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1 Introduction

Compressed sensing (CS) has, with little doubt, been one of the great successes of
appliedmathematics in the last decade [16,20,21,23,25,26,33]. It allowsone to sample
at rates dramatically lower than conventional wisdom suggests—namely the Nyquist
rate—provided the signal to be recovered is sparse in a particular basis, and the sam-
pling vectors are incoherent.

However, the standard theory of CS is finite dimensional. It concerns the recovery
of vectors in some finite-dimensional space (usuallyRN orCN ) whose nonzero entries
with respect to a particular basis are small in number in comparison with N . Herein
lies a problem. Real-world signals are often analog, or continuous-time, and thus
are modeled more faithfully in infinite-dimensional function spaces [14]. Any finite-
dimensional model may therefore not be well suited to such problems.

Although this issue has been quite widely recognized [24,56,60], there have been
few attemptsmade thus far to extend the existing theory to infinite-dimensionalmodels
(see Sect. 1.4). The purpose of this paper is to provide such a generalization.

To do this, we move away from the usual matrix-vector model and consider the
following scenario. A signal f is viewed as an element of a separable Hilbert spaceH,
and its measurements are modeled as a sequence of linear functionals ζ j : H → C,
j ∈ N, giving rise to the countable collection

ζ1( f ), ζ2( f ), ζ3( f ), . . . (1.1)

of samples of f . Suppose now that the signal f is sparse or compressible in some
orthonormal basis {ϕ j } j∈N ofH. The main questions we address in this paper are the
following: can we recover f by subsampling from the collection (1.1), and if so, how
can this realized by a numerical algorithm? In doing so, we obtain a framework for
so-called infinite-dimensional compressed sensing in Hilbert spaces, valid for a large
class of sampling schemes {ζ j } j∈N and reconstruction bases {ϕ j } j∈N.

This work stems from recent developments in classical sampling of signals. In
[2,3,5], a sampling theory, known as generalized sampling, was introduced for stable
reconstructions of signals in arbitrary bases {ϕ j } j∈N from their samples (1.1) (see
Sects. 1.3 and 3 for further details). The contribution of this paper is a continuation of
this work in which sparsity is exploited to allow for substantial subsampling.

1.1 An Example

Magnetic resonance imaging (MRI) was one of the original motivations for CS [20].
Developed extensively by the work of Lustig et al. [46], the application of CS in MRI
is now a subject of intensive research.

However, the MRI problem is inherently infinite dimensional, as are a number of
related applications, such as X-ray CT and electronmicroscopy [8]. In these problems,
an image, modeled as a function f ∈ H = L2(−1, 1)2, is measured by taking point-
wise samples of its continuous Fourier transform. If the samples are assumed to be
taken on the usual Cartesian lattice, then the collection of measurements {ζ j ( f )} j∈N
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are precisely the continuous Fourier coefficients of f . To put this example into the
above formulation, one usually assumes that f is approximately sparse in an appro-
priate orthonormal wavelet basis {ϕ j } j∈N.

On the other hand, the standard means of applying CS techniques in this setting is
based on discretization. Namely, one replaces f by a finite vector (or array) of pixel
values and replaces the continuous Fourier transform by its discrete analog [34]. This
gives a finite-dimensional recovery problem amenable to standard CS tools. Yet, as
we explain further in Sect. 2.1, modeling the inherently infinite-dimensional problem
in this way can quite easily lead to problems due to samples mismatch, even in simple
examples (see Sect. 2.1). Moreover, such approaches are also susceptible to the well-
known “inverse crime” [39].

Note that the above continuous/infinite-dimensional formulation of theMRI recon-
struction problem has recently been employed by Guerquin-Kern et al. [38,39] (for
earlier work, see Fessler et al. [58]). However, there are currently no recovery guaran-
tees for this problem. The general results we prove in this paper seek to address this
gap. For a demonstration of the advantages of the continuous formulation in electron
microscopy, we refer to [53].

This aside, the MRI problem also illustrates another aspect of this paper. In many
problems of interest, the samples (1.1) are fixed and cannot be altered. In MRI, this
is due to the particular design of the physical scanner. Although much of research
in CS has been devoted to the topic of designing good sampling systems [16,33],
for many problems one does not necessarily have this luxury. Thus we require theo-
rems and techniques for infinite-dimensional CS that allows one to work with fixed
measurements.

1.2 Discretizing Infinite-Dimensional Problems

At this stage, it is worth asking whether or not a new framework is needed. In order
to solve the above problem, one must at some stage discretize. It may therefore seem
plausible that finite-dimensional CS techniques and theory could be applied once one
had restricted the problem from the Hilbert space H to a suitable finite-dimensional
space. If f is sparse in an, albeit countably infinite, basis {ϕ j } j∈N, it might seem
reasonable to treat the corresponding recovery problem using solely existing finite-
dimensional CS tools.

In some limited cases, this may be possible. However, as we discuss in Sect. 2, in
general this problemcannot be tackled in such away. Indeed, ‘discretizing’ the problem
so as to make it amenable to computations is a subtle process (see Sect. 2). The most
obvious discretizations may well destroy the original structure of the problem. This
means that exact (or, more generally, stable) recovery may not be possible since the
key structure that allows for subsampling is not carried over to the discretization

In this paper, we provide new techniques for discretizing the infinite-dimensional
reconstruction problem. Loosely speaking, these are based on the following guiding
principle: Seek to retain as much of the infinite-dimensional structure and key proper-
ties of the original problem as possible when discretizing. By following this principle,
we obtain a framework for infinite-dimensional CS that overcomes these potential
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issues. Specifically, we first devise an appropriate infinite-dimensional formulation
of the problem and then truncate carefully in the second step. This leads to a finite-
dimensional problemwhich retains the key features of the original problem, but which
can be solved numerically.

It is worth noting that this principle is quite general and is by no means unique
to this particular problem. Whilst found in many areas of numerical analysis, most
relevantly for this paper it was recently employed in [40,41] to solve the long-standing
computational spectral problem. A number of ideas in this article stem from [41] and
the contributions of this paper may be viewed as a continuation of this work. Note that
similar versions of this principle have also been advanced by Stuart et al. for solving
inverse problems [57].

1.3 Generalized Sampling (GS)

The framework we propose in this paper is based on recent developments in classical
sampling known as generalized sampling (GS) [2,3,5] (see also [10,29,43,62,63]).
GS is a novel sampling theory which incorporates the key issues of approximation and
stability via the so-called stable sampling rate [5]. This allows for guaranteed recovery
of any signal in an arbitrary basis from a collection of its samples in a manner which is
both numerically stable and, in a certain sense, optimal. In this paper, we extend this
work by showing that when the signal to be reconstructed is sparse or compressible,
reconstruction can also be performed with significant subsampling. We refer to the
corresponding technique as generalized sampling with compressed sensing (GS–CS).

One important instance of both GS and GS–CS is recovery from Fourier samples
(theMRI problem, in particular). Although classical Fourier analysis allows for recon-
struction in terms of an infinite series of complex exponentials, the slow convergence
of this series and the appearance of the Gibbs phenomenon [44] renders such approx-
imations impractical. Nonetheless, in many circumstances it is well known that the
given signal can be well represented (i.e., it is sparse or has rapidly decaying coeffi-
cients) in a new basis of functions, be they splines, wavelets, curvelets, etc. [31]. GS
and GS–CS allow one to reconstruct in such a basis in manner that is both accurate,
numerically stable and, in the case of the latter, amenable to subsampling when the
signal is sparse or compressible.

1.4 Relation to Other Work and Contributions of the Paper

There have been a number of recent attempts to generalize CS to infinite dimensions.
In [30,47,48], an infinite-dimensional CS approach is described for analog-to-digital
conversion based on a union of subspaces signal model, which is related to previous
research of finite rates of innovation [14,27,64]. In [42], the approach of [30,47,48]
was applied to inverse and ill-posed problems. The application of CS techniques to the
recovery of functions was considered by Rauhut andWard. By devising an appropriate
sampling distribution to ensure a restricted isometry property, they prove near-optimal
recovery guarantees for the reconstruction of sparse sums of Legendre polynomials
[52] or spherical harmonics [51]. Note that the sampling mechanism in this work is
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limited to pointwise samples of the function itself, as opposed to its Fourier transform.
Hence, it is not applicable to the MRI problem, for example.

Besides medical imaging, infinite-dimensional problems are found in other
applications including radar, sonar and remote sensing [56]. Use of standard, finite-
dimensional CS in such problems is susceptible to gridding error (also known as basis
mismatch) [22]. Although the setting here is somewhat different to that which we con-
sider in this paper, the same issue arises: Poor discretization of an infinite-dimensional
problem leads to inferior reconstructions. Recent works [32,60] have sought to address
this by applying essentially the same guiding principle followed in this paper. Closely
related to this is the work of Candès and Fernandez-Granda on super-resolution [17],
wherein an analog model is employed for reconstruction from low-bandwidth Fourier
samples using convex optimization.

Note that most of the above works describe CS in infinite dimensions for some
particular class of problem and do not address the general scenario of arbitrary sam-
pling schemes {ζ j } j∈N and reconstruction bases {ϕ j } j∈N in a Hilbert spaces H. Our
GS–CS framework aims to do this. It is therefore a natural way to extend standard
finite-dimensional CS. In this light, it should not come as a surprise that certain finite-
dimensional CS results (specifically, those related to the incoherence-based theory of
CS [18,34]) become corollaries of our main theorems.

Having said this, we remark that the intent of this paper is to present only a first
step toward extending CS fully to the Hilbert space setting. Finite-dimensional CS has
been the subject of many papers over the last decade (see [34] for a comprehensive
treatment). Unsurprisingly, there are some key aspects of the finite-dimensional theory
whose extensions to infinite dimensions are either beyond the scope of this paper or
currently unknown. See Sects. 6 and 10 for further details.

Notation In the remainder of the paper, we use the following notation. If l2(N) is
the standard space of square summable sequences in C, we write ‖·‖ for its standard
norm (all other norms will be specified). Let {e j } j∈N be the natural basis on l2(N),
and, for � ⊂ N define P� to be the orthogonal projection onto cl(span{e j : j ∈ �}).
If � = {1, . . . , N }, then we simply write PN . We shall also use similar notation when
working in finite-dimensional vector spaces. Finally, if U is a bounded operator on
either l2(N) or CN , we write ‖U‖ for its induced operator norm.

2 The Need for an Infinite-Dimensional Framework

Consider the following simple model problem, which will form the primary example
throughout this paper:

Problem 2.1 Suppose that f ∈ L2(R) has support contained in [−1, 1], and let
{ϕ j } j∈N be the orthonormal basis of Haar wavelets on L2(−1, 1). Define

ζ j ( f ) = F f ( j/(2T )), j ∈ Z, (2.1)

to be the Fourier coefficients of f , where F f denotes the Fourier transform of f , and
T ≥ 1 is arbitrary. Throughout, we shall take T = 1. Assume that f is sparse, or
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compressible, in the basis {ϕ j } j∈N. Then, the problem is to recover f from a small
number of the measurements (2.1).

Recall that f can be recovered from the infinite collection {ζ j ( f )} j∈Z via its Fourier
series. However, since f is known to be sparse in the Haar wavelet basis {ϕ j } j∈N, this
raises the possibility of reconstructing f from a small and finite number of its samples,
which is the focus of this paper.

2.1 The Discrete Model

Let us consider the simplest possible case, where f = χ[0,1/2) − χ[1/2,1) is the Haar
mother wavelet and is by definition one sparse in the Haar basis. The usual approach to
recover f used in applications such as sparse MRI [46] involves two steps. First, one
discretizes f to an equispaced grid of 2N points and replaces the infinite collection
of samples (2.1) by the finite vector

y = ζ( f ) = {ζ j ( f ) : j = −N + 1, . . . , N }, N ∈ N. (2.2)

Second, one uses a combination of the discrete Fourier and discrete wavelet transforms
(DFT and DWT, respectively) to formulate the corresponding discrete recovery prob-
lem. Specifically, let Udf , Vdw ∈ C

2N×2N be the matrices of these transforms. The
classical discrete approximation to the problem of inverting the Fourier transform is
then given by y = Udf x , where x is a vector approximating the grid values of f . Since
f is sparse in the Haar basis, one may think that x0 = Vdwx is also sparse, and there-
fore, we could recover f perfectly from only relatively few of its samples y = ζ( f )
by using standard CS techniques. In particular, if � ⊂ {1, . . . , 2N }, |�| = m < 2N
is chosen uniformly at random, one solves

min
η∈C2N

‖η‖l1 subject to P�UdfV
−1
dw η = P�y. (2.3)

If ξ is a minimizer of this problem, then one might expect ξ to agree with the vector
x0 with high probability, and hence, we could recover f via x = V−1dw x0.

To test whether this is the case or not, we consider an example with 2N = 256 and
m = 130, i.e., we use nearly 50% of the measurements in the range −N + 1, . . . , N .
Figure 1 displays the reconstruction of f by fN ,m , where fN ,m =∑2N

j=1 ξ jϕ j and ξ is
a minimizer of (2.3). As is evident, f is not recovered anywhere near exactly, and the
reconstruction fN ,m computed from (2.3) commits a rather large error. This occurs
despite the fact that f is one-sparse Haar wavelet basis, and we usedm = 130 Fourier
samples.

2.1.1 The DFT Destroys Sparsity

The source of the poor reconstruction in (2.3) is the discretization used to approximate
the continuous Fourier transform of a function by the discrete Fourier transform a vec-

123



Found Comput Math

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1
−0.1

−0.05

0

0.05

0.1

Fig. 1 Graphs of fN ,m (t) (left) and f (t)− fN ,m (t) (right) against t for 2N = 256 and m = 130, where

fN ,m (t) =∑2N
j=1 ξ jϕ j (t) and ξ = {ξ j }2Nj=1 is a minimizer of (2.3)

tor. The result is a mismatch between the data, which are continuous Fourier samples,
and their modeling as discrete Fourier samples.

To explain in more detail, consider the matrix U−1df , which maps the vector of
Fourier coefficients ζ( f ) of a function f to a vector consisting of pointwise values on
an equispaced 2N -grid in [−1, 1]. This mapping commits an error: For an arbitrary
function f , the result is only an approximation to the grid values of f . Indeed, consider
the vector x ∈ C

2N defined byUdf x = ζ( f ). It is straightforward to see that x consists
precisely of the values of the function

fN (t) = 1

2

N∑

j=−N+1
F f ( j/2)eπ i j t , (2.4)

on the equispaced 2N -grid. This function is nothing more than the truncated Fourier
series of f , and therefore, the approximation resulting from modeling the continuous
Fourier transformwithUdf is equivalent to replacing a function f by its partial Fourier
series fN .

Now consider the discrete wavelet transform x0 = Vdwx ∈ C
2N of x . The right-

hand side of the equality constraint in (2.3) then reads P�UdfV
−1
dw x0,, and therefore,

for the method (2.3) to be successful we require x0 = Vdwx to be a sparse vector.
However, this can never happen. Sparsity of x0 is equivalent to stipulating that the
partial Fourier series fN be sparse in the Haar wavelet basis. Yet the function fN
consists of smooth complex exponentials and thus cannot have a sparse representation
in a basis of piecewise smooth functions. In other words, by using theDFT to discretize
the problem, we have destroyed some of its key structure—namely the sparsity—thus
going against the guiding principle of Sect. 1.2.

2.1.2 The DFT Leads to the Gibbs Phenomenon

Given that η is not sparse in Haar wavelets, suppose now, as an exercise, we forgo
any subsampling and let m = 2N . The problem (2.3) then has a unique solution η.
However, the entries of η are not the Haar wavelet coefficients of f , but rather those
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Fig. 2 Graphs of fN (t) (left) and f (t)− fN (t) (right) against t for 2N = 256

of fN . Thus, by solving (2.3) (both with and without subsampling) we are not actually
computing Haar wavelet coefficients of f , but those of the partial Fourier series fN
instead. Thus, we cannot expect to obtain a better (i.e., more accurate) reconstruction
of f than fN .

Unfortunately, since f is piecewise smooth, fN is a very poor approximation to
f . As N → ∞, fN does not converge uniformly to f and only converges very
slowly in the weaker L2 norm. One also witnesses the Gibbs phenomenon, with its
characteristic O (1) oscillations, near each jump in f . These effects are visualized in
Fig. 2. The fact that (2.3) leads to a Haar wavelet approximation to fN , as opposed to
f , can be observed by noting the similarities between the left panels in Figs. 1 and 2,
respectively.

2.1.3 Relation to the Inverse and Wavelet Crimes

The poor reconstruction seen above is due to a mismatch between the data and the
model. Had the data been simulated using the DFT, then no such problems would
have occurred, and one would have seen perfect recovery. However, this improvement
is artificial and an example of the well-known inverse crime [39]. That is to say,
unrealistic simulation of the data leads to spuriously good reconstructions, but when
realistic data are used (i.e., arising from the continuous Fourier transform) such as in
the above examples, the reconstruction quality substantially declines.

Besides this, the above approach also incurs the wavelet crime. Recall that the
discrete wavelet transform is an infinite-dimensional operator that takes as input the
coefficients of the expansion of the function corresponding to the scaling function.
The output of the discrete wavelet transform are the wavelet coefficients as well as the
scaling coefficients corresponding to the next level. In the discretization model above,
the vector x contains approximate pointwise samples of the function f . Thus, at best
we can interpret x as the coefficient vector corresponding to an expansion using the
scaling function of the Haar wavelet (which is the step function). However, in all other
cases of Daubechies wavelets (where the scaling is different from the step function),
the vector x0 = Vdwx is just an approximation to the actual wavelet coefficients of f .
This effect is referred to as the “wavelet crime” by Strang and Nguyen [55, p. 232].

123



Found Comput Math

2.2 Discretization Via Finite Sections

Since discretization via the DFT caused the above problems, it may at first seem
reasonable to overcome these issues by replacing the DFT-DWT matrix UdfV

−1
dw by

the new measurement matrix

UN =
⎛

⎜
⎝

ζ1(ϕ1) · · · ζ1(ϕ2N )
...

. . .
...

ζ2N (ϕ1) · · · ζ2N (ϕ2N )

⎞

⎟
⎠. (2.5)

If � ⊂ {1, . . . , 2N }, |�| = m, is chosen uniformly at random, one now finds a
minimizer ξ to the problem

min
η∈C2N

‖η‖l1 subject to P�UNη = P�ζ( f ), (2.6)

and forms the reconstruction fN ,m =∑2N
j=1 ξ jϕ j (note that in this case we have, for

convenience, reindexed the Fourier samples {ζ j } j∈N over N rather than Z). Clearly
this approach preserves the sparsity of the original problem, unlike (2.3).

