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Abstract

Privacy-preserving distributed machine learn-
ing becomes increasingly important due to the
rapid growth of amount of data and the impor-
tance of distributed learning. This paper develops
algorithms to provide privacy-preserving learning
for classification problem using the regularized
empirical risk minimization (ERM) objective func-
tion in a distributed fashion. We use the definition
of differential privacy, developed by Dwork et
al. privacy to capture the notion of privacy of
our algorithm. We provide two methods. We first
propose the dual variable perturbation, which
perturbs the dual variable before next intermedi-
ate minimization of augmented Lagrange function
over the classifier in every ADMM iteration. In the
second method, we apply the output perturbation
to the primal variable before releasing it to neigh-
boring nodes. We call the second method primal
variable perturbation. Under certain conditions
on the convexity and differentiability of the loss
function and regularizer, our algorithms is proved
to provide differential privacy through the entire
learning process. We also provide theoretical re-
sults for the accuracy of the algorithm, and prove
that both algorithms converges in distribution.
The theoretical results show that the dual variable
perturbation outperforms the primal case. The
tradeoff between privacy and accuracy is exam-
ined in the numerical experiment. Our experiment
shows that both algorithms performs similar in
managing the privacy-accuracy tradeoff, and pri-
mal variable perturbaiton is slightly better than

the dual case.

1. Introduction

Distributed machine learning has become in-
creasingly important due to the rapid growth
of amount of data and the increasing of model
complexity. In practice, the amount of training
data can range from 1T B to 1PB [2]. With this
training data, it is possible to develop complex
models with 109 to 1012 parameters [2, 5]. In
centralized learning, these training data are shared
by all the nodes participating in the learning pro-
cess via centralized collection, and the parameters
are available to all these nodes. In many cases,
especially for the statistical learning, all nodes
must frequently use the shared data and param-
eters in order to improve the parameters during
the learning process. The centralized learning is
not encouraged due to several aspects such as
high computational complexity, scalability, and
communication overhead, to name a few. As a
result, decentralization of the dataset as well as
distributed algorithms become more and more
important.

The main goal of distributed learning is to
decentralize the problem to multiple local sub-
problems. There are many ways to establish
the decentralization, and the alternating direction
method of multiplier (ADMM) is a well suited
algorithm to deal with large scale distributed op-
timization problems. ADMM algorithm trains the
model purely based on the information exchange
among the neighboring nodes, rather than the en-
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tire network, and it has been proved that ADMM
for convex optimization problem is convergent
to the centralized problem under some specific
conditions [6].

Many benefits have raised in the field of
distributed machine learning. Google, eBay,
Linkedin and Apple were among the corporations
to take advantage of the massive data collected
from their customers or users. They use tech-
nology like machine learning to improve deci-
sion making, reducing cost, provide new products
and services. The benefits of distributed machine
learning are undeniable, but it also presents seri-
ous privacy issues; there are possible internal and
external attacks to the training data, which are
stored in digital databases, such as social network
data, web search histories, financial information,
and medical records.

The general ADMM-based distributed learning
has a certain level of privacy by avoiding the cen-
tralized collection of training datasets. Indeed, the
decentralization has avoided the direct sharing of
local dataset that contains sensitive information.
However, deleting or anonymizing the sensitive
information from the training dataset may reduce
the accuracy of the learning model; even if the
accuracy is not affected, some sensitive informa-
tion can be still re-identified from the remaining
information. These kinds of attacks have been
studied in many works; for example, the adversary
can use some background knowledge and cross
correlation with other databeses to extract the
private information [32, 30]. Other examples such
as when the dataset has certain structural features
an attacker is able to learn from the private model.
These attackers can be from the outside as well
as inside of the learing network.

In this paper, we focus on the ADMM-based
distributed machine learning on the problem of
classification. We use the empirical risk minimiza-
tion (ERM) to construct the objective function of
the problem. The ERM method use the dataset
to construct an approximation of the expected
risk , which is usually referred to the empirical
risk. The classifier is chosen by minimizing the
empirical risk. In this paper, we regularize the
ERM with an additional term, the regularizer, in
the empricial loss function to avoid overfitting,

which means that although the minimum of the
empirical risk can be close to zero, the expected
risk we are interested in can be very large.

Our goal is to develop an learning algorithm
that can preserve the privacy of training data
in every local node from both the internal and
the external attackers during the entire learning
process. Specifically, we develop randomized al-
gorithms that can provide privacy in terms of α-
differential privacy [4, 9] while keeping the learn-
ing procedure accurate. Our algorithms hold for
loss functions and regularizers that satisfy specific
conditions of convexity and differentiability. For
training, we propose two privacy preserving es-
timates of the regularized ERM-beased optimiza-
tion. The first is primal variable perturbation; this
is based on the output perturbation developed by
Dwork et al. [4], which adds noise to the output
of the non-private regularized ERM algorithm.
In our method, we add noise to the intermediate
updated primal variable of each node of ADMM-
based distributed algorithm before sharing this
primal variable to neighboring nodes. We call the
second case dual variable perturbation, in which
we perturb the dual variable of every node at each
ADMM iteration before next iteration.

