∈ C2N ,

where y represents a vector of the sampled values of f , x
represents a vector of the point wise values of gN (on a equidistant
grid on [-1,1]), and Udf is a scalar multiple of the discrete Fourier
transform.
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The Finite Dimensional Compressed Sensing Problem

If g is sparse in the Haar basis one could hope that

x0 = Vdw x

is sparse, where Vdw is the discrete wavelet transform
corresponding to the Haar wavelet. If that was the case we could
make use of the Compressed Sensing framework and randomly
sample a set Ω ⊂ {1, . . . , 2N} of size |Ω| = m < 2N and try to
reconstruct x0 (and hence x) from the subsampled vector PΩy by
finding a minimizer ξ to

min
η∈Cn
‖η‖l1 : PΩUdf V−1

dw η = PΩy , (5)

where PΩ denotes the projection onto span{ej}j∈Ω, and hope that
ξ = x0 with high probability.
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Finite Dimensional Compressed Sensing Results
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Figure: The left part displays the compressed sensing approximation
V−1

dw ξ to gN from solving (5) with |Ω| = 130. The right part displays the
error and g − V−1

dw ξ.
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Why Infinite Dimensions

(i) If we know that g is sparse (or has rapidly decaying coefficients) in
the Haar basis (or any other basis) why are we using the (possibly)
slowly converging approximation

gN = ε

N∑
k=−N+1

f (kε)e2πiεk·,

when gN is not sparse?

(ii) Why are we using the sparsifying transformation Vdw and solve (5)
when we cannot do better than recovering gN , as this is what we
recover by solving (5) with PΩ = I (i.e. full sampling)?

(iii) Why are we not trying to obtain the coefficients {βk}k∈N that have
only a few non zeroes (or are rapidly decaying) in the expansion

g =
∞∑

k=1

βkψk?

If we could reconstruct the βjs, we would recover g perfectly.
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The Model

I Given a separable Hilbert space H with an orthonormal set
{ϕk}k∈N.

I Given a vector

x0 =
∞∑

k=1

βkϕk , β = {β1, β2, . . .}.

I Suppose also that we are given a set of linear functionals
{ζj}j∈N such that we can ”measure” the vector x0 by applying
the linear functionals e.g. we can obtain {ζj(x0)}j∈N.
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An Infinite System of Equations

With some appropriate assumptions on the linear functionals
{ζj}j∈N we may view the full recovery problem as the infinite
dimensional system of linear equations

ζ1(x0)
ζ2(x0)
ζ3(x0)

...

 =


u11 u12 u13 . . .
u21 u22 u23 . . .
u31 u32 u33 . . .

...
...

...
. . .



β1

β2

β3
...

 , uij = ζi (ϕj),

(6)
where we will refer to U = {uij}i ,j∈N as the ”measurement

matrix”.
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What to Do?

I Abandon the finite section method.

I Use uneven section techniques from:
A. C. Hansen. On the solvability complexity index, the
n-pseudospectrum and approximations of spectra of operators.
J. Amer. Math. Soc., 24(1):81124, 2011.
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Solution I

If we for example have that U forms an isometry on l2(N) we
could, for every K ∈ N, compute an approximation
x =

∑K
k=1 β̃kϕj by solving

A


β̃1

β̃2

β̃3
...

β̃K

 = PK U∗PN


ζ1(x0)
ζ2(x0)
ζ3(x0)

...

 , A = PK U∗PNUPK |PK l2(N),

for some appropriately chosen N ∈ N (the number of samples). We
would then get the following error:

‖x − x0‖H ≤ (1 + CK ,N)‖P⊥K β‖l2(N), β = {β1, β2, . . .},
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Solution II

where, for fixed K , the constant CK ,N → 0 as N →∞. Moreover,
the constant CK ,N is given explicitly by

CK ,N =
∥∥∥(PK U∗PNUPK |PK l2(N))−1PK U∗PNUP⊥K

∥∥∥ ,
and hence we may find, for any K ∈ N, the appropriate choice of

N ∈ N (the number of samples) to get the desired error bound. In
particular, this can be done numerically, by computing with
different sections of the infinite matrix U.
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The Generalized Sampling Theorem

Theorem
(Adcock,H’10) Let F denote the Fourier transform on L2(Rd).
Suppose that {ϕj}j∈N is an orthonormal set in L2(Rd) such that
there exists a T > 0 with supp(ϕj) ⊂ [−T ,T ]d for all j ∈ N. For
ε > 0, let ρ : N→ (εZ)d be a bijection. Define the infinite matrix

U =


u11 u12 u13 . . .
u21 u22 u23 . . .
u31 u32 u33 . . .