We now consider an example of (2.6) where N = 384 and f = ∑2N
j=1 α jϕ j is

such that |supp( f )| = |{α j : α j �= 0}| = 5. In Fig. 3, we display the reconstruction
given by (2.6) usingm = 760 samples. Unfortunately, this reconstruction is still poor.
Despite using 98% of its Fourier samples in the range 1, . . . , 2N , the function f
is recovered nowhere near exactly by (2.6). Repeating the experiment with different
random draws of � yields very similar results.

Why does this happen? On the face of it, (2.6) looks like a standard CS problem:
A measurement matrix is formed by taking inner products of the first 2N elements
of two orthonormal bases (the Fourier and Haar wavelet bases in this case) and then
one subsamples randomly from its rows. The issue lies with the fact thatUN is not an
isometry: In fact, its condition number in this instance is at least 1016 in magnitude.

This lack of isometric structure can be traced to the underlying infinite dimen-
sionality of the problem. In general, a matrix UN of the form (2.5) will only be an
isometry if and only if the N basis elements span the same space. This is clearly not
the case in (2.5), where the sampling and reconstruction bases consist of the first N
(smooth) complex exponentials and (piecewise constant) Haar wavelets, respectively.
In other words, simply thinking (since f has only finitely many nonzero Haar wavelet
coefficients) that the problem can be viewed as a finite-dimensional one in C

N is
problematic. As noted above, UN is not an isometry, whereas the “infinite change of
basis matrix”

U =
⎛

⎜
⎝

ζ1(ϕ1) ζ1(ϕ2) · · ·
ζ2(ϕ1) ζ2(ϕ2) · · ·

...
...

. . .

⎞

⎟
⎠, (2.7)

formed by combining the full countably infinite bases is. It is precisely the loss of this
structure when “discretizing” U via UN that is the source of the poor reconstruction
observed above.
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Fig. 3 Errors f (t)− fN ,m (t) against t (left) and f (t)−gÑ ,m̃ (t) (right). Note that fN ,m requiresm = 760
samples, whereas gÑ ,m̃ requires only m̃ = 50 samples

2.3 A New Approach

With these two examples in mind, in the remainder of this paper we introduce a new
approach that allows for successful recovery by discretizing in a way that preserves the
two key properties highlighted (sparsity and the isometric structure). This approach
will be introduced formally in the next sections. However, we first give a brief numer-
ical demonstration. Let f (t) = ∑M

j=1 α jϕ j (t) be as in Sect. 2.2, and let U be given

by (2.7). For Ñ ∈ N, we now choose � ⊂ {1, . . . , Ñ }, |�| = m̃, uniformly at random
and compute a minimizer ξ to

inf
η∈l1(N)

‖η‖l1 subject to P�PÑU PMη = P�y, y = {ζ1( f ), ζ2( f ), . . .}, (2.8)

where M ∈ N, and let gÑ ,m̃ =
∑M

j=1 ξ jϕ j be the reconstructed approximation to

f . In Fig. 3, we apply this algorithm with Ñ = 1351, m̃ = 50 and M = 768.
Note the significant improvement over the approach of Sect. 2.2. In particular, when
averaged over 50 trials, the error ‖ f − gÑ ,m̃‖L2 is found to be roughly 1.15× 10−11
in comparison with ‖ f − fN ,m‖L2 ≈ 2.43 for the previous approach. Moreover, this
new reconstruction uses fewer than 4% of the Fourier coefficients, whereas fN ,m used
roughly 98% and was still a poor approximation.

The purpose of remainder of this paper is to explain precisely why (2.8) leads to
such amarked improvement.Aswe explain, the key to this is the judicious choice of the
parameter Ñ , which is selected according to what we refer to as the balancing property
(see Sect. 5.1). This property guarantees a faithful discretization of the operator U ,
which, unlike in (2.5), ensures that the isometry structure is approximately preserved
when discretizing with the finite matrix PÑU PM .

Wenote in passing that the notion of keeping the structurewhendiscretizing infinite-
dimensional operators is of course not new, and the delicate issues are indeed widely
recognized. See, for example [11,12], although this framework is not specific to the
CS setting.
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3 Generalized Sampling: Signal Recovery in Infinite Dimensions

Suppose that H is a separable Hilbert space over C. Let {ϕ j } j∈N be an orthonormal
basis, f = ∑∞

j=1 α jϕ j and suppose that we have access to the countable collection
of samples

ζ1( f ), ζ2( f ), ζ3( f ), . . . , (3.1)

where ζ j : H→ C are continuous linear functionals on H. Our aim is to recover the
coefficients {α j } j∈N, and therefore f , from the samples (3.1). Before discussing how
to recover infinite-dimensional sparse or compressible signals, it is first necessary to
address the classical case where no sparsity is assumed. Only once this problem has
been solved can one consider the issue of subsampling.

To do this, we shall use the technique of generalized sampling (GS) [2–5], which
we now recap. Under some assumptions on {ζ j } j∈N (e.g., each ζ j is continuous and
ζ j (·) = 〈·, ψ j 〉 where {ψ j } j∈N is an orthonormal basis of H), we can view the full
recovery problem as the infinite system of equations

Uα = ζ( f ), (3.2)

whereα = {α1, α2, . . .}, ζ( f ) = {ζ1( f ), ζ2( f ), . . .} andU is the infinitemeasurement
matrix (2.7). Clearly, if we were able to invert U , and provided we had access to all
samples of f , then we could recover α (and hence f ) exactly. Of course, this is never
the case in practice and sowe instead consider truncations of (3.2) and look to compute
approximations α̃1, . . . , α̃N to the first N coefficients of α.

3.1 Uneven Sections and Generalized Sampling (GS)

Themost obvious approach for discretizing (3.2) follows by taking a finite sectionUN ,
i.e., the leading N ×N submatrix ofU and solving the resulting N ×N linear system.
However, finite sections can be extremely problematic in practice, leading in general
to both poor approximations and numerical instability [2,5]. As noted in Sect. 2.2, this
is due to the loss of isometric structure when discretizing U via UN .

Fortunately, there is a simple way to overcome the problems associated with the
finite section method, based on taking rectangular, as opposed to square, sections ofU
(see [2,35] and references therein). In particular, we replace the finite section method
with

Aα̃[M] = PMU∗PN ζ( f ), A = PMU∗PNU PM , (3.3)

where M ∈ N (the number of coefficients α̃1, . . . , α̃M computed) is appropriately
chosen (typically M ≤ N ). The result is known as generalized sampling (GS). Note
that A = (PNU PM )∗PNU PM , where PNU PM is the N × M uneven section of U .

The main idea now is to allow M and N to vary independently of each other—in
particular, selecting M ≤ N sufficiently small—to ensure a numerically stable and
accurate reconstruction of the first M coefficients α1, . . . , αM . To this end, the main
theorem proved in [2,5] is as follows:
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Theorem 3.1 Let U ∈ B(l2(N)) be an isometry and suppose that α ∈ l2(N) satisfies
Uα = ζ( f ) for some ζ( f ) ∈ l2(N). Let N0 be the least N such that CN ,M < 1, where

CN ,M = ‖PM − PMU∗PNU PM‖. (3.4)

Then, there is a unique solution α̃[M] to (3.3), and we have the sharp bound

‖α − α̃[M]‖ ≤ 1
√
1− CN ,M

‖P⊥Mα‖. (3.5)

It can be shown that the quantityCN ,M—ameasure of how close the uneven section
PNU PM is to an isometry—tends to zero as N → ∞, for any fixed M . Thus, α̃[M]
can be made arbitrarily close to PMα (the best approximation to α from PM (l2(N)))
by varying N suitably. Furthermore, the method is also stable, since the condition
number of the matrix A scales like 1/

√
1− CN ,M [5]. That is to say, precisely the

same quantity that ensures that the isometric structure ofU is approximately retained
by the discretization PNU PM also guarantees accuracy and numerical stability of the
reconstruction.

In practice, we need a way in which to quantify the required scaling of N and M .
To do this, in [5] the stable sampling rate

�(M; θ) = min
{
N ∈ N : CN ,M < 1− θ2

}
, θ ∈ (0, 1), (3.6)

was introduced. In particular, sampling at a rate N ≥ �(M; θ) ensures that√
1− CN ,M ≥ θ , and therefore stability and accuracy of α̃[M] up to the magnitude of

θ .

Remark 3.2 Note that �(M; θ) can be computed numerically [5], since CN ,M is just
the 2-norm of anM×M matrix (see 3.4). Hence, the conditions of Theorem 3.1 can be
verified a priori via a straightforward calculation. Analytical bounds are also possible
[2,3,5,6]. In [6], it was proved that �(M; θ) ∼ c(θ)M for Fourier sampling with
wavelets as the reconstruction system, the principal example of this paper. Typically,
c(θ), whilst greater than one, is not too large. However, any attempt to sample much
below this rate necessarily fails. In [6], it was also shown that setting N = M (this
corresponds to the finite section), or in fact N = c̃M for any c̃ less than some critical
threshold c0 > 1, leads to exponential instability and divergence. For some earlier
related results, see [35].

3.2 Generalized Sampling with Fourier Samples

Suppose {ζ j ( f )} j∈Z correspond to the Fourier samples (2.1). In practice, the Fourier
series (2.4) based on the first N samples leads to a very poor reconstruction of f .
However, suppose nowwe know another basis {ϕ j } j∈N in which f is well represented.
We can then apply GS to obtain an improved reconstruction
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Fig. 4 Errors f (t)− fN (t) (left) f (t)− fN ,M (t) (right) against t for N = 51 and M = 12

fN ,M =
M∑

j=1
α̃ jϕ j , (3.7)

in this basis, where the coefficients α̃ j are the solution of (3.3). The key point is that,
if we know that f is well represented in {ϕ j } j∈N, then we can recover f optimally (up
to a multiplicative constant) in terms of the first M basis function ϕ1, . . . , ϕM using
only its first N Fourier coefficients.

To demonstrate, consider the function f (t) = t5e−t , t ∈ [−1, 1]. Suppose we can
sample the Fourier coefficients of f , namely {F f ( j/2)} j∈Z. To reconstruct f from
these samples, we will consider two different techniques. First, we test the truncated
Fourier series fN defined in (2.4). Due to the fact that f is not periodic we cannot
expect rapid convergence of fN to f . However, GS allows us to reconstruct in any
basis. Thus, (due to analyticity of f ) we will choose the reconstruction basis {ϕ j } j∈N
consisting of orthonormal Legendre polynomials on [−1, 1] and define fN ,M as in
(3.7). In Fig. 4, we have displayed the errors f − fN and f − fN ,M . Note that both
reconstructions, fN and fN ,M , use the same samples, yet the improvement of fN ,M

over fN is significant: An O (1) error is reduced to roughly machine precision. We
remark that for this choice of reconstruction basis the stable sampling rate �(M; θ)

is quadratic in M [3]. Moreover, a lower scaling (in particular, N = M) necessarily
results in extreme ill-conditioning [9].

4 Infinite-Dimensional Compressed Sensing

We are now in a position to introduce sparsity and subsampling into the reconstruction
problem. The infinite-dimensional compressed sensing approach we introduce next is
based on the ideas of generalized sampling, and we refer to it as generalized sampling
with compressed sensing (GS–CS).

4.1 Sparsity and Compressibility in Infinite Dimensions

First, we need to notions of sparsity and compressibility in infinite dimensions. We
shall say that f =∑∞

j=1 α jϕ j is sparse in the basis {ϕ j } j∈N if there exists an M ∈ N

such that
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� = supp( f ) ⊂ {1, . . . , M} supp( f ) = { j ∈ N : α j �= 0}, (4.1)

Note that we do not know �, but we usually have estimates for |�| and M . If |�| = r ,
we say that f is (r, M)-sparse in the basis {ϕ j } j∈N.

It is important in this definition that the nonzero entries of f are restricted to some
finite bandwidth M . We cannot expect stable recovery from a finite number of samples
if the |�| nonzero entries are allowed to have arbitrary locations in N, regardless of
the reconstruction algorithm used [15]. This is one of several ways in which infinite-
dimensional CS differs from its finite-dimensional counterpart, and means that in
practice so-called uniform recovery is not achievable in infinite dimensions without
bandwidth restrictions. We discuss this point further in Sect. 10.

Typically, f will not be perfectly sparse, and moreover, exact knowledge of the
effective sparsity |�| and bandwidth M may be lacking. In finite-dimensional CS, it is
standard to address this by considering compressible signals, i.e., those whose r -term
approximation error decays rapidly. In the infinite-dimensional setting, we require a
slightly different notion that takes into account the bandwidth M . To this end, we let

σr,M (α) = min{‖α − η‖l1 : η is (r, M)-sparse},

be the error of the best approximation of f by a (r, M)-sparse vector. Loosely speaking,
we shall say that f is compressible if this term is small.

4.2 Models

Havingdefined sparsity,wenow introduce the signalmodelswe consider in the remain-
der of this paper:

(i) Semi-infinite-dimensional model Here we assume f is either sparse with band-
width M , or that

f = g + h, � = supp(g) ⊂ {1, . . . , M}, supp(h) = {1, . . . , M}. (4.2)

In otherwords, f is (r, M)-compressible for some r andσM,M (x) = 0. Thismodel
is semi-infinite dimensional: Although f has only finite support in {ϕ j } j∈N, we
may draw samples from the countable collection (3.1).

(ii) Fully infinite-dimensional model Here we consider the significantly more general
setting:

f = g + h, � = supp(g) ⊂ {1, . . . , M}, supp(h) ⊆ N. (4.3)

This model is termed fully infinite-dimensional since the support of f can be
infinite.

4.3 Generalized Sampling with Compressed Sensing (GS–CS)

Suppose now that f = ∑∞
j=1 α jϕ j is sampled via {ζ j } j∈N, and let � ⊆ N of size

|�| = m ∈ N be the index set of the measurements taken. We first propose the
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infinite-dimensional optimization problem

min
η∈l1(N)

‖η‖l1 subject to P�Uη = P�ζ( f ), (4.4)

where U is the infinite matrix (2.7) and ζ( f ) = {ζ1( f ), ζ2( f ), . . .} is the infinite
vector of samples.

Recall that GS relies on a well-posed infinite-dimensional recovery problem (3.2)
before discretization can proceed. Seeking similar notions for (4.4), we are led to the
following questions:

(i) How do we choose �? Obviously there is no unique choice, but it makes sense
to choose � uniformly at random from {1, . . . , N }, where N ∈ N is some fixed
number. This raises the question following question: How large must N be?

(ii) Suppose that η is a minimizer of (4.4) (note that η need not be unique). How
large is ‖η − α‖, where α is the infinite vector of coefficients of f in the basis
{ϕ j } j∈N. In particular, how does ‖η− α‖ depend on both m (the total number of
samples) and N (the range from which the samples are drawn)?

(iii) If f is exactly sparse in {ϕ j } j∈N, do we recover its coefficient vector α exactly
(with high probability) from (4.4), and what are the conditions on m and N that
ensure this recovery?

Suppose for the moment that we have answers to these questions. Besides special
circumstances, we cannot solve (4.4) numerically; hence, we must discretize. For this,
we follow the same ideas that lead to generalized sampling. Thus, we introduce a
parameter k ∈ N and consider the finite-dimensional optimization problem

min
η∈CM

‖η‖l1 subject to P�U Pkη = P�ζ( f ). (4.5)

We refer to this as generalized sampling with compressed sensing (GS–CS).
This formulation leads to a further set of questions:

(iv) When will (4.5) have a solution? Note that (4.5) need not have a solution for all
k, since P�ζ( f ) need not be in the range of P�U Pk (although, as we shall show,
this is always the case for sufficiently large k). However, this raises the following
question: Will solutions of (4.5) converge to solutions of (4.4) as k →∞?

(v) If f is not sparse but compressible, how large is the error ‖η − α‖ when η is a
solution to (4.5) and α is the vector of coefficients of f ? In particular, if f belongs
to either of the models (4.2) or (4.3), can ‖η − α‖ be bounded above in terms of
σr,M ( f ) for appropriate r and M?

Answers to these questions will be provided in Sect. 6, where we state the main results
of this paper.

Remark 4.1 The reader may at first be concerned that replacing (4.5) by (4.4) is
problematic since there is no possibility with (4.5) of recovering signals for which
supp( f ) is not fully contained in the range {1, . . . , k}. However, recall that we cannot,
with any algorithm, expect stable recovery of coefficients with arbitrary locations in
N. So there is no issue with replacing (4.4) by (4.5) provided k is chosen sufficiently
large (see question (iv)).
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5 Additional Notation and Definitions

We now introduce some additional notation that will be used in the remainder of
this paper. From now on, let H = l2(N), and if ξ ∈ H and j ∈ N, then write
ξ( j) = ξ j = 〈ξ, e j 〉. For � ⊂ N, we denote the natural embedding operator from
l2(�) to H by ι� . Note that ι∗�η = η|� for η ∈ H. For any vector ξ ∈ H we write
supp(ξ) = { j ∈ N : ξ( j) �= 0}, and we define the sign sgn(ξ) ∈ l∞(N) of ξ ∈ l∞(N)

as follows:

sgn(ξ)( j) =
{

ξ( j)/|ξ( j)| if ξ( j) �= 0

0 otherwise.

For an operator U ∈ B(H), we let

υ(U ) = sup
i, j∈N

|ui j |, ui j = 〈Ue j , ei 〉, (5.1)

be the coherence parameter, i.e., the max norm of the operator U with respect to

{e j } j∈N. Also, we define the maximum row norm ofU by ‖U‖mr = supi∈N
(∑

j∈N |
ui j |2

)1/2
. This quantity forms a vector space norm on the vector space of all infi-

nite matrices (although not an algebra norm). Finally, for convenience, we define the
following function that will be used frequently in the exposition. For M ∈ N and
U ∈ B(H), let ω̃M,U : {1, . . . , M} × R+ × N→ N ∪ {0} be given by

ω̃M,U (r, s, N ) =

∣
∣
∣
∣
∣
∣
∣

⎧
⎪⎨

⎪⎩
i ∈ N : max

�1⊂{1,...,M},|�1|=r
�2⊂{1,...,N }

∥
∥P�1U

∗P�2Uei
∥
∥ > s

⎫
⎪⎬

⎪⎭

∣
∣
∣
∣
∣
∣
∣

. (5.2)

Observe that the mapping s �→ ω̃M,U (r, s, N ) is a decreasing function. Moreover,
since

‖P�1U
∗P�2Uei‖ ≤ ‖P�1U

∗P�2‖‖P�2Uei‖ ≤ ‖PMU∗PN‖‖PNU P⊥i−1‖,

where the term ‖PNU P⊥i−1‖ is decreasing in i → ∞, we see that can be bounded
above by the simpler, but admittedly less sharp quantity

ω̃M,U (r, s, N ) ≤ min
{
i ∈ N : ‖PMU∗PN‖‖PNU P⊥i ‖ ≤ s

}
. (5.3)

5.1 The Balancing Property

For GS, the stable sampling rate (3.6) determines how to discretize the recovery
problem in line with the principle of Sect. 1.2. For GS–CS, we require an analogous
quantity, known as the balancing property.