Our results are applicable to general ERM
optimization problems, and we use numerical
experiments to the classification problem based
on logistic regression. Differential privacy model
aims to ensure that even if the adversary has
knowledge of all the dataset except one data point,
the adversary should not be able to distinguish
whether an individual datapoint is present or
absent, by adding randomness to the output of the
algorithm; thus, the differential privacy not only
aims to protect the specific data points present in
the dataset but also all the possible datapoints for
that dataset. Since there are no conditions ofr the
dataset for the purpose of privacy preservation,
the randomness incurs a cost in the performance
while guaranteeing the differential privacy. There-
fore, managing the tradeoff between privacy and
accuracy is critical. Under the assumption that
the data points in the dataset are drawn from
an unknown but fixed distribution, we prove the
accuracy of the distributed learning algorithm in
terms of the privacy parameters. Another impor-



tant issue is the convergence of ADMM. There are
many convergences results for ADMM discussed
in literature. Based on the accuracy analysis,
we also discuss the convergence of our private
ADMM method.

The contributions of this paper are shown as
follows:

• We derive a method, dual variable per-
turbation, in which we add randomness
to the dual variable before the next up-
date of the primal variable. The differ-
ential privacy is guaranteed for every
ADMM iteration as well as the final
trained output.

• Based on the output perturbation devel-
oped by Dwork et al. [4], we develop a
private ADMM-based distributed algo-
rithm for regulatized ERM, which ap-
plies primal variable perturbation. In
this technique, the randomness rises
when every node transmits the primal
parameter to the corresponding neigh-
boring nodes. It is guaranteed to provide
differential privacy for the every inter-
mediate update. For the final update, we
apply the dual variable perturbation in
order to increase the accuracy.

• We provide the theoretical guarantees
of accuracy of both algorithms with L2
regularization. Based on the accuracy
analysis, we also show that both al-
gorithms are convergent in distribution
with different probability densities.

• We implement our methods by exper-
iments on a dateset of UCI Machine
Learning Repositories [16]. We provide
a method to select the optimal privacy
parameter α by solving an optimization
problem given a specific utility func-
tion of privacy. The test results show
that both the algorithm performs simi-
larly, but the primal variable perturba-
tion slightly outperforms the dual vari-
able perturbation. However, theoretical
analysis shows that dual variable pertur-
bation has higher probability of accuracy
and better sample requirement than does

the primal case. Both algorithms are
suitable for the both types of attacks we
are interested in.

1.1. Related Work

There has been a significant amount of lit-
erature on the distributed classification learning
algorithms. These works mainly focus on either
enhancing the efficiency of the learning model,
or on producing a global classifier from multiple
distributed local classifier trained at the corre-
sponding individual node. In the first kind of
these works, researchers focus on making the
distributed algorithm suitable to datasets of very
large size; some ([14]) use MapReduce to ex-
plore the performance improvements. The second
kind of works includes methods such as ADMM
methods ([1]) , parameter averaging ([10]) voting
classifiction ([13]), mixing parameters ([7]). Our
distributed algorithm is based on ADMM, in
which the centralized problem acts as a group of
coupled distributed convex optimization subprob-
lems with the consensus constaints on the primal
parameters.

Research on privacy has been studied in
a significant number of works since at least
[20]. Recent literature on privacy includes
anonymization [22], privacy-preserving data min-
ing [19,20,21], cryptographic approaches [33, 35].
Simple anonymization approaches are ineffective.
Individual information can be re-identified by
simply using a small amount of side informa-
tion [32,16]. In privacy-preserving data mining
research, the privacy can be pried through, for ex-
ample, composition attacks, in which case the ad-
versary have some prior knowledge. Other works
on data perturbation for privacy (for instance [25,
26]) focus on additive or multiplicative pertur-
bation of individual samples, which might affect
certain relationships among different samples in
the database.

The idea of increasing privacy by adding noise
has been studied for decades (for example, [49];
and see [48] for more details). The main perturba-
tion techniques can be summarized into two basic
classes. One is input perturbation, in which the
training datasets are randomly modified prior to



learning. The other one is output perturbation,
where the exact solution is obtained from the true
datasets but the noisy randomized version of the
solution is released. There exist some inherent
limitations for these two methods. Since Agrawal
and Srikant’s work in [50], increasing number of
work studies the limitations and applicability of
noise perturbation, and the definitions of privacy
started to expand. In Dwork et al.’s basic defini-
tion of privacy [4], ε-indistinguishability or dif-
ferential privacy, a change in a single entry of the
dataset incurs a small change in the distribution
from the view of any adversary via a specific
measure of distance in a worst-case scenario.