...
...

...
. . .

 , uij = (Fϕj)(ρ(i)). (7)

Then, for ε ≤ 1
2T , we have that εd/2U is an isometry.
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The Generalized Sampling Theorem

Theorem
Also, set

f = Fg , g =
∞∑
j=1

βjϕj ∈ L2(RN),

and let (for l ∈ N )Pl denote the projection onto span{e1, . . . , el}.
Then, for every K ∈ N there is an n ∈ N such that, for all N ≥ n,
the solution to

A


β̃1

β̃2

β̃3
...

β̃K

 = PK U∗PN


f (ρ(1))
f (ρ(2))
f (ρ(3))

...

 , A = PK U∗PNUPK |PK l2(N),

(8)
is unique.
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The Generalized Sampling Theorem

Theorem
If

g̃K ,N =
K∑

j=1

β̃jϕj , f̃K ,N =
K∑

j=1

β̃jFϕj ,

then

‖g − g̃K ,N‖L2(Rd ) ≤ (1 + CK ,N)‖P⊥K β‖l2(N), β = {β1, β2, . . .},

and

‖f − f̃K ,N‖L∞(Rd ) ≤ (2T )d/2(1 + CK ,N)‖P⊥K β‖l2(N),

where, for fixed K , the constant CK ,N → 0 as N →∞.
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# of samples v.s. # of coefficients (Haar wavelet)
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Figure: The left figure shows N (as a function of K ) such that CK ,N ≤ 1
together with the functions (in black) x 7→ 4.9x . The right figure shows
N such that CK ,N ≤ 2 together with the function x 7→ 4.5x . .

Anders C. Hansen, University of Cambridge Ben Adcock, Simon Fraser UniversityGeneralized Sampling and Infinite Dimensional Compressed Sensing



Example:

Let
g(t) = t5e−t .
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Approximation via the Shannon Sampling Theorem
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Figure: The figure displays gN (left) as well as the error g − gN (right).
N = 25
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Approximation via Generalized Sampling
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Figure: The figure displays g̃K ,N (left) as well as the error g − g̃K ,N

(right) for K = 12 and N = 25.
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Infinite Dimensional Compressed Sensing

(i) Are there other ways of approximating (6)?

(ii) Could there be ways of reconstructing, with the same
accuracy, but using fewer samples from {ζj(x0)}?

Anders C. Hansen, University of Cambridge Ben Adcock, Simon Fraser UniversityGeneralized Sampling and Infinite Dimensional Compressed Sensing



Infinite Dimensional Compressed Sensing

Let Ω ⊂ N such that |Ω| = m <∞ be randomly chosen and let PΩ

denote the projection onto span{ej}j∈Ω. Now consider the convex
(infinite-dimensional) optimization problem

inf
η∈l1(N)

‖η‖l1(N) : PΩ


ζ1(x0)
ζ2(x0)
ζ3(x0)

...

 = PΩ


u11 u12 u13 . . .
u21 u22 u23 . . .
u31 u32 u33 . . .

...
...

...
. . .



η1

η2

η3
...

 .

(9)
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Infinite Dimensional Compressed Sensing

(i) How do we randomly choose Ω?It does not make sense to
choose Ω uniformly from the whole set N.

(iii) What if we chose an N ∈ N and choose Ω ⊂ {1, . . . ,N}
uniformly at random with |Ω| = m < N? But how big must N
be?

(iii) If η is a solution to (9) (note that we may not have
uniqueness) what is the error ‖η − β‖l2(N), and how does it
depend on the choice of Ω? In particular, how big must m be.
(Note that we must have the extra assumption that
β ∈ l1(N).)
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Infinite Dimensional Compressed Sensing

The solution to problem (9) cannot be computed explicitly because
it is infinite-dimensional, and thus an approximation must be
computed instead. For M ∈ N, consider the optimization problem

inf
η∈PM l1(N)

‖η‖l1(N) : PΩ


ζ1(x0)
ζ2(x0)
ζ3(x0)

...

 = PΩ


u11 u12 u13 . . .
u21 u22 u23 . . .
u31 u32 u33 . . .