Definition 5.1 LetU ∈ B(H) be an isometry and M, |�| ∈ N. Then N and m satisfy
the weak balancing property with respect to U, M and |�| if
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‖PMU∗PNU PM − PM‖ ≤
(

4

√

log2
(
4N

√|�|/m
)
)−1

, (5.4)

max|�|=|�|,�⊂{1,...,M} ‖PM P⊥� U∗PNU P�‖mr ≤ 1

8
√|�| . (5.5)

We say that N and m satisfy the strong balancing property with respect to U, M and
|�| if (5.4) holds, and (5.5) is replaced by

max|�|=|�|,�⊂{1,...,M} ‖P
⊥
� U∗PNU P�‖mr ≤ 1

8
√|�| . (5.6)

The balancing property dictates how large a bandwidth M the |�| nonzero coefficients
can lie, given m measurements in the range {1, . . . , N }. Note that there is a strong
analogy between this and the stable sampling rate (3.6), the main differences being
due to the additional complications that enter when subsampling. Indeed, condition
(5.4) ensures that PNU PM is close to an isometry, and is very similar to (3.6).

The following proposition establishes that the balancing property is well defined:

Proposition 5.2 If U, M and |�| are as in Definition 5.1, then there always exists
integers N and m that satisfy the weak and strong balancing properties with respect
to U, M and |�|.
Proof First letm = cN for some 0 < c < 1. Now note that since PN → I strongly as
N →∞ we have that PNU → U strongly. However, for any � ⊂ N with |�| < ∞
we have that PNU P� → U P� in norm as N →∞ by compactness. Notice also that
‖V ‖mr ≤ ‖V ∗‖ for any V ∈ B(H). The fact thatU is an isometry now shows that the
left-hand sides of (5.4)–(5.6) can be made arbitrarily small by taking N sufficiently
large. ��
Remark 5.3 The inequality in (5.5) is somewhat inconvenient. However, it can be
replaced by the far simpler, although stronger, condition

‖PMU∗PNU PM − diag(PMU∗PNU PM )‖mr ≤ 1

8
√|�| . (5.7)

Here diag(B) denotes the diagonal part of the matrix B. In particular, condition
(5.7) is the requirement on the magnitude of the off-diagonal entries of the matrix
PMU∗PNU PM . Inmuch the samemanner, (5.6) can also be replaced by themuchmore
convenient (however stronger) condition ‖U∗PNU PM − diag(U∗PNU PM )‖mr ≤

1
8
√|�| .

6 Main Results

We now present our main results. Proofs of these results form the content of the
remainder of this paper. To avoid pathological examples, we from now on assume that
the sparsity r = |�| ≥ 3.
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6.1 The Semi-Infinite-Dimensional Model

The first results concern the semi-infinite-dimensional model (see Sect. 4.2):

Theorem 6.1 Let U ∈ B(H) be an isometry, M ∈ N, ε > 0 and suppose that
x0 ∈ l∞(N)with supp(x0) = �, where� ⊂ {1, . . . , M}. Suppose that N andm satisfy
the weak balancing property with respect to U, M and |�|, and let � ⊂ {1, . . . , N }
be chosen uniformly at random with |�| = m. If ζ = Ux0 then, with probability
exceeding 1− ε, the problem

inf
η∈l1(N)

‖η‖l1 subject to P�U PMη = P�ζ, (6.1)

has a unique solution ξ and this solution coincides with x0, provided that m satisfies

m ≥ C · N · υ2(U ) · |�| ·
(
log

(
ε−1

)
+ 1

)
· log

(
MN

√|�|
m

)

, (6.2)

for some universal constant C. Furthermore, if m = N, then ξ is unique and ξ = x0
with probability 1.

This theorem states that a sparse signal x0 can be recovered perfectly (with high
probability) by subsampling from the coefficients ζ , provided (5.4), (5.5) and (6.2)
hold. The main estimate (6.2) is similar to a standard finite-dimensional CS bound, in
that it relates the number of measurements m to the coherence υ(U ), the sparsity |�|
and several log factors. The primary difference is that the parameter N in the estimate
(the range from which the samples � are drawn) differs from the term M (the range
of �). The precise relation between the two is given by (5.4) and (5.5), i.e., the weak
balancing property. Note that this result addresses the questions (i) and (iii) posed in
Sect. 4.

Remark 6.2 Much like the stable sampling rate (see Remark 3.2), the weak and strong
balancing properties depend completely on the matrix U . In particular, there is no
universal choice (for all isometries U ) of N given M . For analysis of the balancing
properties in the case of the Fourier/wavelets matrix (in which case N can be taken to
be linear in M , up to log factors), we refer to [7,50].

Recall that the second scenario in the semi-infinite-dimensional model corresponds
to signals y0 = x0 + h, where x0 is sparse and supp(h) ⊂ {1, . . . , M}. The following
theorem concerns this case:

Theorem 6.3 Let U ∈ B(H) be an isometry, M ∈ N, ε > 0 and suppose that
y0 ∈ l∞(N) with supp(y0) ⊂ {1, . . . , M}. Suppose that N and m satisfy the weak
balancing property with respect to U, M and |�|, and let � ⊂ {1, . . . , N } be chosen
uniformly at random with |�| = m. If ζ = Uy0 and ξ ∈ H is a minimizer of (6.1)
then, with probability exceeding 1− ε, we have that

‖ξ − y0‖ ≤ 8

(

1+ 2N

m

)

σr,M (y0), r = |�|, (6.3)

provided m satisfies (6.2). If m = N then (6.3) holds with probability 1.
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This theorem demonstrates recovery for compressible signals of the form (4.2).
Specifically, we witness perfect recovery, up to an error determined by the best
(r, M)-term approximation and a constant proportional to N/m (see Remark 6.7
below). In particular, this result answers question (v) for the semi-infinite-dimensional
model.

6.2 The Fully Infinite-Dimensional Model

The semi-infinite-dimensional model (4.2) places the restriction that the support of the
nonsparse term h is contained in {1, . . . , M}. As discussed in Sect. 3, this assumption
is quite rare in practice, and a more realistic setting is provided by the fully infinite-
dimensional model in which we assume that y0 = x0 + h, where x0 is sparse and
|supp(h)| is infinite.

To address this setting, it is first necessary to consider the infinite-dimensional
optimization (4.4):

Theorem 6.4 Let U ∈ B(H) be an isometry, ε > 0 and suppose that y0 ∈ l1(N).
Suppose that N and m satisfy the strong balancing property with respect to U, M and
|�| and let� ⊂ {1, . . . , N } be chosen uniformly at random with |�| = m. If ζ = Uy0
and ξ ∈ H is a minimizer of

inf
η∈l1(N)

‖η‖l1 subject to P�Uη = P�ζ, (6.4)

then

‖ξ − y0‖ ≤ 8

(

1+ 2N

m

)

σr,M (y0), r = |�|, (6.5)

with probability exceeding 1− ε, provided

m ≥ C · N · υ2(U ) · |�| ·
(
log

(
ε−1

)
+ 1

)
· log

(
ωN
√|�|
m

)

, (6.6)

where ω = ω̃M,U (|�|, s, N ) (recall 5.2), s = m
128N

√|�| log(e4ε−1) and C is a universal

constant. If m = N then (6.5) holds with probability 1.

Remark 6.5 Using (5.3), the quantity ω in (6.6) can also be replaced by a much more
convenient (and of correspondingly less sharp) estimate. In particular, we have that
ω ≤ M̃ , where

M̃ = min

{

r ∈ N : ‖PNU P⊥r ‖ ≤
m

128N
√|�| log(e4ε−1)

}

.

Observe that ‖PNU P⊥r ‖2 = ‖PNUU∗PN − PNU PrU∗PN‖, which is similar to the
quantity Cr,N introduced in (3.4). Hence, M̃ can be estimated in much the same way
the stable sampling rate is estimated in GS (see Remark 3.2). For the case of the
Fourier/wavelets matrix, we refer to [7,50].
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This theorem, much like Theorem 6.3, confirms recovery of y0 up to an error
determined solely by σr,M (y0). Note that it provides answers to questions (i)–(iii)
posed in Sect. 4. However, observe that the optimization problem (6.4) is infinite-
dimensional. In practice, one always replaces (6.4)with thefinite-dimensional problem

inf
η∈l1(N)

‖η‖l1 subject to P�U Pkη = P�ζ, (6.7)

where k ∈ N is suitably chosen. The obvious question now arises: How do solutions
of (6.7) compare to those of (6.4) as k →∞? For this we have the following:

Proposition 6.6 Let U ∈ B(H), x0 ∈ l1(N) and P� be a finite rank projection. Then,
for each sufficiently large k ∈ N there exists a ξk ∈ H such that

ξk ∈ argmin
η∈l1(N)

{‖η‖l1 : P�U Pkη = P�Ux0
}
.

Moreover, for every ε > 0, there is a K ∈ N such that, for all k ≥ K, we have
‖ξk − ξ̃k‖l1 ≤ ε, where

ξ̃k ∈ argmin
η∈l1(N)

{‖η‖l1 : P�Uη = P�Ux0
}
. (6.8)

In other words, solutions of (6.7) will be approximate minimizers of (6.4) for all
sufficiently large k and, in particular, will approximately satisfy (6.5). Note that when
(6.8) has a unique minimizer z it is straightforward to show that ξk = z for all large
k. We do not include this result since it is a rarity in practice for minimizers to be
unique. Conversely, this proposition demonstrates that having multiple minimizers is
not problematic. We remark also that this proposition does not show how to determine
k in a signal-independent way. Yet this can be done and is discussed further in [1,7].

We now make several further comments on the above theorems:

Remark 6.7 The error bounds (6.3) and (6.5) are close to optimal in the sense that they
involve the best approximation error σr,M (y0), yet multiplied by a factor proportional
to N/m. Such a factor is not found in analogous finite-dimensional results. However,
this term is the reciprocal subsampling percentage and in practice will usually not
be much larger than 100 in magnitude (this would correspond to 1% subsampling).
Also unlike finite-dimensional results, we do not address the issue of noisy data in this
work.1

Remark 6.8 Neither the bandwidth M nor the sparsity r = |�| need be known in
Theorems 6.3 or 6.4. Specifically, these results state the following: Given m and N
(the parameters of the sampling), any vector y0 is recovered up to an error proportional
to σr,M (y0), where r and M are determined implicitly through the balancing property
and (6.6). This is typical in applications such as MRI, where the sampling resolution

1 Since writing this paper, it has subsequently been shown that the term N/m can be removed and that
noise can be incorporated in the data and recovery guarantees. See [7] for details.
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N is fixed (due to the physical limitations of the scanner), as is the total number of
samples m.

Remark 6.9 The amount of subsampling depends on the coherence parameter υ(U ).
For a given operator U , this is a fixed (although arbitrarily small) number, and this
suggests that subsampling will not be possible when M is large. That is, we must take
m = N . However, if U has the property that υ(U P⊥k ), υ(P⊥k U ) → 0 as k → ∞,
then one can actually circumvent this problem using so-called multilevel random
subsampling techniques. This is not within the scope of this paper but is treated in
detail in [7].

6.3 Theorems on Finite-Dimensional CS

As mentioned, GS–CS extends finite-dimensional CS from finite-dimensional vec-
tor spaces to separable Hilbert spaces. It is therefore unsurprising, but important to
note nonetheless, that similar results to existing theorems for finite-dimensional CS
can be obtained as straightforward corollaries of Theorems 6.1–6.4. In particular, we
have

Theorem 6.10 Let U ∈ C
n×n be an isometry, and suppose that x0 ∈ C

n with
supp(x0) = �. For ε > 0 suppose that m ∈ N is such that

m ≥ C · n · υ2(U ) · |�| ·
(
log(ε−1)+ 1

)
· log n, (6.9)

for some universal constant C, and let� ⊂ {1, . . . , n} be chosen uniformly at random
with |�| = m. If ζ = Ux0, then, with probability exceeding 1− ε, the problem

min
η∈Cn

‖η‖l1 subject to P�Uη = P�ζ,

has a unique solution ξ and this solution coincides with x0.

Theorem 6.11 LetU ∈ C
n×n be an isometry, and suppose that y0 = x0+h ∈ C

n with
supp(x0) = �. For ε > 0 suppose that m ∈ N satisfies (6.9), and let � ⊂ {1, . . . , n}
be chosen uniformly at random with |�| = m. If ζ = Uy0, then, with probability
exceeding 1− ε, any minimizer ξ of the problem

min
η∈Cn

‖η‖l1 subject to P�Uη = P�ζ,

satisfies

‖ξ − y0‖ ≤ 8

(

1+ 2n

m

)

‖h‖l1 .

Proof of Theorems 6.10 and 6.11 ThematrixU extends in the obviousway to a partial
isometry Ũ onH. Note that (Ũ )∗PNŨ = PN , for N = n. We may now, in an obvious
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way, extend Ũ to an isometry Û on H such that υ(Û ) = υ(U ). Therefore, the weak
balancing property is automatically satisfied for M = N and any m ∈ N. We now
apply Theorems 6.1 or 6.3. ��

These results are similar to existing nonuniform recovery results for finite-
dimensional CS proved recently by Candès and Plan [18]. The main difference is
the larger factor n/m in the error bound and the absence of noise in the data (see
Remark 6.9).

7 Numerical Examples

Before giving proofs of these theorems, it is useful to present some further examples
of GS–CS. In doing so, we will demonstrate the main premises of this paper. Firstly,
if it is known that a function f has a good representation in terms of a different basis,
then one can obtain a far better reconstruction of f than that stemming from its Fourier
series. Secondly, by using GS–CS it is possible to get a substantial improvement over
finite-dimensional CS techniques.

Consider the problem of reconstructing g = F f and f from the samples
{ζ j ( f )} j∈N where ζ j ( f ) = F f (ρ( j)/2) and ρ is defined by

ρ(1) = 0, ρ(2) = 1, ρ(3) = −1, ρ(4) = 2, ρ(5) = −2 . . . .

We now compare three methods for approximating f and g:

(i) The partial Fourier series fN (see 2.4) and its Fourier transform gN = F fN .
(ii) The GS reconstructions fN ,M (see 3.7) and gN ,M = F fN ,M .
(iii) The GS–CS reconstructions

fN ,m,k(t) =
k∑

j=1
α jϕ j (t), gN ,m,k(t) =

k∑

j=1
α jFϕ j (t),

where α = {α1, . . . , αk} is computed via the convex optimization problem (4.5).
Note that fN ,M and gN ,M use exactly the same samples as fN and gN , yet fN ,m,k and
gN ,m,k use only a subset of those samples.

If f is sparse or has rapidly decaying coefficients in Haar wavelets, then we expect
(i) to give a very poor reconstruction. However, both the GS and GS–CS methods
should give very good reconstructions, with the latter taking advantage of the sparsity
to reduce the number of Fourier coefficients sampled (recall that GS does not exploit
any sparsity—it offers guaranteed recovery for all functions f by using the full range
of Fourier coefficients). Note that in the first example below the samples in the case of
GS–CS are chosen such that half of them are fixed (from the first indices) and the other
half is chosen uniformly at random. This is to improve results because of coherence
issues (see Remark 6.9).
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Fig. 5 Errors |g(t)− gN (t)| (left), |g(t)− gN ,M (t)| (middle) and |g(t)− gN ,m,k (t)| (right) against t , for
N = 601, M = 200, m = 230 and k = 650

Table 1 Errors for the reconstructions gN , gN ,M and gN ,m,k

N ‖g − gN ‖L∞ ‖g − gN ,M‖L∞ ‖g − gN ,m,k‖L∞ (avg. 20 trls)

601 1.43 4.74× 10−5, (M = 200) 4.73× 10−5, (m = 230, k = 550)

1201 0.85 2.36× 10−5, (M = 400) 2.38× 10−5, (m = 460, k = 1400)

7.1 First Example

As a first example, let us consider the function g = F f , where

f (t) =
200∑

j=1
α jϕ j (t)+ cos(2π t)χ[ 12 , 9

16 ](t), t ∈ [0, 1], (7.1)

{ϕ j } j∈N are Haar wavelets on [0, 1] and χ[ 12 , 9
16 ] is the indicator function of the interval

[ 12 , 9
16 ]. Suppose that |{ j : α j �= 0}| = 25, so that f can be decomposed into a sparse

component and a remainder. Note that the remainder has infinite support in the Haar
wavelet basis, so this function belongs to the fully infinite-dimensional model (see
Sect. 4.2).

In Fig. 5, we display the errors committed by the approximations (i)–(iii) for this
function. As expected, the expansion gN gives an extremely poor reconstruction,
whereas both the GS and GS–CS give far better approximations, both reducing the
error by a factor of roughly 10,000. Moreover, and also as expected, the GS–CS
approximation attains the same numerical error as the GS approximation using only
around 38% of the Fourier samples. These observations are given in Table 1.

Whilst GS and GS–CS give very similar numerical errors, it is important to
notice that the reconstructions are typically very different. In particular, in GS one
reconstructs approximately the first M Haar wavelet coefficients α1, . . . , αM , where
M < N . On the other hand, in GS–CS one computes k such coefficients, where typ-
ically (although not always) k > N . This difference can be explained by examining
Eqs. (3.3) and (4.5). In GS, which corresponds to (3.3), one requires M < N to ensure
invertibility of the operator A. On the other hand, unless k is taken sufficiently large,
(4.5) need not have a solution, since the right-hand side P�ζ( f ) may not lie in the
range of the (finite-dimensional) section P�U Pk : Ck → C

|�|. In particular, this
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Table 2 The error ‖g− gN ,m,k‖L∞ for different values of N ,m and k [the notation EN ,m,k = ∞means
that (4.5) does not have a solution]

N EN ,m,k = ‖g − gN ,m,k‖L∞ (avg. 20 trials)

601 EN ,230,200 = ∞ EN ,230,350 = ∞ EN ,230,550 = 4.759× 10−5 EN ,230,850 = 4.727× 10−5

1201 EN ,460,400 = ∞ EN ,460,500 = ∞ EN ,460,1000 = 2.384× 10−5 EN ,460,1300 = 2.392× 10−5

Fig. 6 Left to right (i) Original, (ii) zoomed original, (iii) finite-dimensional CS reconstruction using
periodic Daubechies-6 wavelets, (iv) infinite-dimensional CS reconstruction using boundary Daubechies-6
wavelets

may well be the case whenever k < N . Fortunately, as shown in Proposition 6.6, this
cannot happen if k is sufficiently large. The effect of increasing k for the example (7.1)
is illustrated in Table 2. As is evident, once k is sufficiently large, the problem (4.5)
has a solution, and the error drops accordingly.

