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Magnetic Resonance Imaging (MRI)
Let F denote the Fourier Transform. In particular,

(Fe)w) = [ glx)e >

Let
f=Fg.

We want to recover g (completely) from samples of f.
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Compressed Sensing

Let U € C™" xo € C" and consider
y = UX().

We want to recover xp from y. This is obvious if U is invertible
and we know y.
What if we do not know y, but rather

Pﬂya

where Pq is the projection onto span{ej}jcq and Q C {1,...,n}
with || = m and Q is randomly chosen.
Can we recover xg from Pqy?
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Magnetic Resonance Imaging (MRI)

Let U be the discrete Fourier Transform and xg be an image of the
brain. The question is now: How to reconstruct xg from the
measurement vector y. In particular, we have:

X0 = y = UX07
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Given xg € C" let
A ={k eN: (x,ex) #0}.

Want to find a strategy so that xp can be reconstructed from
PqUxg, where |Q2] = m, with high probability. In particular we
would like to know how large m must be as a function of n and |A|.

Anders C. Hansen, University of Cambridge Ben Adcock, Simoi  Generalized Sampling and Infinite Dimensional Compressed Se



Convex Optimization

Want to recover xg from PqUxp by finding
inf ||X||/o, PQUX = PQUXO (1)
where x| = |{j : x5 # 0}] or

ianlel, PQUX = PQUXo, (2)

where ||x||p = 377, [x;|. Note that (1) is a non-convex

optimization problem and (2) is a convex optimization problem.
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Theoretical Results

Theorem

(Candes, Romberg, Tao) Let xo € C" be a discrete signal
supported on an unknown set A, and choose Q of size |2] = m
uniformly at random. For a given accuracy parameter M there is a

constant Cpy such that if
m > Cpy - |A| - log(n)
then with probability at least
1-0(n M),

the minimizer to the problem (2) is unique and is equal to xp .
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The Shannon Sampling Theorem

Suppose that
f=Fg,  gecl’R),

and supp(g) C [~ T, T] for some T > 0. If € < 5% (the Nyquist
rate) then

- t+ k
f(t) = Z f(ke)sinc( t 6) ., [%and unif. conv., (3)
k=—0oc0

o0
g=¢ Z f(ke)e?miek:, [? convergence. (4)

k=—o00

In practice, one forms the approximations

N N
k .
fu= > f(ke)sine (tt 6), gn=c Y flke)e?mk,

k=—N k=—N
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Example:

Let g be

-1 -0.5 0 0.5 1
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Shannon Sampling Theorem
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Figure: The figure displays gy (left) as well as the error g — gn (right).
N =128
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The Shannon Sampling Theorem

(i) gn does NOT converge uniformly to g.
(i) gn converges VERY slowly to g in the L2 norm.
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The Discrete Problem

Note that
N

gy =¢€ Z f(ke)e%iek'.
k=—N+1

can be written as

(C2N><2N

y = Ugrx, Uar € . y,xec,

where y represents a vector of the sampled values of f, x
represents a vector of the point wise values of gy (on a equidistant
grid on [-1,1]), and Uy is a scalar multiple of the discrete Fourier
transform.

Anders C. Hansen, University of Cambridge Ben Adcock, Simoi  Generalized Sampling and Infinite Dimensional Compressed Se



The Finite Dimensional Compressed Sensing Problem

If g is sparse in the Haar basis one could hope that
xo = Vawx

is sparse, where Vg, is the discrete wavelet transform
corresponding to the Haar wavelet. If that was the case we could
make use of the Compressed Sensing framework and randomly
sample a set Q C {1,...,2N} of size |2] = m < 2N and try to
reconstruct xp (and hence x) from the subsampled vector Pqy by
finding a minimizer & to

min Hn”ll : PQUdeJWl’I’] = PQ)/, (5)
neCn

where Pq denotes the projection onto span{e;};jcq, and hope that
& = xp with high probability.
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Finite Dimensional Compressed Sensing Results
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Figure: The left part displays the compressed sensing approximation
V1€ to gy from solving (5) with || = 130. The right part displays the
error and g — Vd_ng.
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Why Infinite Dimensions

(i) If we know that g is sparse (or has rapidly decaying coefficients) in
the Haar basis (or any other basis) why are we using the (possibly)
slowly converging approximation

N

gv=¢ Y f(ke)e®mH,

k=—N-+1
when gy is not sparse?

(i) Why are we using the sparsifying transformation V, and solve (5)
when we cannot do better than recovering gy, as this is what we
recover by solving (5) with Pq =/ (i.e. full sampling)?