...
...

...
. . .

PM

 η1

...
ηM

 .

(10)

(i) If η̃M = {η1, . . . , ηM} is a minimizer of (10), what is the behavior of
η̃M as M →∞? Moreover, what happens to the error ‖η̃M − β‖l2(N)

as M →∞?

(ii) Observe that M cannot be too small, since then (10) may not have
a solution. However, (11) is feasible for all sufficiently large M.
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The Semi-Infinite-Dimensional Model

We are given an M ∈ N and for x0 =
∑∞

k=1 βkϕk ∈ H we have
that

supp(x0) = {j ∈ N : βj 6= 0} = ∆ ⊂ {1, . . . ,M}

We will choose only finitely many of the samples {ζj(x0)}j∈N, in
particular, we will choose a set Ω ⊂ {1, . . . ,N} of size m uniformly
at random.

I How large must N be?

I How large must m be to recover x0 with high probability?
Moreover, if m = N will we then get perfect recovery with
probability one?
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The Full Infinite-Dimensional Model

In the full infinite dimensional model we consider the problem of
recovering a vector y0 =

∑∞
k=1 αkϕk ∈ H where

y0 = x0 + h, h =
∞∑

k=1

ckϕk ,

supp(x0) = ∆ ⊂ {1, . . . ,M}, supp(h) = {1, . . . ,∞},

where we have some estimate on
∑∞

k=1 |ck |. In other words, we
do not know the support of h.
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Generalized Sampling and Compressed Sensing

Consider the optimization problem

inf
η∈PM l1(N)

‖η‖l1(N) : PΩ


f (ρ(1))
f (ρ(2))
f (ρ(3))

...

 = PΩ


u11 u12 u13 . . .
u21 u22 u23 . . .
u31 u32 u33 . . .

...
...

...
. . .

PM

 η1

...
ηM

 .

(11)
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Experiment

Consider the function f ∈ L2(R) defined by f = Fg

g(t) =
L∑

k=1

αkψk(t) + cos(2πt)χ[ 1
2
, 9

16 ](t), L = 200,

where |{αk : αk 6= 0}| = 25, and the task is to reconstruct f from
its point samples. Define, for N ∈ N and N odd, the function

fN(t) =

(N−1)/2∑
k=−(N−1)/2

f (kε)sinc
(

t + kε

ε

)
, ε = 0.5
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Experiment

Define also the functions

f̃N,K (t) =
K∑

k=1

β̃kFψk(t), γN,m,M(t) =
M∑

k=1

ηkFψk(t), (12)

where β̃ = {β̃1, . . . , β̃n} is the solution to equation (8), and U is
defined as in (7) (with the Haar wavelets {ψk}k∈N as the basis).
And also let η = {η1, . . . , ηM} be a solution to (11) where
Ω ⊂ {1, . . . ,N} is chosen uniformly at random with |Ω| = m.
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Results
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Figure: The figure displays the errors |fN − f | (left), |f̃N,K − f | (middle),
|γN,m,M − f | (right), for N = 601,K = 200,m = 230, M = 650. Note
that γN,m,M requires only thirty eight percent of the samples.
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Theory

Theorem
(H’10) Let U ∈ B(H) be an isometry. Suppose that for M ∈ N we have
∆ ⊂ {1, . . . ,M}, and x0 ∈ l1(N) such that supp(x0) = ∆. Let, for ε > 0, the
integers m and N be chosen such that

‖PMU∗PNUPM − PM‖ ≤

 
4

r
log2

“
4N
p
|∆|/m

”!−1

, (13)

max
|Γ|=|∆|,Γ⊂{1,...,M}

‖PMP⊥Γ U∗PNUPΓ‖ ≤
1

8
p
|∆|

, (14)

m ≥ C ·N·µ2(U)·|∆|·
“

log
“
ε−1
”

+ 1
”
·log

“
MN

p
|∆|/m

”
, µ(U) = sup

i,j∈N
|〈Uej , ei 〉|.