7.2 Second Example

This example was first introduced in [53] and demonstrates the difference between
finite-dimensional CS techniques and the proposed infinite-dimensional GS-CS tech-
niques in a practical electron microscopy setup. In this setting, the sampling procedure
is completely dictated by the physics behind the microscope and corresponds to radial
line sampling in Fourier space. Note that we use exactly the same sampled data in
both cases, and seek to recover the function f (x, y) = exp(−x− y) cos2(x+ y) from
m = 16120 (6.15%) continuous Fourier samples taken radially from a 512 × 512
grid. We commence with the finite-dimensional approach (see Sect. 2.1) and solve

min
z∈Cn

‖z‖1 subject to P�UdfV
−1
dw z = P�y,

whereUdf andV
−1
dw denote the discrete Fourier anddiscretewavelet transforms, respec-

tively. Next we solve

min
z∈Pk (�2(N))

‖z‖1 subject to P�U Pkz = P�y,

where U is as in (2.7). As Fig. 6 displays, the infinite-dimensional approach shows a
substantial improvement over the finite-dimensional technique. The reason behind the
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superior reconstruction is, as discussed in Sect. 2.1, the use of UdfV
−1
dw implies that

the error is dominated by the truncated Fourier series, whereas in the GS-CS approach
the discretization is faithful to the guiding principle of Sect. 1.2, and hence the error is
dominated by the actual wavelet decay, which is much faster than the Fourier decay.

8 Infinite-Dimensional Optimization

The remainder of this paper is largely devoted to proving the results of Sect. 6, which
will be the specific focus of Sect. 9. Before doing so, however, we first discuss the topic
of infinite-dimensional optimization in a little more detail. As the informed reader will
have noticed, all our results are really questions of infinite-dimensional optimization:
for example, in the case of Proposition 6.6, showing the existence of minimizers to the
finite rank discretizations of an infinite-dimensional optimization problem, and their
convergence to minimizers of that problem. For this reason, we now recap some of
the basics of this field.

8.1 Background

The field of infinite-dimensional convex optimization is certainly not new [28,49].
However, it is much less standard than the more thoroughly investigated topic of
finite-dimensional convex optimization. We now cover some of the basic tools that
will subsequently prove useful.

We consider complex vector spaces. Standard optimization theory is usually con-
sidered over the reals, and this is also the case in [28] (the main reference we consider
herein for the field of infinite-dimensional optimization). To be able to quote [28]
freely, we use the standard trick and consider any complex Banach space X as a real
vector space. In particular, if X̃ is the real Banach space induced by X , then

X̃∗ = {Re(x∗) : x∗ ∈ X∗}.

This follows by the observation that if x∗ ∈ X∗ and u = Re(x∗) then u is a real linear
functional. Also, if u ∈ X̃∗ and x∗ : X → C is defined by x∗(x) = u(x) − iu(ix),
then x∗ ∈ X∗. To avoid unnecessary clutter, we will (with slight abuse of notation)
use X as the notation for X̃ .

Definition 8.1 Let X be a Banach space and let F : X → R. The polar function
F∗ : X∗ → R is defined by

F∗(x∗) = sup
x∈X
{Re(x∗(x))− F(x)},

where R = R ∪ {−∞,∞}.
Definition 8.2 Let X be a Banach space, F : X → R be convex and consider the
following problem

(P) : inf{F(x) : x ∈ X}.
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If Y is a Banach space and � : X ×Y → R∪{∞} is a convex lower semi-continuous
function such that �(x, 0) = F(x) for all x ∈ X , then the dual problem P∗ with
respect to � is defined by

(P∗) : sup{−�∗(0, y∗) : y∗ ∈ Y ∗}.

If � is not specified, we will say that (P∗) is a dual problem for (P).

Let X and Y be Banach spaces and suppose that T ∈ B(X,Y ) and y0 ∈ Y . Consider
the problem

(P1) : inf{‖x‖ : x ∈ X, T x = y0}.
Note that (P1) can be written as the equivalent convex optimization problem:

(P̃1) : inf{F(x)+ G(T x), x ∈ X}, (8.1)

where F(x) = ‖x‖ and G : Y → R ∪ {∞} is defined by G(z) = δ{0}(z − y0). Here
the function δC : Y → R ∪ {∞}, where C ⊂ Y is convex, is defined by δC (z) = 0
if z ∈ C and δC (z) = ∞ if z /∈ C. Moreover, by letting � : X × Y → R ∪ {∞} be
defined by

�(x, y) = F(x)+ G(T x + y), (8.2)

and observing that

�∗(x∗, y∗) = F∗(x∗ − T ′y∗)+ G∗(y∗),

where T ′ : Y ∗ → X∗ denotes the dual mapping, we also obtain the following dual
problem with respect to �:

(P∗1 ) : sup{−F∗(−T ′y∗)− G∗(y∗) : y∗ ∈ Y ∗}.

Much like (P1) and (P̃1), the dual problem (P∗1 ) also has an equivalent form. In fact,
since F∗(x∗) = 0 if ‖x∗‖X∗ ≤ 1 and F∗(x∗) = ∞ if ‖x∗‖X∗ > 1, together with the
observation that

G∗(y∗) = sup{Re(y∗(y))− δ{0}(y − y0), y ∈ Y } = Re(y∗(y0)),

we find that
(P∗1 ) : sup{Re(y∗(y0)) : ‖T ′y∗‖X∗ ≤ 1, y∗ ∈ Y ∗}.

Using these ideas, we obtain the following well-known result [28]:

Proposition 8.3 Let X and Y be Banach spaces and suppose that T ∈ B(X,Y ) and
y0 ∈ Y. If T is onto, then

inf{‖x‖ : x ∈ X, T x = y0} = sup{Re(y∗(y0)) : ‖T ′y∗‖X∗ ≤ 1, y∗ ∈ Y ∗}.
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8.2 Stability Analysis for Infinite-Dimensional Convex Optimization

We now consider the issue of stability of the optimization problem

min
η∈l1(N)

‖η‖l1 subject to P�Uη = P�U (x0 + h), (8.3)

and its finite-dimensional approximations

min
η∈l1(N)

‖η‖l1 subject to P�U Pkη = P�U (x0 + h), (8.4)

where x0, h ∈ l1(N) and h is small in norm. Note that this is the first step toward a
proof of Theorems 6.3 an 6.4 concerning the recovery of compressible signals which
are described by the semi/fully infinite-dimensional models Sect. 3. However, at this
moment we do not consider either sparsity or randomness. This comes in Sect. 9,
in which the results proved in this and the previous section are applied to the sparse
recovery problems (6.1) and (6.4) to yield proofs of Theorems 6.1–6.4.

Stability turns out to be a rather subtle issue. We now illustrate why.

Definition 8.4 Let �,� be finite subsets of N, U ∈ B(l2(N)) and let f : R+ → R+
be a continuous function such that limt→0 f (t) = 0. Suppose that ξ ∈ H, supp(ξ) =
�, is the unique minimizer of

inf{‖η‖l1 : P�Uη = P�Uξ}. (8.5)

If, for any ε > 0 and ζ ∈ H such that ‖ξ − ζ‖l1 ≤ ε, we have that ‖x − ξ‖l1 ≤ f (ε),
where x is a minimizer of inf{‖η‖l1 : P�Uη = P�Uζ }, then we say that {U,�,�}
is locally f -stable at ξ . If f (t) = Ct for some constant C > 0, then {U,�,�} is said
to be locally linearly stable at ξ . We say that {U,�,�} is globally f -stable (linearly
stable) if the above statements hold for all ξ ∈ l2(N), supp(ξ) = �, such that ξ is the
unique minimizer of (8.5).

Proposition 8.5 Let U ∈ B(l2(N)) be unitary and real, and let �,� be finite subsets
ofN. Suppose that {U,�,�} is globally f -stable. Suppose also that there exists a real
x ∈ l2(N), supp(x) = �, such that x is the unique minimizer of inf{‖η‖l1 : P�Uη =
P�Ux}. Then, if (P�U P�)∗P�U P�|P�l2(N) is invertible, and y ∈ H, supp(y) = �,
is arbitrary, then y is the unique minimizer of inf{‖η‖l1 : P�Uη = P�Uy}.
Proposition 8.6 Let U ∈ B(l2(N)) be unitary and real, and let �,� be finite subsets
of N. Suppose that for any real ξ ∈ l2(N), supp(ξ) = �, it holds that ξ is the unique
minimizer of inf{‖η‖l1 : P�Uη = P�Uξ}, and also that (P�U P�)∗P�U P�|P�l2(N)

is invertible. Then, {U,�,�} is globally linearly stable when the vector space l2(N)

is considered over the reals.

These results establish the relationship between global stability and the existence of
uniqueminimizers (proofs are given in theAppendix). In particular, existenceof unique
minimizers for all y with supp(y) = � is (almost) equivalent to global stability. Thus,
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global stability is a rather strict condition and may be difficult to achieve. However,
we will be concerned with a fixed signal to recover and hence global stability may not
be necessary. Conditions in order to establish local stability are the topic in the next
section.

8.3 The Key Result

The key result of this section, which will later lead to the proofs of Theorems 6.1–6.4,
is the following (see, e.g., [34, Thm. 4.33] for a related finite-dimensional version):

Proposition 8.7 Let U ∈ B(H) with ‖U‖ ≤ 1, and suppose that � and � are finite
subsets of N. Let x0, h ∈ H be such that supp(x0) = �, supp(h) ∩ � = ∅ and
‖h‖l1 <∞, and suppose that � ⊂ {1, . . . , M} for some M ∈ N. Let ξ, ξM ∈ H such
that

ξ ∈ argmin
η∈l1(N)

{‖η‖l1 : P�Uη = P�U (x0 + h)
}
,

ξM ∈ argmin
η∈l1(N)

{‖η‖l1 : P�U PMη = P�U (x0 + PMh)
}
. (8.6)

If there exists ρ ∈ ran(U∗P�) and q > 0 with the following properties:

(i) ‖(q−1P�U∗P�U P�)−1‖ ≤ 2,
(ii) ‖P�ρ − sgn(x0)‖ ≤ q/8,
(iii) ‖P⊥� ρ‖l∞ ≤ 1/2,

then

‖ξ − x0‖ ≤
(
16

q
+ 7

)

‖h‖l1 . (8.7)

Also, if (i) and (ii) hold and (iii) is replaced with ‖PM P⊥� ρ‖l∞ ≤ 1/2 then

‖ξM − x0‖ ≤
(
16

q
+ 7

)

‖PMh‖l1 . (8.8)

Proof Note that (8.6) and (i) yield

P�U (x0 − P�ξ) = P�U (P⊥� ξ − h)

⇒ P�U
∗P�U (x0 − P�ξ) = P�U

∗P�U (P⊥� ξ − h)

⇒ x0 − P�ξ = (P�U
∗P�U P�)−1P�U

∗P�U (P⊥� ξ − h). (8.9)

(note that (i) implies that P�U∗P�U P� is invertible). Hence, from (i) and (8.9), and
by using the fact that ‖U‖ ≤ 1, we obtain

‖x0 − P�ξ‖ ≤ 2/q‖P⊥� ξ − h‖. (8.10)
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Thus,

‖x0 − ξ‖ ≤ 2

q
‖P⊥� ξ − h‖ + ‖P⊥� ξ‖ ≤

(
2

q
+ 1

)

‖P⊥� ξ‖l1 +
2

q
‖h‖l1 . (8.11)

The rest of the proof is therefore devoted to showing that ‖P⊥� ξ‖l1 is bounded by a
constant times ‖h‖l1 .

The fact that ρ ∈ ran(U∗P�) and P�U (ξ − (x0 + h)) = 0 implies that 〈ξ, ρ〉 =
〈x0 + h, ρ〉. Thus, it follows, by appealing to (iii), that

Re
(〈x0, ρ〉

)+ Re
(〈h, ρ〉) = Re

(〈ξ, ρ〉) ≤ Re
(〈ξ, P�ρ〉)+ 1

2

∑

j∈�c

|ξ( j)|. (8.12)

Thus, since supp(h) ∩� = ∅, we have

Re 〈x0 − ξ, P�ρ〉 = Re 〈x0, ρ〉 − Re 〈ξ, P�ρ〉 ≤ −Re 〈h, ρ〉 + 1

2
‖P⊥� ξ‖l1

= −Re 〈h, P⊥� ρ〉 + 1

2
‖P⊥� ξ‖l1 ≤

1

2

(
‖h‖l1 + ‖P⊥� ξ‖l1

)
.

We will return to this equation, but for the meantime we will continue to investigate
the quantity Re(〈x0 − ξ, P�ρ〉). Observe that

Re 〈x0 − ξ, P�ρ〉 = Re 〈x0 − ξ, P�ρ − sgn(x0)〉 + ‖x0‖l1 − Re 〈ξ, sgn(x0)〉
≥ Re 〈x0 − ξ, P�ρ − sgn(x0)〉 + ‖x0‖l1 − ‖P�ξ‖l1
= Re 〈x0 − P�ξ, P�ρ − sgn(x0)〉 + ‖x0‖l1 − ‖ξ‖l1 + ‖P⊥� ξ‖l1 .

Since ‖x0 + h‖l1 ≥ ‖ξ‖l1 , we obtain

Re 〈x0 − ξ, P�ρ〉 ≥ Re 〈x0 − ξ, P�ρ − sgn(x0)〉 − ‖h‖l1 + ‖P⊥� ξ‖l1 . (8.13)

Moreover, using (ii) and (8.10), we get |〈x0− P�ξ, P�ρ− sgn(x0)〉| ≤ 1
4‖P⊥� ξ −h‖.

Hence, substituting this into (8.13) now gives

Re 〈x0 − ξ, P�ρ〉 ≥ −1

4
‖P⊥� ξ − h‖ − ‖h‖l1 + ‖P⊥� ξ‖l1

≥ −5

4
‖h‖l1 +

3

4
‖P⊥� ξ‖l1 . (8.14)

Combining (8.13) and (8.14) and rearranging now gives ‖P⊥� ξ‖l1 ≤ 7‖h‖l1 . Substi-
tuting this into (8.11) now yields (8.7). The proof of (8.8) is almost identical, and we
omit the details. ��
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8.4 Proof of Proposition 6.6

To end this section, we now present a proof of Proposition 6.6. We first require the
following:

Lemma 8.8 Let U ∈ B(H) and P be a finite rank projection. Then, for every χ ∈
Ran(PU ), there exists ξ ∈ H such that

ξ ∈ argmin
η∈l1(N)

{‖η‖l1 : PUη = χ
}
.

Proof Recall that (c0)∗ = l1. By weak∗ compactness there is a sequence {ξk} ⊂ l1

and a ξ ∈ l1 such that PUξk = χ , ‖ξk‖l1 ↘ inf{‖η‖l1 : PUη = χ} and 〈ξk, e j 〉 →
〈ξ, e j 〉 as k →∞ for all j ∈ N.Hence ‖ξ‖l1 ≤ limk→∞ ‖ξk‖l1 . Since ξk → ξ weakly
as elements inH, it follows by the fact that PU is compact (since P is of finite rank)
that PUξk → PUξ . Thus PUξ = χ as required. ��
Proof of Proposition 6.6 To see the existence of ξk for large k, it suffices to observe
that Ran(P�U ) and Ran(P�U Pk) coincide for all sufficiently large k, since P� has
finite rank.

For the second part of the proposition, it is easy to see that it suffices to show that
every subsequence of {ξk}k∈N has a convergent subsequence in the l1 norm with limit
ξ satisfying

‖ξ‖l1 = inf
η∈H

{‖η‖l1 : P�Uη = P�Ux0
}
. (8.15)

Therefore. let {ξk}k∈N be a subsequence of the original sequence (we use the same
notation for simplicity). Since ‖ξk‖l1 ≥ ‖ξk+1‖l1 for all large k it follows that {ξk} is
bounded. So by weak∗ compactness of the l1 ball we have that, by possibly passing
to a subsequence, there is a ξ ∈ H such that ξk → ξ weakly (as elements in H) as
k → ∞. By compactness of P�U , we find that P�Uξk → P�Uξ as k → ∞, and,
since P�Uξk = P�Ux0, it follows that P�Uξ = P�Ux0.

To see that ξ satisfies (8.15), we argue as follows. We claim that for any λ > 0 we
have

‖ξk‖l1 ≤ inf
η∈H

{‖η‖l1 : P�Uη = P�Ux0} + λ, (8.16)

for all sufficiently large k. Let r = dim(Ran(P�U )) <∞, and let ê1, . . . , êr be coor-
dinate vectors such that span{P�Uê j }rj=1 = Ran(P�U ). Then every η ∈ Ran(P�U )

with ‖η‖ = 1 can be written as η = c1P�Uê1 + . . . + cr P�Uêr , where the c j s
are bounded by, say, 1 ≤ c < ∞. Now let ξ̃ be a minimizer of (8.15) (the exis-
tence of such a minimizer is guaranteed by Lemma 8.8), and choose k so large that
{ê j }rj=1 ⊂ Ran(Pk), ‖P�U P⊥k ξ̃‖ ≤ λ/(2cr) and ‖P⊥k ξ̃‖ ≤ λ/2. Let c1, . . . , cr
be chosen such that P�U P⊥k ξ̃ /‖P�U P⊥k ξ̃‖ = c1P�Uê1 + . . . + cr P�Uêr , and set
η̃ = Pk ξ̃ + (c1ê1+ . . . cr êr )‖P�U P⊥k ξ̃‖. It follows that P�U η̃ = P�U ξ̃ = P�Ux0,
‖η̃‖l1 ≤ ‖ξ̃‖l1 + λ and η̃ ∈ Ran(Pk). Hence ‖ξk‖l1 ≤ ‖ξ̃‖l1 + λ and we have shown
(8.16).Nowchoosem ∈ N such that‖P⊥m ξ‖l1 ≤ λ. Then‖ξ‖l1 ≤ ‖Pmξ‖l1+‖P⊥m ξ‖l1 .
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But Pmξk → Pmξ and ξk satisfies (8.16), thus ‖ξ‖l1 ≤ infη∈H{‖η‖l1 : P�Uη =
P�Ux0} + 2λ for any λ > 0. Therefore ξ satisfies (8.15), as required.