(iii) Why are we not trying to obtain the coefficients {5k} ken that have
only a few non zeroes (or are rapidly decaying) in the expansion

g=> B’
k=1

If we could reconstruct the 3;s, we would recover g perfectly.
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The Model

» Given a separable Hilbert space H with an orthonormal set
{#k}ken:
» Given a vector

XOZZﬁka7 ﬁ:{ﬁhﬁ%"'}‘
k=1

» Suppose also that we are given a set of linear functionals
{¢j}jen such that we can "measure” the vector xp by applying
the linear functionals e.g. we can obtain {(;(xo)}jen.
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An Infinite System of Equations

With some appropriate assumptions on the linear functionals
{¢j}jen we may view the full recovery problem as the infinite
dimensional system of linear equations

C1(x0) vl U2 iz ...\ [P
(2(x0) 1 up U ...| | B
Gxo) | T | w1 w2 wsz ... || B3] uj = Gi(%)),

(6)
where we will refer to U = {ujj}; jen as the "measurement
matrix”.
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What to Do?

» Abandon the finite section method.

» Use uneven section techniques from:
A. C. Hansen. On the solvability complexity index, the

n-pseudospectrum and approximations of spectra of operators.
J. Amer. Math. Soc., 24(1):81124, 2011.
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Solution |

If we for example have that U forms an isometry on /?(N) we
could, for every K € N, compute an approximation

x = Y"1 Brpj by solving

gl G(x0)

2

- o | G2(x0) ]

Al Bs | = PcUPu | ¢y A = PxU"PnUPK|p.p(),

Ok
for some appropriately chosen N € N (the number of samples). We

would then get the following error:

Ix = xoll < (1+ CkM)IPiBllegyy, B ={B1 B2, -},
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Solution |l

where, for fixed K, the constant Cx ny — 0 as N — oco. Moreover,
the constant Ck y is given explicitly by

CK,N = H(PK U*PN UPK‘pKlz(N))_IPK U*PN UP,J(

9

and hence we may find, for any K € N, the appropriate choice of
N € N (the number of samples) to get the desired error bound. In
particular, this can be done numerically, by computing with
different sections of the infinite matrix U.
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The Generalized Sampling Theorem

Theorem

(Adcock,H'10) Let F denote the Fourier transform on L2(R9).
Suppose that {;}jen is an orthonormal set in L?(R9) such that
there exists a T > 0 with supp(p;) C [T, T]¢ for all j € N. For
€>0, let p: N — (¢Z)9 be a bijection. Define the infinite matrix

uix U2 U3

Ul Uy Up3 ... _
U= uzp U Uz ... | uij = (F;)(p(i))- (7)

Then, for e < % we have that €9/2U is an isometry.
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The Generalized Sampling Theorem

Theorem
Also, set
o0
f:fg7 g:ZﬂJSOJE L2(]RN)7
j=1
and let (for | € N )P denote the projection onto span{e, ..., e}.

Then, for every K € N there is an n € N such that, for all N > n,
the solution to

; A
A 63 = PKU*PN f(5(3)) s A= PKU*PNUPK|pK/2(N),
B |
(8)
is unique.
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The Generalized Sampling Theorem

Theorem
If
K ) K
Ben =Y B, fen =Y BiFe;,
j=1 j=1
then

g — Bx.nll2rey < (14 Con)lIPicBllewy, B ={b1,5, .-},

and

||f — ?KJ\/HLoo(Rd) < (2T)d/2(1 =+ CK,N)HPf%ﬁHP(N)a

where, for fixed K, the constant Cx y — 0 as N — oo.
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# of samples v.s. # of coefficients (Haar wavelet)

1500 [ 1500
1000 1000
500 500
56 160 150 260 250 360 0 56 160 150 260 250 360

Figure: The left figure shows N (as a function of K) such that Cx y <1
together with the functions (in black) x +— 4.9x. The right figure shows
N such that Cx n < 2 together with the function x — 4.5x. .
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Example:

Let
g(t) =tPet.
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Approximation via the Shannon Sampling Theorem
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Figure: The figure displays gy (left) as well as the error g — gn (right).

N =25
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Approximation via Generalized Sampling

14

05 08 x 10
0 -1
-05 12
-1 14
-15 -16
-2 -18
25 -2
= -05 0 0.5 1 22 Z05 0 05 1

Figure: The figure displays gk n (left) as well as the error g — gk n
(right) for K =12 and N = 25.
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Infinite Dimensional Compressed Sensing

(i) Are there other ways of approximating (6)?