(15)
for some universal constant C. Let Ω ⊂ {1, . . . ,N} be chosen uniformly at

random with |Ω| = m. If ξ ∈ H satisfies

‖ξ‖l1 = inf
η∈H
{‖η‖l1 : PΩUPMη = PΩUx0},

then, with probability exceeding 1− ε, we have that ξ is unique and ξ = x0. If
m = N then ξ is unique and ξ = x0 with probability one.
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Theory

Corollary

Let U ∈ Cn×n be an isometry. Let ∆ ⊂ {1, . . . , n}, and x0 ∈ Cn

such that supp(x0) = ∆. Let, for ε > 0, the integer m be chosen
such that

m ≥ C · n · µ2(U) · |∆| ·
(
log
(
ε−1
)

+ 1
)
· log(n), (16)

for some universal constant C. Let Ω ⊂ {1, . . . , n} be chosen
uniformly at random with |Ω| = m. If ξ ∈ H satisfies

‖ξ‖l1 = inf
η∈Cn
{‖η‖l1 : PΩUη = PΩUx0},

then, with probability exceeding 1− ε, we have that ξ is unique
and ξ = x0.
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Theory

Theorem
(H’10) Let U ∈ B(H) be an isometry. Suppose that for M ∈ N we have
∆ ⊂ {1, . . . ,M}, and x0, h ∈ l1(N) such that supp(x0) = ∆. Define
y0 = x0 + h. Let, for ε > 0, the integers m and N be chosen according to
(13) and also

max
|Γ|=|∆|,Γ⊂{1,...,M}

‖P⊥Γ U∗PNUPΓ‖ ≤
1

8
√
|∆|

,

m ≥ C · N · µ2(U) · |∆| ·
(
log
(
ε−1
)

+ 1
)
· log

(
ΘN
√
|∆|

m

)
,

Θ =

∣∣∣∣∣∣∣
i ∈ N : max

Γ1⊂{1,...,M},|Γ1|=|∆|
Γ2⊂{1,...,N}

‖PΓ1 U∗PΓ2 Uei‖ >
m

4N
√
|∆|


∣∣∣∣∣∣∣ .

for some universal constant C. Let Ω ⊂ {1, . . . ,N} be chosen uniformly
at random with |Ω| = m.
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Theory

Theorem
If ξ ∈ H satisfies

‖ξ‖l1 = inf
η∈H
{‖η‖l1 : PΩUη = PΩUy0},

then, with probability exceeding 1− ε, we have that

‖ξ − y0‖ ≤
(

20N

m
+ 11 +

m

N

)
‖h‖l1 . (17)

If m = N then (17) is true with probability one.
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Infinite Resolution Image

Let x0 denote the infinite resolution image:

In particular,

g =
∞∑
j=1

αjϕj , ϕj(x , y) = sin(kx) sin(ly), x0 = {α1, α2, . . .}
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Infinite Resolution Image

|{αj : αj 6= 0}| = 70,

αj = 0, j > 700.
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Classical MRI Reconstruction

g(t) = ε

∞∑
n=−∞

(Fg)(nε) e2πinεt , gN(t) = ε

N∑
n=−N

(Fg)(nε) e2πinεt

Original Reconstruction (501 by 501)
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Classical MRI Reconstruction (enlarged)

g(t) = ε

∞∑
n=−∞

(Fg)(nε) e2πinεt , gN(t) = ε

N∑
n=−N

(Fg)(nε) e2πinεt

Original Reconstruction (501 by 501)
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Finite Dim Comp Sens Reconstruction

Solve

min
x
‖x‖TV , PΩUdftx = PΩy , |Ω| = 5012/2

Original Reconstruction
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Sampling

Choose ε > 0 (ε = 0.5), and consider the grid

εZ× εZ.

Choose a bijection ρ : N→ εZ× εZ. Form the infinite matrix

U =


Fϕ1(ρ(1)) Fϕ2(ρ(1)) Fϕ3(ρ(1)) . . .
Fϕ1(ρ(2)) Fϕ2(ρ(2)) Fϕ3(ρ(2)) . . .
Fϕ1(ρ(3)) Fϕ2(ρ(3)) Fϕ3(ρ(3)) . . .

...
...

...
. . .

 ,

Choose N ∈ N (N = 15000). Randomly choose a set
Ω = {ω1, . . . ωm} ⊂ {1, . . . ,N} such that |Ω| = m = 500. Let
y = {Fg(ρ(ω1), . . . ,Fg(ρ(ωm))}. Then

y = PΩUx0.
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Recovery

Solve
inf
x
‖x‖l1 , PΩUx = PΩUx0,

>> norm(x - x_0) = 3.2959e-08

Original Reconstruction
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Comparison
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