For the final part of the proof, we are required to show that ‖ξk − ξ‖l1 → 0 as
k →∞. By possibly passing to another subsequence, it follows by (8.16) that

‖ξk‖l1 ≤ inf
η∈H

{‖η‖l1 : P�Uη = P�Ux0} + 1/k. (8.17)

Note also that, for fixed m ∈ N, we have Pm(ξk − ξ) → 0 as k →∞. But by (8.17)
we also have ‖Pmξk‖l1 + ‖P⊥m ξk‖l1 ≤ ‖Pmξ‖l1 + ‖P⊥m ξ‖l1 + 1/k. So

lim
m→∞ lim sup

k→∞
‖P⊥m ξk‖l1 = 0.

It thus follows that ξk → ξ (in l1) as k →∞, and the proof is complete. ��

9 Proofs of the Main Results

9.1 Key Ideas

Before we present proofs of Theorems 6.1–6.4, we would like to sketch the key ideas.
Our approach is to use Proposition 8.7 to show the existence of a ρ ∈ ran(U∗P�)with
the following properties

(i) ‖θ−1P�U
∗P�U P� − P�‖ ≤ 1/2, (i i) ‖P�ρ − sgn(x0)‖ ≤ θ/8

(i i i) ‖PM P⊥� ρ‖l∞ ≤ 1/2,

for some θ > 0 (recall the setup in Theorems 6.1 and 6.3).
Throughout the paper, we will be concerned with randomly choosing a set � ⊂

{1, . . . , N }. In our models, we will choose � uniformly at random; however, in some
of the proofs we will also use another approach that renders the analysis possible,
whilst not affecting the model unduly. Therein, we take a sequence {δ1, . . . δN } of
independent identically distributed Bernoulli random variables taking values 0 and 1
with P(δ j = 1) = q for all j . We then set � = { j : δ j = 1}. We will refer to this type
of random selection of � as the Bernoulli model, and we will denote such a procedure
by {N , . . . , 1} ⊃ � ∼ Ber(q).

Note that transitioning from the uniform sampling model to the Bernoulli sampling
model in this way has become standard approach in the literature. In particular, one
can show that the Bernoulli model implies (up to a constant) the uniform sampling
model in each of the conditions in Proposition 8.7. We refer to [19,20,34] for details.

From now on, we thus consider (without loss of generality) the Bernoulli sampling
scheme.We assume that {N , . . . , 1} ⊃ � ∼ Ber(θ), for some finite N ∈ N.However,
we will construct � in an equivalent, but slightly different way. Namely, we let

� = �1 ∪�2 ∪ · · · ∪�μ, � j ∼ Ber(q j ),
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where the specific value of μ will be determined later. Note that as long as the q j s are
chosen according to θ this is equivalent to letting � ∼ Ber(θ). Indeed, we have that
� ∼ Ber(θ) is equivalent to �c ∼ Ber(1− θ). So, for k ∈ {1, . . . , N }, we have

P(k ∈ �c) = (1− θ),

where �c = {1, . . . , N }\�. But

P(k ∈ (�1 ∪�2 ∪ · · · ∪�μ)c) = (1− q1)(1− q2) · · · (1− qμ).

Thus, if we let
(1− q1)(1− q2) · · · (1− qμ) = (1− θ) (9.1)

it is easy to see (by independence) that the two models are equivalent. Note that there
might be overlaps between the � j ’s. This automatically gives us the following:

q1 + q2 + . . .+ qμ ≥ θ.

This observation will be used several times in the arguments that follow.

9.2 The Golfing Scheme

We can now present the golfing scheme. Let U ∈ B(H) be an isometry and let
{N , . . . , 1} ⊃ � j ∼ Ber(q j ) for j = 1, . . . , μ and some μ ∈ N where the q j s satisfy
(9.1) for some 0 < θ ≤ 1. Suppose also that x0 ∈ H. Define the operator

E� j = U∗P� j U, j = 1, . . . , μ.

The construction of ρ is based on the following idea. Let

ρ = Yμ, Yi =
i∑

j=1
q−1j E� j Z j−1

Zi = sgn(x0)− P�Yi , Z0 = sgn(x0), (9.2)

where the specific value of μ will be determined later. The construction suggested in
(9.2) will be referred to as the golfing scheme and is a variant of the original scheme
introduced in [36] by D. Gross. The actual construction will differ slightly from the
one suggested here; however, this should give the reader an idea about the approach.

Before we can prove the main results we need to establish some ancillary results
that will be crucial in the construction of ρ.

9.3 The Proofs

We first require the following three results. Proofs are found in the Appendix. For
related finite-dimensional versions, see [18] or [34, Chpt. 12].
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Proposition 9.1 Let U ∈ B(H) be an isometry, {N , . . . , 1} ⊃ � ∼ Ber(q) for some
0 < q ≤ 1, and � ⊂ N with |�| < ∞. Also, let M ∈ N be sufficiently large so that
� ⊂ {1, . . . , M} and define E� = U∗P�U. Then, for η ∈ H and t, γ > 0

P

(
‖q−1PM P⊥� E�P�η‖l∞ > (t + ‖PM P⊥�U∗PNU P�‖mr)‖η‖

)
≤ γ (9.3)

provided

q ≥
(
4

t2
+ 2

√
2

3t

√|�|
)

· log
(
4

γ
|�c ∩ {1, . . . , M}|

)

· υ2(U ).

Also,

P

(
‖q−1P⊥� E�P�η‖l∞ > (t + ‖P⊥�U∗PNU P�‖mr)‖η‖

)
≤ γ (9.4)

whenever

q ≥
(
4

t2
+ 2

√
2

3t

√|�|
)

· log (4ω/γ ) · υ2(U ),

where ω = ω̃M,U (|�|, tq, N ) and ω̃M,U is as in (5.2). In addition, if q = 1,the
left-hand sides of (9.3) and (9.4) are equal to zero.

Proposition 9.2 Let U ∈ B(H) be an isometry, � ⊂ N with |�| < ∞ and
{N , . . . , 1} ⊃ � ∼ Ber(q) for some 0 < q ≤ 1. Then, for fixed η ∈ H and
0 < t, γ ≤ 1, we have

P

(∥
∥
∥
(
q−1P�U

∗P�U P� − P�

)
η

∥
∥
∥ >

(
t + ‖P�U

∗PNU P� − P�‖
) ‖η‖

)
≤ γ,

provided

q(1− q)−1 ≥ 4t−2 · υ2(U ) · |�|,

and

log

(

1+ t

4

)

≥ 2K

t
max{q−1 − 1, 1} · υ2(U ) · |�| · log

(
3

γ

)

,

where K is the constant in Talagrand’s Theorem (Theorem 11.2).

Theorem 9.3 There exists a constant C > 0 with the following property. Suppose
that U ∈ B(H) is an isometry,� is a finite subset ofN and {N , . . . , 1} ⊃ � ∼ Ber(θ)

for some 0 < θ ≤ 1. Then, for ε > 0 and γ > 1 we have

P

(∥
∥
∥θ−1P�U

∗P�U P� − P�

∥
∥
∥ ≥ 1

γ
+ ‖P�U

∗PNU P� − P�‖
)

≤ ε, (9.5)
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provided

θ ≥ C · γ · υ2(U ) · |�| · log(|�|),
θ ≥ C · γ · υ2(U ) · |�| · log(Cε−1) ·

(

log

(

1+ 1

4γ

))−1
. (9.6)

If θ = 1 then the left-hand side of (9.5) is equal to zero.

With these results in hand, we can now give the proofs of the main results:

Proof of Theorems 6.1 and 6.3 The set � ⊂ {1, . . . , N } is chosen uniformly at ran-
dom with |�| = m. By Proposition 8.7, it suffices to show that there exists a
ρ ∈ ran(U∗P�) such that

(i) ‖θ−1P�U
∗P�U P� − P�‖ ≤ 1/2, (i i) ‖P�ρ − sgn(x0)‖ ≤ θ/8,

(i i i) ‖PM P⊥� ρ‖l∞ ≤ 1/2, (9.7)

with high probability. As discussed, we may (without loss of generality) replace this
way of choosing � with the model that {N , . . . , 1} ⊃ � ∼ Ber(θ) for θ = m/N (θ
will have this value throughout the proof). Doing so may only change the constant C
in (6.2). Note that, as discussed in Sect. 9.1, the model {N , . . . , 1} ⊃ � ∼ Ber(θ) is
equivalent to choosing � as

� = �1 ∪�2 ∪ · · · ∪�μ, � j ∼ Ber(q j ),

for some μ ∈ N with

(1− q1)(1− q2) · · · (1− qμ) = (1− θ). (9.8)

The latter model is the one we will use throughout the proof and the specific value of
μ will be chosen later. The theorems will follow if we can show that the conditions
in (9.7) occur with probability exceeding 1− ε, and what follows is a setup to ensure
this eventuality. We will focus on (ii) and (iii) in (9.7) first and deal with (i) at the end
of the proof. The proof proceeds in a number of steps.

Step I (The construction of ρ): Let ν be a positive number such that ν ≤ μ and let
{α1, . . . , αμ} and {β1, . . . , βμ} be sequences of positive numbers. The values of μ,

ν, {αi }μi=1 and {βi }μi=1 will be carefully chosen later in the proof. Consider now the
following construction of ρ : let

Z0 = sgn(x0),

and define recursively the sequences {Zi }μi=0 ⊂ H, {Yi }μi=1 ⊂ H and {�i }μi=1 ⊂ N as
follows. First, let

Zi = sgn(x0)− P�Yi , Yi =
i∑

j=1
q−1j E� j Z j−1, i = 1, 2,
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where E� j = U∗P� j U, and {q1, . . . , qμ} stem from (9.8). The precise values of the
q j ’s will be chosen later. Let also �1 = {1} and �2 = {1, 2}. Then, for i ≥ 3, define
recursively the following:

�i =

⎧
⎪⎪⎨

⎪⎪⎩

�i−1 ∪ {i} if
∥
∥
∥
(
P� − q−1i P�E�i P�

)
Zi−1

∥
∥
∥ ≤ αi ‖Zi−1‖,

and
∥
∥
∥q−1i PM P⊥� E�i P�Zi−1

∥
∥
∥
l∞
≤ βi‖Zi−1‖,

�i−1 otherwise,

Yi =
{∑

j∈�i
q−1j E� j Z j−1 if i ∈ �i ,

Yi−1 otherwise,

Zi =
{
sgn(x0)− P�Yi if i ∈ �i ,

Zi−1 otherwise.
(9.9)

Now, let {Ai }2i=1 and {Bi }4i=1 denote the following events

Ai :
∥
∥
∥
(
P� − q−1i P�E�i P�

)
Zi−1

∥
∥
∥ ≤ αi ‖Zi−1‖ , i = 1, 2,

Bi :
∥
∥
∥q−1i PM P⊥� E�i P�Zi−1

∥
∥
∥
l∞
≤ βi‖Zi−1‖, i = 1, 2,

B3 : |�μ| ≥ ν,

B4 : (∩2i=1Ai ) ∩ (∩3i=1Bi ), (9.10)

where |�μ| denotes the length of �μ. Also, let τ( j) denote the j th element in �μ

(e.g., τ(1) = 1, τ (2) = 2 etc, we also let τ(0) = 0). Finally, define ρ by

ρ =
{
Yτ(ν) if B4occurs,

sgn(x0) otherwise.

Note that ρ ∈ ran(U∗P�) if B4 occurs. Now make the following observations. Since
Z0 = sgn(x0) yields, for i ≤ |�μ|, we have

Zτ(i)

=sgn(x0)− P�

(
q−1τ(1)E�τ(1)sgn(x0)+ q−1τ(2)E�τ(2) Z1 + . . .+ q−1τ(i)E�τ(i) Zτ(i−1)

)

= Zτ(i−1) − q−1τ(i)P�E�τ(i) P�Zτ(i−1) = (P� − q−1τ(i)P�E�τ(i) P�)Zτ(i−1). (9.11)

Hence, if the event B4 occurs, then

‖P�ρ − sgn(x0)‖ = ‖Zτ(ν)‖ ≤
√|�|

ν∏

i=1
ατ(i), (9.12)

‖PM P⊥� ρ‖l∞ ≤
ν∑

i=1
‖q−1τ(i)PM P⊥� E�τ(i) Zτ(i−1)‖l∞
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≤
ν∑

i=1
βτ(i)‖Zτ(i−1)‖ ≤

√|�|
ν∑

i=1
βτ(i)

i−1∏

j=1
ατ( j), (9.13)

and ρ ∈ ran(U∗P�) (note that in the above equation we interpret α0 = 1). We will
now show that with a certain choice of parameters ν, {β j }μj=1 and {α j }μj=1 then (ii)
and (iii) in (9.7) are satisfied when the event B4 occurs. We delay specifying a the
value for μ until Step IV. Let L ≥ 2 (we will give a value for L in a moment) and

α1 = α2 = 1

2 log1/22 (L)
, αi = 1/2, 3 ≤ i ≤ μ,

β1 = β2 = 1

4
√|�| , βi = log2(4θ

−1√|�|)
4
√|�| , 3 ≤ i ≤ μ.

It follows that

√|�|
ν∏

i=1
ατ(i) =

√|�|
2ν log2(L)

.

Hence, if
ν =

⌈
log2

(
8θ−1

√|�|
)⌉

, (9.14)

then it follows by (9.12) that

‖P�ρ − sgn(x0)‖ ≤ θ/8

(recall that L ≥ 2) yielding (ii) in (9.7). Also, after inserting the values of ν, {β j }μj=1
and {α j }μj=1 into (9.13) we get:

√|�|
ν∑

i=1
βτ(i)

i−1∏

j=1
ατ( j) = 1

4

(

1+ 1

2

1

log1/22 (L)
+ 1

4

log2(4θ
−1√|�|)

log2(L)

+1

8

log2(4θ
−1√|�|)

log2(L)
+ . . .+ 1

2ν−1
log2(4θ

−1√|�|)
log2(L)

)

≤ 1

2
,

if we let L = 4θ−1
√|�|. Thus, by (9.13) we have

‖PM P⊥� ρ‖l∞ ≤ 1/2,

yielding (iii) in (9.7). In particular, we have showed that if ν, {β j }μj=1 and {α j }μj=1 are
chosen as above, then (ii) and (iii) are satisfied when B4 occurs.

Thus, we have now obtained a means to show that (ii) and (iii) in (9.7) hold with
a certain probability. To do this, we will make a careful choice of μ and then provide
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bounds on P(Bc
4). The way this latter step is carried out is by giving estimates for

P(Ac
1 ∪ Ac

2), P(Bc
1 ∪ Bc

2) and P(Bc
3). This is the content of Steps II–IV.

Step II: We claim that if γ > 0 then P(Ac
1 ∪ Ac

2) ≤ 2γ, provided N , q1, q2 are
chosen such that

‖P�U
∗PNU P� − P�‖ ≤ 1

4 log1/22 (4θ−1
√|�|)

, (9.15)

and

q1 = q2 ≥ C · υ2(U ) · |�| ·
(
log

(
γ−1

)
+ 1

)
· log

(
θ−1

√|�|
)
, (9.16)

for some universal constant C > 0. Also, if q1 = q2 = 1, then P(Ac
1 ∪ Ac

2) = 0.
To deduce the claim, we first observe that by Proposition 5.2 these requirements

are well defined. Now note that Proposition 9.2 gives, for i = 1, 2 and 0 < t, γ ≤ 1
that

P

(∥
∥
∥
(
q−1i P�U

∗P�i U P� − P�

)
Zi−1

∥
∥
∥ >

(
t + ‖P�U

∗PNU P� − P�‖
) ‖Zi−1‖

)

≤ γ, (9.17)

if
qi (1− qi )

−1 ≥ 4t−2 · υ2(U ) · |�|, (9.18)

and

log

(

1+ t

4

)

≥ 2K

t
max{q−1 − 1, 1} · υ2(U ) · |�| · log

(
3

γ

)

, (9.19)

where K is the constant in Talagrand’s Theorem (Theorem 11.2). Thus, by (9.17),
(9.18) and (9.19) (and a small computation using Taylor’s Theorem), we can choose
t = αi/2 and deduce the first assertion in Step II. As for the second assertion, clearly,
if q1 = q2 = 1 then the right-hand side of (9.17) is zero as required.

Step III: We claim that P(Bc
1 ∪ Bc

2) ≤ 2γ for γ > 0 if N , q1 and q2 are chosen
such that

‖PM P⊥�U∗PNU P�‖mr ≤ 1

8
√|�| , (9.20)

and
q1 = q2 ≥ C · υ2(U ) · |�| ·

(
log

(
γ−1M

)
+ 1

)
, (9.21)

for some universal constant C > 0. Also, if q1 = q2 = 1, then P(Bc
1 ∪ Bc

2) = 0.
To prove the claim, recall that Proposition 9.1 gives, for i = 1, 2 and t, γ > 0, that

P

(∥
∥
∥q−1i PM P⊥� E�i P�Zi−1

∥
∥
∥
l∞

>
(
t + ‖PM P⊥�U∗PNU P�‖mr

)
‖Zi−1‖

)
≤ γ,
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if

qi ≥
(
4

t2
+ 2

√
2

3t

√|�|
)

· log
(
4

γ
|�c ∩ {1, . . . , M}|

)

· υ2(U ).

Choosing t = βi/2 automatically yields the first assertion in Step III. Also, the fact
that P(Bc

1 ∪ Bc
2) = 0,when q1 = q2 = 1, follows automatically from Proposition 9.1.

Step IV: We claim that P(Bc
3) ≤ γ, for γ > 0 if μ (recall μ and ν from Step I), N

and {q3, . . . , qμ} are chosen such that

μ = 8�3ν + log(γ−1)�, (9.22)

‖P�U
∗PNU P� − P�‖ ≤ 1/4, (9.23)

and

‖PM P⊥�U∗PNU P�‖mr ≤ log2(4θ
−1√|�|)

8
√|�| , (9.24)

and also q3 = q4 = . . . = qμ = q, where

q ≥ C · υ2(U ) · |�| ·
(

log (M)

log2(4θ−1
√|�|) + 1

)

, (9.25)

for some universal constantC > 0.Also, if q3 = q4 = . . . = qμ = 1, thenP(Bc
3) = 0.