(i) Could there be ways of reconstructing, with the same
accuracy, but using fewer samples from {(j(xp)}?
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Infinite Dimensional Compressed Sensing

Let Q C N such that [Q2] = m < oo be randomly chosen and let Pq
denote the projection onto span{ej}jcq. Now consider the convex
(infinite-dimensional) optimization problem

C1(x0) ulr U2 w3 ...\ (M
c P C2(x0) 5 up1 U2 U3 ... 2
',q () llney = Pal o) | =Pl us wso wss oo | |3
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Infinite Dimensional Compressed Sensing

(i) How do we randomly choose Q7It does not make sense to
choose Q uniformly from the whole set N.

(iii) What if we chose an N € N and choose Q C {1,..., N}
uniformly at random with |Q2] = m < N? But how big must N
be?

(i) If n is a solution to (9) (note that we may not have
uniqueness) what is the error || — 8|/ 2y, and how does it
depend on the choice of Q7 In particular, how big must m be.
(Note that we must have the extra assumption that

3 e M(N).)
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Infinite Dimensional Compressed Sensing

The solution to problem (9) cannot be computed explicitly because
it is infinite-dimensional, and thus an approximation must be
computed instead. For M € N, consider the optimization problem

C1(x0) U1 U U3

) . G2(x0) Upy Uy U3 . 71-1
nePIArJlfl(N) ||77H/1(N) : Pa Glxo) | = Pao Uu3r U3p U3z ... Pwm
s )
(10)

(i) If 7ipg = {m1,-..,mm} is @ minimizer of (10), what is the behavior of
fim as M — oo? Moreover, what happens to the error || — 8| 2w
as M — oo?

(ii) Observe that M cannot be too small, since then (10) may not have
a solution. However, (11) is feasible for all sufficiently large M.
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The Semi-Infinite-Dimensional Model

We are given an M € N and for xo = Y2 ; Bk € H we have
that

supp(xo) ={j e N: 3 #0} =A C{1,...,M}

We will choose only finitely many of the samples {(;(xp)}jen, in
particular, we will choose a set Q C {1,..., N} of size m uniformly
at random.

» How large must N be?

» How large must m be to recover xp with high probability?
Moreover, if m = N will we then get perfect recovery with
probability one?

Anders C. Hansen, University of Cambridge Ben Adcock, Simoi  Generalized Sampling and Infinite Dimensional Compressed Se



The Full Infinite-Dimensional Model

In the full infinite dimensional model we consider the problem of
recovering a vector yp = Yo akpk € H where

o0
Yo=x+h  h=>_ cpk
k=1
supp(x) = A C {1,..., M}, supp(h) ={1,..., 00},

where we have some estimate on )7, [ck|. In other words, we
do not know the support of h.
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Generalized Sampling and Compressed Sensing

Consider the optimization problem

f(p(1)) uip U2 U1z ... m
. ) f(p(2)) Up1 Upp U3 ... .
neFI’,D}cl(N) ”m'll(N) + Pa f(p(3)) | = Pa U3y Uzx U3z ... Pm .

i
(11)
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Consider the function f € L?(R) defined by f = Fg

Zakwk + cos(27rt)><[2’16 (), L = 200,

where [{ay : ax # 0} = 25, and the task is to reconstruct f from
its point samples. Define, for N € N and N odd, the function

(N-1)/2

e = Y f(ke)sinc(ttke)v =05

k=—(N—1)/2
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Define also the functions

K M
uk(t) =D BFee(t),  awmm(t) = mFuu(t), (12)
k=1

k=1

where 3 = {ﬁl, ... ,5,,} is the solution to equation (8), and U is
defined as in (7) (with the Haar wavelets {1k }ken as the basis).
And also let n = {n1,...,mm} be a solution to (11) where

Q C{1,...,N} is chosen uniformly at random with |Q| = m.
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QI

—5000 5000 5000 5000 —5000 5000

Figure: The figure displays the errors |fy — | (left), (middle),
|Yn,m,m — f] (right), for N = 601, K = 200, m = 230, M = 650. Note
that yn,m m requires only thirty eight percent of the samples.
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Theorem

(H'10) Let U € B(H) be an isometry. Suppose that for M € N we have

A C{1,...,M}, and xo € I"(N) such that supp(xo) = A. Let, for e > 0, the
integers m and N be chosen such that

Py U* Py UPy — Pyl < (4\/Iog2 (4N\/W/m)> - | (13)

max PP U*PyUPL|| < , 14
IT|=|Al,rc{1,...,M} 1P PE wUPr| < 8V |A| (14)
m > C~N-u2(U)-|A|~(|og (6*1) + 1)~|og (I\/INs/|A|/m) . u(U) = sup |(Ue, &)l.
ijen
(15)
for some universal constant C. Let Q C {1,..., N} be chosen uniformly at

random with |QQ] = m. If £ € H satisfies

1€l = inf {[nllp : PoUPmn = PaUxo},
neH

then, with probability exceeding 1 — ¢, we have that £ is unique and £ = xp. If
m = N then £ is unique and £& = xo with probability one.
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Corollary