To prove the claim, we start by determining the condition (9.22) on μ. Define the
random variables X1, . . . Xμ−2 by

X j =
{
0 Z j+2 �= Z j+1,
1 Z j+2 = Z j+1.

We immediately observe that

P(Bc
3) = P(|�μ| < ν) = P(X1 + . . .+ Xμ−2 > μ− ν).

Unfortunately, the randomvariables X1, . . . Xμ−2 are not independent, which prevents
the use of standard tools such as Chernoff bounds or Hoeffding’s inequality. Note that
the use of such tools has become popular when dealing with the golfing scheme;
however, the dependency issue prevents this in the general case. See also [37] for a
discussion of this phenomenon. To deal with the dependency issue, we proceed as
follows:

P(X1 + . . .+ Xμ−2 > μ− ν)

≤
(μ−2
μ−ν)∑

l=1
P(Xπ(l)1 = 1, Xπ(l)2 = 1, . . . , Xπ(l)μ−ν

= 1)
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=
(μ−2
μ−ν)∑

l=1
P(Xπ(l)μ−ν

= 1 | Xπ(l)1 = 1, . . . , Xπ(l)μ−ν−1 = 1)

×P(Xπ(l)1 = 1, . . . , Xπ(l)μ−ν−1 = 1)

=
(μ−2
μ−ν)∑

l=1
P(Xπ(l)μ−ν

= 1 | Xπ(l)1 = 1, . . . , Xπ(l)μ−ν−1 = 1)

×P(Xπ(l)μ−ν−1 = 1 | Xπ(l)1=1, . . . , Xπ(l)μ−ν−2=1) · · ·P(Xπ(l)1=1) (9.26)

where π : {1, . . . , (μ−2
μ−ν

)} → N
μ−ν ranges over all

(
μ−2
μ−ν

)
ordered subsets of

{1, . . . , μ − 2} of size μ − ν. Let P > 0 (a specific value for P will be assigned
later) be such that

P ≥ P(Xπ(l)1 = 1), P ≥ P(Xπ(l)μ−ν− j = 1 | Xπ(l)1 = 1, . . . , Xπ(l)μ−ν−( j+1) = 1),

l = 1, . . . ,

(
μ− 2

μ− ν

)

, j = 0, . . . , μ− ν − 2, (9.27)

then, by (9.26),

P(X1 + . . .+ Xμ−2 > μ− ν) ≤
(

μ− 2

μ− ν

)

Pμ−ν . (9.28)

We now choose P = 1/4 and claim that

P(X1 + . . .+ Xμ−2 > μ− ν) ≤ exp

(

−2(μ− 2)t2 + (μ− ν) log

(
(μ− 2)e

μ− ν

))

,

(9.29)
where t = (μ − ν)/(μ − 2) − P ≥ 0. To see this, note that it is a straightforward
calculus exercise to show that

μ− ν

μ− 2
log(P) ≤ −2

(
μ− ν

μ− 2
− P

)2

,
μ− ν

μ− 2
∈ [P, 1].

By using the fact that
(
μ−2
μ−ν

) ≤
(

(μ−2)e
μ−ν

)(μ−ν)

, we immediately get

(
μ− 2

μ− ν

)

Pμ−ν ≤ exp

(

−2(μ− 2)t2 + (μ− ν) log

(
(μ− 2)e

μ− ν

))

,

which, after recalling (9.28), yields (9.29). So, by (9.29) we have that

P

⎛

⎝
μ−2∑

i=1
Xi ≥ μ− ν

⎞

⎠ ≤ γ (9.30)
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whenever

e−2(μ−2)t
2+(μ−ν)(log( μ−2

μ−ν
)+1) ≤ γ.

Hence, after observing that log((μ− 2)/(μ− ν))+ 1 ≤ (μ− 2)/(μ− ν), we deduce
that (9.30) is satisfied whenever

μ ≥ x, (x − 2)

(
x − ν

x − 2
− P

)2

− log
(
γ−1/2

)
− x − 2

2
= 0 (9.31)

where x is the largest root satisfying (9.31). In particular, we have shown that P(Bc
3) ≤

γ when (9.31) is satisfied. The choice of P yields x ≤ 8�3ν + log(γ−1/2)�. Hence
(9.22) yields (9.31).

For the rest of the proof of Step IV, we need to determine the conditions on N and
{q3, . . . , qμ} such that (9.27) is satisfied with P = 1/4. Note that Xk = 1 if and only
if one of the following events occur:

D1 :
∥
∥
∥
(
P� − q−1j P�E� j P�

)
Z j−1

∥
∥
∥ > α j

∥
∥Z j−1

∥
∥, j = k + 2,

D2 :
∥
∥
∥q−1j PM P⊥� E� j P�Z j−1

∥
∥
∥
l∞

> β j‖Z j−1‖, j = k + 2. (9.32)

Observe that we may argue exactly as in the proof of Step II (via Proposition 9.2)
and, regardless of the vector Z j−1, we deduce that P(D1) ≤ 1/8 when N and q j are
chosen such that

‖P�U
∗PNU P� − P�‖ ≤ α j/2,

q j ≥ C · υ2(U ) · |�| · α−2j · (log (24)+ 1), j = k + 2, (9.33)

for some universal constant C > 0. Observe also that we may argue exactly as in
the proof of Step III (via Proposition 9.1) and, regardless of the vector Z j−1, we may
deduce that P(D2) ≤ 1/8 when N and q j are chosen such that

‖PM P⊥�U∗PNU P�‖mr ≤ β j/2,

q j ≥ C · υ2(U ) ·
(

1

β2
j

+ 1

β j

√|�|
)

· (log (32M)+ 1), j = k + 2,(9.34)

for some universal constant C > 0. Thus, for l = 1, . . . ,
(
μ−2
μ−ν

)
and i = 0, . . . , μ −

ν − 2, by letting k = π(l)μ−ν−i , we find that

P(Xπ(l)μ−ν−i = 1 | Xπ(l)1 = 1, . . . , Xπ(l)μ−ν−(i+1) = 1)

≤ P(D1 ∪ D2 | Xπ(l)1 = 1, . . . , Xπ(l)μ−ν−(i+1) = 1) ≤ P,
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and similarly, by letting k = π(l)1 we get that

P(Xπ(l)1 = 1) ≤ P(D1 ∪ D2) ≤ P,

whenever (9.33) and (9.34) are satisfied. In particular, (9.33) and (9.34) imply (9.27).
But (9.33) and (9.34) follow from (9.23), (9.24) and (9.25) (with a possibly different,
however universal, constant C) and hence the first part of the claim is proved. The
fact that if q3 = q4 = . . . = qμ = 1 then P(Bc

3) = 0 follows from Propositions 9.2
and 9.1.

Step V: We claim that

P

(
‖P�ρ − sgn(x0)‖ > θ/8 ∪ ‖PM P⊥� ρ‖l∞ > 1/2

)
≤ 5γ, (9.35)

for γ > 0 when N ∈ N and θ > 0 are chosen according to (5.4), (5.5) and

θ ≥ C · υ2(U ) · |�| ·
(
log

(
γ−1

)
+ 1

)
· log

(
Mθ−1

√|�|
)
, (9.36)

for some universal constant C > 0. Also, if θ = 1 then the left-hand side of (9.35) is
equal to zero.

To prove this, recall the events A1, A2, B1, B2, B3, B4 from Step I.We have already
established in Step I that if the event B4 occurs then ‖P�ρ − sgn(x0)‖ ≤ θ/8 and
‖PM P⊥� ρ‖l∞ ≤ 1/2. It therefore suffices to show that

P
(
Bc
4

) ≤ 5γ. (9.37)

given the conditions (5.4), (5.5) and (9.36). To do this, we begin by making some
observations. First

P
(
Bc
4

) ≤ P(Ac
1 ∪ Ac

2)+ P(Bc
1 ∪ Bc

2)+ P(Bc
3), (9.38)

and second
q1 + q2 + . . .+ qμ ≥ θ. (9.39)

Recall from Step II we have that P(Ac
1 ∪ Ac

2) ≤ 2γ whenever (9.15) and (9.16) are
satisfied. Also, by Step III, P(Bc

1 ∪ Bc
2) ≤ 2γ whenever (9.20) and (9.21) are fulfilled.

Finally, from Step IV we have that P(Bc
3) ≤ γ provided

μ = 8
⌈
log(γ−1)+ 3

⌈
log2

(
8θ−1

√|�|
)⌉⌉

, (9.40)

and (9.23), (9.24) and (9.25) are satisfied. In particular, using (9.38) we find that (9.37)
follows from (9.15), (9.16), (9.20), (9.21), (9.23), (9.24) and (9.25). Thus,wemust then
show that these equations follow from (5.4), (5.5) and (9.36). Now let q1 = q2 = θ/4.
Then, by (9.36), we have that (9.16) follows (with a possibly different constant), and
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similarly (9.21) follows. Let q = q3 = . . . = qμ. By (9.39) and (9.40), we have

16q
⌈
log(γ−1)+ 3

⌈
log2

(
8θ−1

√|�|
)⌉⌉

≥ θ,

and hence (9.25) follows. The only thing left to do is to deal with the requirements on
N . In particular, we need to show that (9.15), (9.20), (9.23) and (9.24) follow when
(5.4) and (5.5) are satisfied. Note that (9.23) and (9.24) are weaker than (9.15) and
(9.20). Thus, we only need to concentrate on (9.15) and (9.20). To see that (5.4) and
(5.5) imply (9.15) and (9.20), observe that

P�U
∗PNU P� − P� = P�(PMU∗PNU PM − PM )P�,

(since � ⊆ {1, . . . , M}) and therefore

‖P�U
∗PNU P� − P�‖ ≤ ‖PMU∗PNU PM − PM‖.

Hence (9.15) follows from (5.4). The fact that (9.20) follows from (5.5) is clear. Also,
the fact that the left-hand side of (9.35) is equal to zero when θ = 1 follows from
Steps II–IV and the observation that when θ = 1 we have q1 = . . . = qμ = 1.

Step VI: We claim that, for γ > 0,

P

(
‖θ−1P�U

∗P�U P� − P�‖ > 1/2
)
≤ γ, (9.41)

when N ∈ N and θ > 0 are chosen such that

‖P�U
∗PNU P� − P�‖ ≤ 1/4, θ ≥ C · υ2(U ) · |�| ·

(
log

(
γ−1|�|

)
+ 1

)
,

for some universal constant C . Also, if θ = 1 then the left hand side of (9.41) is equal
to zero.

To prove this claim note that, by Theorem 9.3, there is a K > 0 such that

P

(∥
∥
∥θ−1(P�U P�)∗P�U P� − P�

∥
∥
∥ ≥ 1

4
+ ‖P�U

∗PNU P� − P�‖
)

≤ γ,

provided

θ ≥ 4K · υ2(U ) · |�| · log(|�|),

and

θ ≥ 4K · υ2(U ) · |�| · log(Cγ−1) ·
(

log

(

1+ 1

16

))−1
.

This yields the asserted claim. The fact that the left-hand side of (9.41) is equal to zero
when θ = 1 is clear.
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Step VII: In this final step, we will patch the different parts of the proof together.
Recall that our initial goal was to show that (9.7) follows with probability exceeding
1 − ε. Note that in Step V we have shown that if γ > 0, then (ii) and (iii) in (9.7)
are satisfied with probability exceeding 1 − 5γ , provided (5.4), (5.4) and (9.36) are
satisfied. We are thus only left to show that (i) follows with a certain probability.
However, we immediately recognize that the conditions in Step VI follow from (5.5)
and (9.36), and hence (i) in (9.7) followswith probability exceeding 1−γ.This implies
that (i), (ii) and (iii) in (9.7) hold with probability exceeding 1− 6γ. By choosing γ

such that 6γ = ε we observe that (9.36) follows (with possibly a differentC) from the
conditions in Theorems 6.1 and 6.3. Hence we have finally proved the first assertions
in these theorems. The second assertions follow from the fact that θ = 1 whenm = N
(and hence also q1 = . . . = qμ = 1), and Steps V and VI. ��
Proof of Theorem 6.4 We will follow the recipe from the of proof of Theorem 6.3
almost word for word, pointing out only where the main differences lie. The first such
difference is the set of conditions provided by Proposition 8.7. In particular, we must
show that there exists a ρ ∈ ran(U∗P�) such that

(i) ‖θ−1P�U
∗P�U P� − P�‖ ≤ 1/2, (i i) ‖P�ρ − sgn(x0)‖ ≤ θ/8

(i i i) ‖P⊥� ρ‖l∞ ≤ 1/2, (9.42)

is true with probability exceeding 1− ε (note that only (iii) is different from the proof
of Theorem 6.3).

Step I: This is almost as in the proof of Theorem 6.3, except that (9.9) is replaced
by

�i =

⎧
⎪⎪⎨

⎪⎪⎩

�i−1 ∪ {i} if
∥
∥
∥
(
P� − q−1i P�E�i P�

)
Zi−1

∥
∥
∥ ≤ αi ‖Zi−1‖,

and
∥
∥
∥q−1i P⊥� E�i P�Zi−1

∥
∥
∥
l∞
≤ βi‖Zi−1‖,

�i−1 otherwise,

and the events B1 and B2 in (9.10) are now

Bj :
∥
∥
∥q−1j P⊥� E� j P�Z j−1

∥
∥
∥
l∞
≤ β j‖Z j−1‖, j = 1, 2.

Also, (9.13) must be changed to

‖P⊥� ρ‖l∞ ≤
ν∑

i=1
‖q−1τ(i)P

⊥
� E�τ(i) Zτ(i−1)‖l∞

≤
ν∑

i=1
βτ(i)‖Zτ(i−1)‖ ≤

√|�|
ν∑

i=1
βτ(i)

i−1∏

j=1
ατ( j).

Step II: Exactly as in the proof of Theorem 6.1.
Step III: We claim that, for γ > 0, then P(Bc

1 ∪ Bc
2) ≤ 2γ, if N , q1 and q2 are

chosen such that

123



Found Comput Math

‖P⊥�U∗PNU P�‖mr ≤ 1

8
√|�| , (9.43)

and
q1 = q2 ≥ C · υ2(U ) · |�| ·

(
log

(
γ−1ω1

)
+ 1

)
, (9.44)

where

ω1 = ω̃M,U (|�|, q1(8
√|�|)−1, N ),

(recall ω̃M,U from (5.2)) for some universal constant C > 0. Also, if q1 = q2 = 1,
then P(Bc

1 ∪ Bc
2) = 0. The claim follows exactly as in the proof of Step III in the proof

of Theorem 6.1 by using the last part of Proposition 9.1.
Step IV: We claim that, for γ > 0, then P(Bc

3) ≤ γ, if μ, (recall μ and ν from Step
I) N and {q3, . . . , qμ} are chosen according to (9.22), (9.23) and

‖P⊥�U∗PNU P�‖mr ≤ log2(4θ
−1√|�|)

8
√|�| , (9.45)

and also that q3 = q4 = . . . = qμ = q, where

q ≥ C · υ2(U ) · |�| ·
(

log (ω2)

log2(4θ−1
√|�|) + 1

)

, (9.46)

and

ω2 = ω̃M,U

(

|�|, q log2(4θ
−1√|�|)

8
√|�| , N

)

,

(recall ω̃M,U from 5.2) for some universal constant C > 0. Also, if q3 = q4 =
. . . = qμ = 1, then P(Bc

3) = 0. The argument is almost the same as in the proof of
Theorem 6.3, except that the last part of (9.32) should read

D2 :
∥
∥
∥q−1j P⊥� E� j P�Z j−1

∥
∥
∥
l∞

> β j‖Z j−1‖, j = k + 2,

and (9.34) should be

‖P⊥�U∗PNU P�‖mr ≤ β j/2,

q j ≥ C · υ2(U ) ·
(

1

β2
j

+ 1

β j

√|�|
)

· (log (32ω2)+ 1) , j = k + 2.

Step V: We claim that, for γ > 0,

P

(
‖P�ρ − sgn(x0)‖ > θ/8 ∪ ‖P⊥� ρ‖l∞ > 1/2

)
≤ 5γ, (9.47)
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when N ∈ N and θ > 0 are chosen according to (5.4), (5.6) and

θ ≥ C · υ2(U ) · |�| ·
(
log

(
γ−1

)
+ 1

)
· log

(
ωθ−1

√|�|
)

, (9.48)

where

ω = ω̃M,U (|�|, s, N ), s = θ

128
√|�| log(e4γ−1) ,

and ω̃M,U is defined in (5.2), for some universal constant C > 0. Also, if θ = 1 then
the left-hand side of (9.47) is equal to zero.

The strategy is almost as in the proof of Step V in Theorem 6.1. In particular,
we argue by using Steps II–IV that P

(
Bc
4

) ≤ 5γ when (9.15), (9.16), (9.43), (9.44),
(9.23), (9.45) and (9.46) are satisfied, and thus (9.47) follows. We then need to show
that these equations follow from (5.4), (5.6) and (9.48). To do this, let q1 = q2 = θ/4.
Then, by (9.48), we have that (9.16) follows with a possibly different constant. To
show that (9.44) is implied by (9.48), it suffices to show that ω ≥ ω1. This will follow
by the definition (5.2) of ω̃M,U (recall that the mapping s �→ ω̃M,U (|�|, s, N ) is a
decreasing function), and by observing that

q1(8
√|�|)−1 > s = θ

(
128

√|�| log
(
e4γ−1

))−1
.

To show that (9.46) follows from (9.48), it suffices to show that ω ≥ ω2. To do this
(as argued above), it is sufficient to prove that

q
log2(4θ

−1√|�|)
8
√|�| ≥ s. (9.49)

To see why the latter inequality is true, note that

q1 + q2 + . . .+ qμ ≥ θ.

So, by recalling the value of μ (from 9.22) from Step IV and observing that q = q3 =
. . . = qμ, we get

16q
⌈
log(γ−1)+ 3

⌈
log2

(
8θ−1

√|�|
)⌉⌉

≥ θ.

In particular, it follows that

q log2
(
4θ−1

√|�|
)
≥ θ log2

(
4θ−1

√|�|)

16
(
log

(
γ−1

)+ 3 log2
(
8θ−1

√|�|)+ 1
) >

θ

8 log
(
e4γ−1

) .

(9.50)
Thus, we have shown (9.49).
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We are now left with the task of showing that (9.15), (9.43), (9.44), (9.23) and
(9.45) follow from (5.4) and (5.6), and this follows by arguing exactly as in Step V in
the proof of Theorem 6.1

Step VI and Step VII: Exactly as in the proof of Theorem 6.1. ��

10 Conclusions and Challenges

This paper provides a new framework for infinite-dimensional CS in Hilbert spaces
based on the ideas of generalized sampling. Although we have presented a mathemat-
ical analysis, there are several issues not addressed in this paper as well as a number
of avenues for further investigations. First, as mentioned, we have also not treated the
issue of noise in this paper. Fortunately, this can be done and follows by extending the
techniques introduced in this paper. We refer to [7] for details.

Second we note that the results in this paper are nonuniform, i.e., they hold for a
fixed signal of a given sparsity rather than for all signals of that sparsity. As mentioned
in Sect. 4 and discussed in [15], uniform recovery of sparse signals with nonzero
coefficients taking arbitrary locations is not possible in infinite dimensions. Moreover,
as explained in [7], this can become an issue even when using finite-dimensional CS
techniques. In problems which are inherently infinite-dimensional, arising in applica-
tions such as MRI, X-ray CT, electron microscopy and radio interferometry, uniform
recovery of all sparse vectors is unrealistic.

Nevertheless, it is of interest to see if the results in this paper can be strengthened
to uniform recovery results over a smaller class of signals, such as sparse signals with
some fixed sparsity bandwidth M , or the sparsity-in-levels class introduced in [7].
Such results could obviously not be based on the standard definition of the restricted
isometry property (RIP). However, alternatives such as the RIP in levels [13] may be
more suitable for extension to the infinite-dimensional setting.

This aside, another strong motivation for infinite-dimensional CS is the desire to
reconstruct functions froma small number of pointwise samples.Although a number of
works have studied this from a finite-dimensional perspective [51,52], the underlying
infinite dimensionality of this problem can lead to a number of issues in practice
[1]. Fortunately, these can be overcome by tackling the infinite-dimensional problem
directly using similar ideas to those introduced in this paper. See [1] for details.

Acknowledgments The authors would like to thank Akram Aldroubi, Emmanuel Candès, Ron DeVore,
David Donoho, Karlheinz Gröchenig, Gerd Teschke, Joel Tropp, Martin Vetterli, Christopher White, Peng-
chong Yan and Özgür Yilmaz for useful discussions and comments. They would also like to thank Clarice
Poon for helping to improve several of the arguments in the proofs, Bogdan Roman for producing the
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11 Appendix

This appendix contains all the proofs not given so far. Before we do this, there are two
results that will be crucial. The first is a due to Rudelson [54].
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Lemma 11.1 (Rudelson) Let η1, . . . , ηM ∈ C
n and let ε1, . . . εM be independent

Bernoulli variables taking values 1,−1 with probability 1/2. Then

E

(∥
∥
∥
∥
∥

M∑

i=1
εi η̄i ⊗ ηi

∥
∥
∥
∥
∥

)

≤ 3

2
√
pmax
i≤M ‖ηi‖

√
√
√
√

∥
∥
∥
∥
∥

M∑

i=1
η̄i ⊗ ηi

∥
∥
∥
∥
∥

where p = max{2, 2 log(n)}.
Note that the original lemma in [54] does not apply in this case. Actually, we need

the complex version proved in [61]. We will, however, still refer to it as Rudelson’s
Lemma. The following theorem is also indispensable:

Theorem 11.2 (Talagrand [45,59]) There exists a number K with the following prop-
erty. Consider n independent random variables Xi valued in a measurable space �.

Let F be a (countable) class of measurable functions on � and consider the random
variable Z = sup f ∈F

∑
i≤n f (Xi ). Let

S = sup
f ∈F

‖ f ‖∞, V = sup
f ∈F

E

⎛

⎝
∑

i≤n
f (Xi )

2

⎞

⎠.

If E( f (Xi )) = 0 for all f ∈ F and i ≤ n, then, for each t > 0, we have

P(|Z − E(Z)| ≥ t) ≤ 3 exp

(

− 1

K

t

S
log

(

1+ t S

V + SE(Z)

))

,

where Z = sup f ∈F |
∑

i≤n f (Xi )|.
Note that we deliberately forgo the use of any vector/matrix Bernstein inequalities

in the proofs that follow, and instead use Talagrand’s result. This allows for more
flexibility in the infinite-dimensional setting.

We next present the proofs of Propositions 8.5 and 8.6. For this, it is useful to have a
result about the existence of unique minimizers. The finite-dimensional version of the
following proposition has become standard for showing existence of unique minimiz-
ers for finite-dimensional problems found in CS (see, e.g., [20, Lem. 2.1] or [34, Thm.
4.26]). Fortunately, the extension to infinite dimensions is rather straightforward:

Proposition 11.3 Let U ∈ B(l2(N)) be unitary and let �,� ⊂ N be such that
|�|, |�| <∞. Suppose that x0 ∈ Hwith supp(x0) = � and consider the optimization
problem

inf
η∈H

‖η‖l1 subject to P�Uη = P�Ux0. (11.1)

Suppose that there exists a vector ρ ∈ H such that

(i) ρ = U∗P�η for some η ∈ H
(ii) 〈ρ, e j 〉 = 〈sgn(x0), e j 〉, j ∈ �
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(iii) |〈ρ, e j 〉| < 1, j /∈ �,

and in addition that P�U P� : P�H → P�H has full rank, then x0 is the unique
minimizer of (11.1). If U and x0 are real the converse is also true.

Proof By assumption, there is a ρ ∈ l∞(N) such that ρ = U∗P�y for some y ∈ P�H
and ‖ρ‖l∞ ≤ 1. Also, by (ii)

Re
(〈P�U P�x0, y〉

) = Re
(〈x0, P�ρ〉) =

∑

j∈�

sign
(〈x0, e j 〉

)〈x0, e j 〉 = ‖x0‖l1 .

Thus, by using duality (recall Proposition 8.3), in particular the fact that P�U : H→
P�H is onto (this follows since U is unitary) and that

inf{‖x‖l1 : P�Ux = P�Ux0} = sup{Re(〈P�Ux0, y〉
) : ‖U∗P�y‖l∞ ≤ 1},

it follows that x0 is a minimizer. But 〈ρ, e j 〉 < 1 for j /∈ � so if ξ is another minimizer
then supp(ξ) = �. However, P�U P� has full rank, so ξ = x0.

As for the converse in the real case, suppose that x0 is the unique minimizer.
Then, for all sufficiently large n, x0 is the unique minimizer to the finite-dimensional
optimization problem inf{‖x‖l1 : x ∈ PnH, P�U Pnx = P�Ux0}. Proposition 11.3
is well known to be true in finite dimensions [34]. It follows that there is a yn such
that, for ρn = PnU∗P�yn, we have 〈ρn, e j 〉 < 1 when j /∈ � and j ≤ n, and
〈ρn, e j 〉 = sgn(〈x0, e j 〉) for j ∈ �. It is easy to see that there is a constant M < ∞
such that ‖yn‖l∞ ≤ M for all large n. Now we can define ρ = U∗P�yn . Then
ρ = ρn + P⊥n U∗P�yn , and thus ρ satisfies the requirements (i), (ii) and (iii) for large
n. ��
Proof of Proposition 8.5 Let α = |�| and also ω = {ω j }αj=1, where ω j ∈ C. Now
define

Vω = I�c ⊕ Sω : P⊥�H⊕ P�H→ P⊥�H⊕ P�H, (11.2)

where Sω = diag
(
{ω j }αj=1

)
on P�H and I�c is the identity on P⊥�H. DefineU (ω) =

UVω. Note that to prove the proposition it suffices to show that Vωx is the unique
minimizer of inf{‖η‖l1 : P�Uη = P�U (ω)x} for all ω, where

ω ∈ � =
{(

eiθ1 , . . . , eiθα

)
∈ C

α : θ j ∈ [0, 2π), 1 ≤ j ≤ α
}

. (11.3)

Indeed, if the assertion is true, Proposition 11.3 yields that every real x̃ ∈ l2(N) with
supp(x̃) = � is the unique minimizer of inf{‖η‖l1 : P�Uη = P�U x̃}. Thus, for any
y ∈ l2(N) such that supp(y) = � choose ω ∈ � and a real x̃ ∈ l2(N) such that
y = Vω x̃ . Then, by using the assertion above for x̃ we have proved the proposition.

To prove the assertion, note that if ω ∈ �, then Vω is clearly unitary and also
an isometry on l1(N). Thus, it is easy to see that Vωζ is a minimizer of inf{‖η‖l1 :
P�Uη = P�U (ω)x} if and only if ζ is a minimizer of inf{‖η‖l1 : P�U (ω)η =
P�U (ω)x}. Wewill therefore consider the latter minimization problem and show that
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x is the unique minimizer of that problem for all ω ∈ �. To do that, it suffices, by
Proposition 11.3 and the fact that U (ω) is unitary to show that there exists a vector
ρ ∈ l2(N) such that

P�cU (ω)ρ = 0, P�ρ = sgn(x), ‖P�cρ‖l∞ < 1. (11.4)

Now, for ε > 0 (we will specify the value of ε later), define the function ϕ :
∪a∈�B(a, ε) → R+, where B(a, ε) denotes the ε-ball around a, in the following
way. Let

W = I� ⊕ P�cU P�c : P�H⊕ P�cH→ P�H⊕ P�cH,

and define

ϕ(ω) = inf{‖P�cρ‖l∞ : Wρ = ι∗�sgn(x)⊕−P�cU (ω)P�ι∗�sgn(x)},

where ι� : P�l2(N)→ l2(N) is the inclusion operator. Then (11.4) is satisfied if and
only if ϕ(ω) < 1. Thus, to show (11.4) we must show that ϕ(ω) < 1 for all ω ∈ �.

Suppose for the moment that ε is chosen such that ϕ is defined on its domain. We
will show that ϕ is continuous. For this, it suffices to show that ϕ is continuous on
B(a, ε) for a ∈ �. Note that, by the fact that B(a, ε) is open it is enough to show
that ϕ is convex. To see that ϕ is convex, let ω1, ω2 ∈ B(a, ε) and t ∈ (0, 1). Also let
ξ, η ∈ l2(N) be such that

Wξ = ι∗�sgn(x)⊕−P�cU (ω1)P�ι∗�sgn(x),
Wη = ι∗�sgn(x)⊕−P�cU (ω2)P�ι∗�sgn(x).

Note that the existence of such vectors is guaranteed by the assumption thatϕ is defined
on its domain. Now

ϕ(tω1 + (1− t)ω2) ≤ ‖P�c (tξ + (1− t)η)‖l∞ ≤ t‖P�cξ‖l∞ + (1− t)‖P�cη‖l∞ .

Thus, taking infimum on the right-hand side yields ϕ(tω1 + (1− t)ω2) ≤ tϕ(ω1) +
(1 − t)ϕ(ω2), as required. Returning to the question of the domain of ϕ, note that
if (P�U P�)∗P�U P�|P�l2(N) is invertible, then (P�U (ω)P�)∗P�U (ω)P�|P�l2(N) is
invertible if ‖U (ω̃)−U (ω)‖ is small and ω̃ ∈ �. Letting

ρ = U (ω)∗P�U (ω)P�((P�U (ω)P�)∗P�U (ω)P�|P�l2(N))
−1sgn(x)

we get

P�cU P�cρ = −P�cU (ω)P�sgn(x).

Thus, ϕ is defined on its domain for small ε.
Let � denote the subset of all ω ∈ � such that x is the unique minimizer of

inf{‖η‖l1 : P�U (ω)η = P�U (ω)x}. Note that � is closed. Indeed, if ω ∈ � and
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{ωn} ⊂ � is a sequence such that ωn → ω then ω ∈ �. To see that, observe that since
{U,�,�} is weakly f stable, it follows that for ξ ∈ l2(N) satisfying

‖ξ‖l1 = inf{‖η‖l1 : P�U (ω)η = P�U (ω)x}
we have

‖ξ − x‖l1 ≤ f (‖ω − ωn‖l∞), ∀ n ∈ N.

Thus, ξ = x and hence ω ∈ �.

Note also that� is open. Indeed, for if ω̃ ∈ � then there existρ ∈ H such thatρ satis-
fies (11.4) (withω replaced by ω̃) e.g., ϕ(ω̃) < 1.But, by continuity of ϕ it follows that
ϕ is strictly less than one on a neighborhood of ω̃. Since (P�U P�)∗P�U P�|P�l2(N)

is invertible, it is easy to see that P�U (ω)P�)∗P�U (ω)P�|P�l2(N) is invertible, for
all ω ∈ �. Thus it follows by Proposition 11.3 that (11.4) is satisfied for all ω ∈ � in
a neighborhood of ω̃ and hence � is open.

The fact that � is open and closed yields that either � = ∅ or � = �. The fact that
{1, . . . , 1} ∈ � by assumption yields the theorem. ��
Proof of Proposition 8.6 Let Vω and� be defined as in (11.2) and (11.3), respectively.
Suppose that y ∈ l2(N) is real with supp(y) = �. Then, by assumption, Vωy is the
unique minimizer of inf{‖η‖l1 : P�Uη = P�UVωy}, when Vω is real. Thus, by
Proposition 11.3 it follows that there exists a ρω ∈ l2(N) such that

P�cUρω = 0, P�ρω = sgn(Vωy), ‖P�cρω‖l∞ < 1. (11.5)

Let β = maxω∈�{‖P�cρω‖l∞ , ω is real}. It is clear that β < 1. Thus, for every y ∈ H
with supp(y) = � there exists ρω ∈ l2(N) satisfying (11.5) where ‖P�cρω‖l∞ ≤
β. It is now easy to show that (see the proof of Lemma 2.1 in [21]) there exists a
constant C > 0 (depending on β) such that, if ξ ∈ l2(N), supp(ξ) = �, is the
unique minimizer of inf{‖η‖l1 : P�Uη = P�Uξ}, ζ ∈ l2(N) and x is a minimizer of
inf{‖η‖l1 : P�Uη = P�Uζ } then ‖P�c x‖l1 ≤ C‖ξ − ζ‖l1 . Thus, since

P�U P�(x − ξ) = P�U (ζ − ξ)− P�U P�c x,

and (P�U P�)∗P�U P�|P�H is invertible, the proposition follows. ��
Proof of Proposition 9.1 Without loss of generality, wemay assume that ‖η‖ = 1.Let
{δ j }Nj=1 be random Bernoulli variables with P(δ j = 1) = q. We will split the proof
into two steps, where we will prove the finite-dimensional part of the proposition in
Step I, and then tweak these ideas to fit the infinite-dimensional part of the proposition
in Step II.

Step I: We start by noting that, since U is an isometry, we have

q−1PM P⊥� E�P�η = q−1
N∑

j=1
PM P⊥�U∗δ j (e j ⊗ e j )U P�η
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= q−1
N∑

j=1
PM P⊥�U∗(δ j − q)(e j ⊗ e j )U P�η

+PM P⊥�U∗P⊥N U P�η. (11.6)

Our goal is to eventually use Bernstein’s inequality, and the following is therefore a
setup to do so. For 1 ≤ j ≤ N , define the random variables

Y j = q−1PM P⊥�U∗(δ j − q)(e j ⊗ e j )U P�η,

Xi
j = 〈q−1U∗(δ j − q)(e j ⊗ e j )U P�η, ei 〉, i ∈ �c ∩ {1, . . . , M}.

Thus, for s > 0 it follows from (11.6) that

P

(∥
∥
∥q−1PM P⊥� E�P�η

∥
∥
∥
l∞

> s
)
= P

⎛

⎝

∥
∥
∥
∥
∥
∥

N∑

j=1
Y j + PM P⊥�U∗P⊥N U P�η

∥
∥
∥
∥
∥
∥
l∞

> s

⎞

⎠

≤
∑

i∈�c∩{1,...,M}
P

⎛

⎝

∣
∣
∣
∣
∣
∣

N∑

j=1
Xi

j + 〈PM P⊥�U∗P⊥N U P�η, ei 〉
∣
∣
∣
∣
∣
∣
> s

⎞

⎠

≤
∑

i∈�c∩{1,...,M}
P

⎛

⎝

∣
∣
∣
∣
∣
∣

N∑

j=1
Xi

j

∣
∣
∣
∣
∣
∣
> s − ‖PM P⊥�U∗PNU P�‖mr

⎞

⎠,

where we have used the fact that U is an isometry and hence

PM P⊥�U∗PNU P� = −PM P⊥�U∗P⊥N U P�.

Thus, by choosing s = t + ‖PM P⊥�U∗PNU P�‖mr we deduce that

P

(∥
∥
∥q−1PM P⊥� E�P�η

∥
∥
∥
l∞

> t + ‖PM P⊥�U∗PNU P�‖mr

)

≤
∑

i∈�c∩{1,...,M}
P

⎛

⎝

∣
∣
∣
∣
∣
∣

N∑

j=1
Xi

j

∣
∣
∣
∣
∣
∣
> t

⎞

⎠. (11.7)

To estimate the right-hand side of (11.7), we shall use Bernstein’s inequality, and in
order to do that, we need a couple of observations. First note that

E

(
|Xi

j |2
)
= q−2E

(
|〈U P�η, (δ j − q)(e j ⊗ e j )Uei 〉|2

)

= q−2E
(
(δ j − q)2

)
|〈U P�η, e j 〉〈Uei , e j 〉|2

= q−1(1− q)|〈U P�η, e j 〉〈Uei , e j 〉|2, i ∈ �c ∩ {1, . . . , M}.
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Thus

N∑

j=1
E

(
|Xi

j |2
)
≤ q−1(1−q)‖η‖2υ2(U ) = q−1(1−q)υ2(U ), i ∈ �c∩{1, . . . , M}.

(11.8)
Also, observe that

|Xi
j | = q−1|(δ j − q)||〈η, P�U

∗(e j ⊗ e j )Uei 〉| ≤ max{(1− q)/q, 1}υ2(U )
√|�|,
(11.9)

for 1 ≤ j ≤ N and i ∈ �c ∩ {1, . . . , M}. Now applying Bernstein’s inequality to
Re(Xi

1), . . . ,Re(X
i
N ) and Im(Xi

1), . . . , Im(Xi
N ), we get that

P

⎛

⎝

∣
∣
∣
∣
∣
∣

N∑

j=1
Xi

j

∣
∣
∣
∣
∣
∣
> t

⎞

⎠

≤ 4 exp

(

− t2/4

q−1(1− q)υ2(U )+max{q−1(1− q), 1}υ2(U )
√|�|t/3√2

)

,

(11.10)

for all i ∈ �c ∩ {1, . . . , M}. Thus, by invoking (11.10) and (11.7) it follows that

P

(∥
∥
∥q−1PM P⊥� E�P�η

∥
∥
∥
l∞

> t + ‖PM P⊥�U∗PNU P�‖mr

)
≤ γ

when

q ≥
(
4

t2
+ 2

√
2

3t

√|�|
)

log

(
4

γ
|�c ∩ {1, . . . , M}|

)

υ2(U ).