Let U € C"™" be an isometry. Let A C {1,...,n}, and xg € C"
such that supp(xp) = A. Let, for € > 0, the integer m be chosen
such that

m>C-n-p?(U)-|Al- (log (e71) +1) - log(n), (16)

for some universal constant C. Let Q C {1,...,n} be chosen
uniformly at random with |2 = m. If £ € 'H satisfies

€ln = inf {|Inllx : PoUn = PoUxo},
neCn

then, with probability exceeding 1 — €, we have that & is unique
andf = X0-
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Theorem

(H'10) Let U € B(H) be an isometry. Suppose that for M € N we have
A C{L,...,M}, and xo, h € I*(N) such that supp(xo) = A. Define
Yo = xo + h. Let, for e > 0, the integers m and N be chosen according to

(13) and also
1

8/1Al’
m>C-N-p2(U)-|4|- (log (1) +1) - lo ( Nﬁ)

max |PHU*PyUPE|| <
IF|=|Al,rcd{1,...,M}

©= ieN: max ||Pr1U*Pr2Ue,'|| >
Mc{l,....M}|Ml=[A]

r2c{1,....,N}

_m_
AN/IA]

for some universal constant C. Let Q C {1,..., N} be chosen uniformly
at random with |Q2] = m.
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Theorem
If & € 'H satisfies

€l = inf {|In]lx : PaUn = PqUyo},
neH

then, with probability exceeding 1 — €, we have that

20N m
—yl < [ = — .
le=sol < (25 10+ 5 ) Al (17)

If m= N then (17) is true with probability one.
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Infinite Resolution Image

Let xp denote the infinite resolution image:

200

0
. : - S8 ) P

03 & - . . v L -
- » -200

In particular,

g = Zaﬂpj, @j(x,y) =sin(kx)sin(ly), xo={a1,az,...}
j=1
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Infinite Resolution Image

Haj: aj # 0} =70,
aj=0, j>T700.
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Classical MRI Reconstruction

0o N

g(t)=c > (F)n) ™, gu(t)=c 3 (Fg)(ne) ™™

n=—o00 n=—N

Original Reconstruction (501 by 501)

[ —— . — 1 ——— - S
0s g 09 g »
- - - .- - - *
08l & - 08 L -
07 - 07 E
- - - 0 < -
05 - 05 -
. .
- - . - -
04 - 04 -
03 & - 03 v
0z - = : 02 - =
01 o -~ 01 -3
=4 1 - 1
[T - = - g - - -
0 01 0z 03 04 05 06 07 08 03 1 o 01 0z 03 04 05 06 07 08 03 1
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Classical MRI Reconstruction (enlarged)

e N
g(t)=¢ Z (Fg)(ne) e27rlnet’ gn(t) = e Z (Fg)(ne) e2minet
n=—o00 'y
Original Reconstruction (501 by 501)

05
049
048
047
046
045

" -
046
m— ‘

084 035 036 087 038 089 04
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Finite Dim Comp Sens Reconstruction

Solve
. _ _ 2
min || x| 7v, PoUgsx = Pay, [Q| =501%/2
Original Reconstruction
R S P -
09 » > - . 4 ”, - - 4
08 -. - ~ - - < 4 0.8 - - - —
07 E . & b x 07 b ¢
06 > r > - TS 06 = % - =
05 n " < < 05 . - -
04 - =3 - > < 04 - = - <
03 » y 0.3
ﬂZ. = ? 7-‘ 3 - — > : 02 = - 23
01 .y >0 | 01 .
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Sampling

Choose € > 0 (e = 0.5), and consider the grid
el X €.

Choose a bijection p : N — €¢Z x €Z. Form the infinite matrix

Fei(p(1)) Fea(p(1)) Fea(p(1))
ch(p( ) Fea(p(2) Fes(p(2)) ..
U= A(3) Fral@) Feslp3) . |

Choose N € N (N = 15000). Randomly choose a set
Q={w1,...wm} C{L,..., N} such that |Q] = m = 500. Let
y = {Fg(p(w1), ..., Fg(p(wm))}. Then

y = PqUxp.
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Solve

inf || x| 1, PoUx = PqUxqg,
X

>> norm(x - x_0) = 3.2959e-08

Original Reconstruction
p—— —— - - - 1 — — - - - -
08 & s - LR e - -
07 e s ¥ * o L : - .
o 'y T—oe o ' —ie-
05 " 4 > 05 - - -

‘ .

- : : - : :
03 & y | 03 & ) |
02 L - - - . 0.2 O, . - --
01 -t 50 | 01 ° i
o = - - i - -
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Comparison
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