The first part of the proposition now follows. The fact that the left-hand side of (9.3)
is zero when q = 1 is clear from (11.8) and (11.9).

Step II: To prove the second part of the proposition, wewill use the same ideas; how-
ever, we are now faced with the problem that P⊥� E�P�η (contrary to PM P⊥� E�P�η)
has infinitely many components. This is an obstacle since the proof of the bound
on PM P⊥� E�P�η was based on bounding the probability of the deviation of every
component of PM P⊥� E�P�η, and thus, if there are infinitely many components to
take care of, the task would be impossible. To overcome this obstacle, we proceed as
follows. Note that, just as argued in the previous case in Step I, we have that

q−1P⊥� E�P�η =
N∑

j=1
Ỹ j + P⊥�U∗P⊥N U P�η,

Ỹ j = q−1P⊥�U∗(δ j − q)(e j ⊗ e j )U P�η. (11.11)
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Define (as we did above) the random variables

Xi
j = 〈q−1U∗(δ j − q)(e j ⊗ e j )U P�η, ei 〉, i ∈ �c.

Note that we now have infinitely many Xi
j ’s. However, suppose for a moment that for

every t > 0 there exists a nonempty set �t ⊂ N such that

P

⎛

⎝ sup
i∈�t

∣
∣
∣
∣
∣
∣

N∑

j=1
Xi

j

∣
∣
∣
∣
∣
∣
> t

⎞

⎠ = 0
∣
∣�c \�t

∣
∣ <∞. (11.12)

Then, if that was the case, we would immediately get (by arguing as in Step I and
using (11.11) and the assumption that ‖η‖ = 1) that

P

(∥
∥
∥q−1P⊥� E�P�η

∥
∥
∥
l∞

> t + ‖P⊥�U∗PNU P�‖mr

)

= P

⎛

⎝

∥
∥
∥
∥
∥
∥

N∑

j=1
Ỹ j + P⊥�U∗P⊥N U P�η

∥
∥
∥
∥
∥
∥
l∞

> t + ‖P⊥�U∗PNU P�‖mr

⎞

⎠

≤
∑

i∈|�c\�t |
P

⎛

⎝

∣
∣
∣
∣
∣
∣

N∑

j=1
Xi

j

∣
∣
∣
∣
∣
∣
> t

⎞

⎠,

Thus, we could use the analysis provided above, via (11.10), and deduce that

P

(∥
∥
∥q−1P⊥� E�P�η

∥
∥
∥
l∞

> t + ‖P⊥�U∗PNU P�‖mr

)
≤ γ

when

q ≥
(
4

t2
+ 2

√
2

3t

√|�|
)

log

(
4

γ

∣
∣�c \�t

∣
∣
)

υ2(U ). (11.13)

Hence, if we could show the existence of �t and provide a bound on |�c \�t |, we
could appeal to (11.11) and (11.13) and complete the proof. To do that, define

�t =
⎧
⎨

⎩
i /∈ � : P

⎛

⎝

∥
∥
∥
∥
∥
∥

N∑

j=1
P�U

∗δ j (e j ⊗ e j )Uei

∥
∥
∥
∥
∥
∥
≤ tq

⎞

⎠ = 1

⎫
⎬

⎭
.

Note that (e j ⊗ e j )Uei → 0 as i →∞ for all j ≤ N . Thus, �t �= ∅. Moreover, we
also immediately deduce that |�c \�t | < ∞. Note also that (11.12) follows by the
fact that Xi

j = 〈η, q−1P�U∗δ j (e j ⊗ e j )Uei 〉 and the Cauchy–Schwarz inequality.
With the existence of �t established, we now continue with the task of estimating
|�c \�t | . Note that to estimate |�c \�t | we need information about the location of
� which is not assumed. We only assume the knowledge of some M ∈ N such that
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PM ≥ P�. Thus (although an estimate of |�c \�t | would be sharper than what we
will eventually obtain), we define

�̃q(|�|, M, t) =

⎧
⎪⎨

⎪⎩
i ∈ N : max

�1⊂{1,...,M},|�1|=|�|
�2⊂{1,...,N }

∥
∥P�1U

∗P�2Uei
∥
∥ ≤ tq

⎫
⎪⎬

⎪⎭
.

Note that it is straightforward to show that �̃q(|�|, M, t) ⊂ �t . Also, �̃q(|�|, M, t)
depends only on known quantities. Observe that, clearly, for any �1 ⊂ {1, . . . , M}
and �2 ⊂ {1, . . . , N } then

∥
∥P�1U

∗P�2Uei
∥
∥ → ∞ as i → ∞. Thus,

|�c \�q(|�|, M, t)| <∞ and since �q(|�|, M, t) ⊂ �t it follows that

∣
∣�c \�q(�, t)

∣
∣ ≤

∣
∣
∣
∣
∣
∣
∣

⎧
⎪⎨

⎪⎩
i ∈ N : max

�1⊂{1,...,M},|�1|=|�|
�2⊂{1,...,N }

∥
∥P�1U

∗P�2Uei
∥
∥ > tq

⎫
⎪⎬

⎪⎭

∣
∣
∣
∣
∣
∣
∣
.

This gives the second part of the proposition. The fact that the left-hand side of (9.4)
is zero when q = 1 is clear from (11.8) and (11.9). ��

Proof of Proposition 9.2 Without loss of generality, we may assume that ‖η‖ = 1.
Let {δ j }Nj=1 be random Bernoulli variables with P(δ j = 1) = q. Also, for k ∈ N, let
ξk = (U P�)∗ek . Observe that, since U is an isometry,

q−1(P�U P�)∗P�U P� =
N∑

k=1
q−1δkξk ⊗ ξ̄k, P� =

∞∑

k=1
ξk ⊗ ξ̄k, (11.14)

and

∥
∥
∥
∥

(
1

q
(P�U P�)∗P�U P� − P�

)

η

∥
∥
∥
∥ ≤

∥
∥
∥
∥
∥

(
N∑

k=1
(q−1δk − 1)ξk ⊗ ξ̄k

)

η

∥
∥
∥
∥
∥

+‖(P�U
∗PNU P� − P�)η‖, (11.15)

where the infinite series in (11.14) converges in operator norm. To get the desired
result, we first focus on obtaining bounds on ‖(∑N

k=1(q−1δk − 1)ξk ⊗ ξ̄k)η‖. The
goal is to use Talagrand’s formula, and what follows is a setup for that. In particular,
let ζ ∈ H be a unit vector and denote the mapping H # ξ �→ Re(〈ξ, ζ 〉) by ζ̂ .

Let F be a countable collection of unit vectors such that for any ξ ∈ H we have
‖ξ‖ = supζ∈F ζ̂ (ξ ), and now define

Z = ‖X‖, X =
N∑

k=1
Zk, Zk = ((q−1δk − 1)ξk ⊗ ξ̄k)η.
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Note that the following is clear (and note how this immediately gives us the setup for
Talagrand’s Theorem)

Z =
∥
∥
∥
∥
∥

(
N∑

k=1
(q−1δk − 1)ξk ⊗ ξ̄k

)

η

∥
∥
∥
∥
∥
= sup

ζ∈F
ζ̂

(
N∑

k=1
Zk

)

= sup
ζ∈F

N∑

k=1
ζ̂ (Zk).

To use Talagrand’s theorem, we must estimate the following quantities:

V = sup
ζ∈F

E

(
N∑

k=1
ζ̂ (Zk)

2

)

, S = sup
ζ∈F

‖ζ̂‖∞, R = E

(∥
∥
∥
∥
∥

N∑

k=1
Zk

∥
∥
∥
∥
∥

)

.

For V we have the following estimate:

sup
ζ∈F

E

(
N∑

k=1
ζ̂ (Zk)

2

)

≤ sup
ζ∈F

E

⎛

⎝
∑

k≤N

(
q−1δk − 1

)2 |〈ξk, ζ 〉|2|〈ξk, η〉|2
⎞

⎠

≤ q−1(1− q)
∑

k≤N
‖ξk‖2|〈ek,U P�η〉|2

≤ q−1(1− q)υ2(U )|�|,

where we have used the fact that U is an isometry in the step going from the second
to the third inequality. The S term can be estimated as follows. Note that

ζ̂ (Zk) = |
(
q−1δk − 1

)
|〈ξk, ζ 〉||〈ξk, η〉| ≤ max{q−1 − 1, 1}υ2(U )|�|, k ≤ N ,

(11.16)
thus

S ≤ max{q−1 − 1, 1}υ2(U )|�|. (11.17)

Finally, we can estimate R as follows:

E

⎛

⎝

∥
∥
∥
∥
∥

N∑

k=1
Zk

∥
∥
∥
∥
∥

2⎞

⎠ =
N∑

k=1
E(‖Zk‖2)+

∑

k �= j

E(〈Zk, Z j 〉)

≤ q−1(1− q)
∑

k≤N
‖ξk‖2|〈ek,U P�η〉|2

≤ q−1(1− q)υ2(U )|�|,

again using the fact that U is an isometry. Therefore,

E

⎛

⎝

∥
∥
∥
∥
∥
∥

∑

k≤N
Zk

∥
∥
∥
∥
∥
∥

⎞

⎠ ≤

√
√
√
√
√
√E

⎛

⎜
⎝

∥
∥
∥
∥
∥
∥

∑

k≤N
Zk

∥
∥
∥
∥
∥
∥

2
⎞

⎟
⎠ ≤

√

q−1(1− q)υ2(U )|�|. (11.18)
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With the estimates on V, S and R now established we may appeal to Theorem 11.2
and deduce that there is a constant K > 0 such that, for θ > 0,

P

(∥
∥
∥
∥
∥

(
N∑

k=1
(q−1δk − 1)ξk ⊗ ξ̄k

)

η

∥
∥
∥
∥
∥
≥ θ +

√

q−1(1− q)υ2(U )|�|
)

≤ 3 exp

(

− θ

K

(
max{q−1 − 1, 1}υ2(U )|�|

)−1
log

(

1+ θ

2

))

. (11.19)

provided q is chosen such that the right-hand side of (11.18) is bounded by 1 (this is
guaranteed by the assumptions of the proposition). But by (11.15) it follows that for
any r > 0, we have

P

(∥
∥
∥
∥

(
1

q
(P�U P�)∗P�U P� − P�

)

η

∥
∥
∥
∥ ≥ r

)

≤ P

(∥
∥
∥
∥
∥

(
N∑

k=1
(q−1δk − 1)ξk ⊗ ξ̄k

)

η

∥
∥
∥
∥
∥
≥r−‖(P�U

∗PNU P� − P�)‖
)

. (11.20)

Therefore, by appealing to (11.20) and (11.19) we obtain that

P

(∥
∥
∥
∥

(
1

q
(P�U P�)∗P�U P� − P�

)

η

∥
∥
∥
∥ ≥ θ +

√

q−1(1− q)υ2(U )|�| +�

)

≤ 3 exp

(

− θ

K

(
max{q−1 − 1, 1}υ2(U )|�|

)−1
log

(

1+ θ

2

))

,

where � = ‖(P�U∗PNU P� − P�)‖. Choosing θ = t/2 yields the proposition. ��

Proof of Theorem 9.3 The proof is quite similar to the proof of Proposition 9.2. Let
{δ j }Nj=1 be random Bernoulli variables with P(δ j = 1) = θ. Note that we may argue
as in (11.14) and observe that

∥
∥
∥θ−1(P�U P�)∗P�U P� − P�

∥
∥
∥ ≤

∥
∥
∥
∥
∥

N∑

k=1
(θ−1δk − 1)ξk ⊗ ξ̄k

∥
∥
∥
∥
∥

+ ∥∥(P�U
∗PNU P� − P�)

∥
∥ , (11.21)

where ξk = (U P�)∗ek . To get the desired result, we first focus on getting bounds
on ‖∑N

k=1(θ−1δk − 1)ξk ⊗ ξ̄k‖. As in the proof of Proposition 9.2, the goal is to
use Talagrand’s thereom and the first step to do so is to estimate E (‖Z‖) , where
Z =∑N

k=1(θ−1δk − 1)ξk ⊗ ξ̄k .

Claim: We claim that

E (‖Z‖)2 ≤ 48max{log(|�|), 1}θ−1υ2(U )|�|, (11.22)
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when

θ ≥ 18max{log(|�|), 1}υ2(U )|�|.

To prove the claim, we simply rework the techniques used in [54]. This is now standard
and has also been used in [19,61]. We start by letting δ̃ = {δ̃k}Nk=1 be independent
copies of δ = {δk}Nk=1. Then

Eδ (‖Z‖) = Eδ

(∥
∥
∥
∥
∥
Z − Eδ̃

(
N∑

k=1

(
θ−1δ̃k − 1

)
ξk ⊗ ξ̄k

)∥
∥
∥
∥
∥

)

≤ Eδ

(

Eδ̃

(∥
∥
∥
∥
∥
Z −

N∑

k=1

(
θ−1δ̃k − 1

)
ξk ⊗ ξ̄k

∥
∥
∥
∥
∥

))

, (11.23)

by Jensen’s inequality. Let ε = {ε j }Nj=1 be a sequence of Bernoulli variables taking
values ±1 with probability 1/2. Then, by (11.23), symmetry, Fubini’s Theorem and
the triangle inequality, it follows that

Eδ (‖Z‖) ≤ Eε

(

Eδ

(

Eδ̃

(∥
∥
∥
∥
∥

N∑

k=1
εk

(
θ−1δk − θ−1δ̃k

)
ξk ⊗ ξ̄k

∥
∥
∥
∥
∥

)))

≤ 2Eδ

(

Eε

(∥
∥
∥
∥
∥

N∑

k=1
εkθ

−1δkξk ⊗ ξ̄k

∥
∥
∥
∥
∥

))

. (11.24)

Now, by Lemma 11.1 we get that

Eε

(∥
∥
∥
∥
∥

N∑

k=1
εkθ

−1δkξk ⊗ ξ̄k

∥
∥
∥
∥
∥

)

≤ 3
√
max{2 log(|�|), 2}θ−1 max

1≤k≤N ‖ξk‖
√
√
√
√

∥
∥
∥
∥
∥

N∑

k=1
θ−1δkξk ⊗ ξ̄k

∥
∥
∥
∥
∥
. (11.25)

And hence, by using (11.24) and (11.25), it follows that

Eδ (‖Z‖) ≤ 3
√
max{2 log(|�|), 2}θ−1υ2(U )|�|

√
√
√
√
Eδ

(∥
∥
∥
∥
∥
Z +

N∑

k=1
ξk ⊗ ξ̄k

∥
∥
∥
∥
∥

)

.

Thus, by using the easy calculus fact that if r > 0, c ≤ 1 and r ≤ c
√
r + 1 then

r ≤ c(1+√5)/2, and the fact that U is an isometry (so that ‖∑N
k=1 ξk ⊗ ξ̄k‖ ≤ 1),

it is easy to see that the claim follows.
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To be able to use Talagrand’s formula, there are now some preparations that have
to be done. First write

Z =
N∑

k=1
Zk, Zk =

(
θ−1δk − 1

)
ξk ⊗ ξ̄k .

Clearly, since Z is self-adjoint, we have that ‖Z‖ = supη∈F |〈Zη, η〉|, where G is a
countable set of unit vectors. For η ∈ G, let the mappings B(H) # T �→ 〈Tη, η〉
and B(H) # T �→ −〈Tη, η〉 be denoted by η̂1 and η̂2, respectively. Letting F denote
the family of all these mappings we have that ‖Z‖ = supη̂i∈F

∑
k≤N η̂i (Zk), and the

setup for Talagrand’s theorem is complete.
For k = 1, . . . , N note that

|η̂i (Zk)| =
∣
∣
∣
(
θ−1δk − 1

)∣
∣
∣ |〈(ξk ⊗ ξ̄k

)
η, η〉| ≤ θ−1‖ξ‖2.

Thus, after restricting η̂i to the ball of radius θ−1 maxk≤N ‖ξk‖2 it follows that

S = sup
ηi∈F

‖η̂i‖∞ ≤ θ−1 max
k≤N ‖ξk‖

2 ≤ θ−1υ2(U )|�|. (11.26)

Also, note that

V = sup
η̂i∈F

E

⎛

⎝
∑

k≤N
η̂(Zk)

2

⎞

⎠ ≤ sup
η̂∈F

E

⎛

⎝
∑

k≤N

(
θ−1δk − 1

)2 |〈ξk, η〉|4
⎞

⎠

≤ max
k≤N ‖ξk‖

2
(
θ−1 − 1

)
sup
η̂∈F

∑

k≤N
|〈ek,U P�η〉|2

≤
(
θ−1 − 1

)
max
k≤N ‖ξk‖

2 ≤
(
θ−1 − 1

)
υ2(U )|�|, (11.27)

where the third inequality follows from the fact that U is an isometry. It follows by
Talagrand’s inequality (Theorem 11.2), the earlier claim (and requiring that the right
hand side of (11.22) is bounded by one, which is guarantied by the assumption of
the theorem), the first part of the assumed (9.6), (11.26) and (11.27), that there is a
constant K > 0 such that for t > 0

P

(∥
∥
∥
∥
∥

N∑

k=1
(θ−1δk − 1)ξk ⊗ ξ̄k

∥
∥
∥
∥
∥
≥ t + 48 log(|�|)θ−1υ2(U )|�|

)

≤ 3 exp

(

− t

K
(θ−1υ2(U )|�|)−1 log

(

1+ t

2

))

. (11.28)

But by (11.21) we have

P

(∥
∥
∥
∥
1

θ
(P�U P�)∗P�U P� − P�

∥
∥
∥
∥ ≥ r

)

≤ P

(∥
∥
∥
∥
∥

N∑

k=1
(θ−1δk − 1)ξk ⊗ ξ̄k

∥
∥
∥
∥
∥
≥ r − ‖(P�U

∗PNU P� − P�)‖
)

. (11.29)
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for any r > 0. Therefore, by appealing to (11.29) and (11.28) we obtain

P

(∥
∥
∥
∥
1

θ
(P�U P�)∗P�U P� − P�

∥
∥
∥
∥ ≥ t + 48 log(|�|)θ−1υ2(U )|�| +�

)

≤ 3 exp

(

− t

K
(θ−1υ2(U )|�|)−1 log

(

1+ t

2

))

, �=‖(P�U
∗PNU P�.−P�)‖.

for t > 0. Choosing t = 1
2γ yields the first part of the theorem. The last statement of

the theorem is clear. ��
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