Differential privacy has been used in a large
number of works in privacy research (for example,
[4, 11, 27, 28, 29]) since it was first proposed by
Dwork et al [4]. Differential privacy is immune
to the composition attacks mentioned above [30].
Later works include differential-private contin-
gency tables [10], and differential-private combi-
natorial optimization [8]. Moreover, Wasserman
and Zhou study the differential privacy more
statistically. A body of exist literature also studies
the differential-private machine learning. For ex-
ample, Kasiviswanathan et al. derives a general
method for probabilistically approximately cor-
rect (PAC, [47]) in [46]. Other examples includes
the work of Blum et al. in [9] that provides a
method to deliver the dataset differentially pri-
vately. Many works studied the tradeoff privacy
and accuracy while developing and exploring the
theory of differential privacy (examples include
[4, 9, 10, 27, 28, 29, 44]). There are two main
approaches used in differential privacy: pertur-
bation by Laplace noise, and other exponential
mechanism. In this paper, we focus on the Laplace
noise perturbation. Laplace noise perturbation, es-
pecially the Laplace noise addition, is the primary
method for the differential privacy.

The rest of the paper is organized as follows.
Section 2 outlines the centralized ERM objective
function and then shows the equivalent distributed
form; the corresponding privacy concerns are de-
scribed. In Section 3, algorithms are produced,
and the analysis of privacy guarantee is provided.
Section 4 discusses the tradeoff between privacy
and accuracy, and the convergence of the algo-

Figure 1. Network example where connectivity among
nodes is denoted by a line joining them

rithms. Finally, Section 5 and 6 present numerical
experiments and concluding remarks.

2. Problem Statement

Consider a connected network shown in Figure
1, which contains P nodes described by one undi-
rected graph G(P,E ) with the set of nodes P =
{1,2,3, ...,P}, and edges E represened by lines
denoting the linkes between connected nodes. A
particular node p ∈P only exchanges informa-
tion between its neighboring node j ∈Np, where
j ∈Np is the set of all neighboring nodes of node
p, and Np = |Np| is the number of neighboring
nodes of node p. The network is connected but
not necessary fully connected; there can be local
cycles (e.g. local central node p and i, j,k ∈Np).
In a connected network, there must exist a path
i1, i2, i3, ..., im−1, im of length at least 1 connecting
node i1 and im. Each node p contains a dataset Dp
defined as follows:

Dp = {(xip,yip)⊂ X×Y : i = 0,1, ...,Bp},

of size Bp with data vector xip ∈ X ⊆Rd , and the
corresponding label yip ∈Y = {−1,1}. The entire
network therefore has a set of data as:

D̂ =
⋃
p∈P

Dp.

The target of the centralized classification al-
gorithm is to find a classifier f : X → Y using all
available data D̂ that enables each node in the
network to classify any data x′ input to a label
y′ ∈ {−1,1}.



Suppose that D̂ is available to the fusion center
node, then we can choose the global classifier f :
X → Y that minimizes the following centralized
regularized emprical risk minimization problem
(CR-ERM)

min
f

ZC( f |D̂) :=
CR

Bp

P

∑
p=1

Bp

∑
i=1

L̂ (yip, f T xip)+ρR( f ),

(1)
where CR ≤ Bp is a regularization parameter, and
ρ > 0 is the parameter that controls the impact of
the regularizer. The loss function L̂ (yip, f T xip) :
Rd → R, is used to measure the quality of the
classifier trained. In this paper, we focus on the
specific loss function:

L̂ (yip, f T xip) = L (yip f T xip)

The function R( f ) is a regularizer that prevent
overfitting. We aim to solve the centralized op-
timization problem (1) in a distributed fashion
while achieving the same performance as in the
centralized case. The decentralized equivalent en-
ables node p to contribute by optimizing only
the p-dependent terms of the objective function
without exchanging any training data to other
nodes p′ 6= p. In this paper, we have the following
assumptions

Assumption 1. - The loss function L is strictly
convex and doubly differentiable of f with |L ′| ≤
1 and |L ′′| ≤ c1, where c1 is a constant. Both L
and L ′ are continuous.

Assumption 2. - The regularizer function R(·) is
continuous differentiable and 1-strongly convex.
Both R(·) and ∇R(·) are continuous.

Assumption 3. - We assume that ‖xip‖≤ 1. Since
yip ∈ {−1,1}, then |yip|= 1.

2.1. Distributed ERM

To solve (1) in a distributed way, we first
reform the objective function. The global variable
f in CR-ERM is coupling the problem over the
network. To decouple, we replace f by P copies of
f ; thus the global variable becomes auxiliary per-
node variables { fp}P

p=1. Consensus constraints are
required to force necessary global consistency

condition f1 = f2 = ... = fP since the network is
connected. Let ZD denote ZD({ fp}p∈P |D̂) be the
decentralized objective function. An equivalent
distributed form of the CR-ERM is

min
{ fp}Pp=1

ZD :=
CR

Bp

P

∑
p=1

Bp

∑
i=1

L (yip f T
p xip)+

P

∑
p=1

ρR( fp).

s.t. fp = f j, p = 1, ...,P, j ∈Np.
(2)

Now the problem (2) can be solved distributively
by using the alternative direction method of mul-
tiplier (ADMM).

According to Lemma1 in [1], if { fp}P
p=1 repres-

net a feasible solution of (2) and the network is
connected, then problems (1) and (2) are equiv-
alent, that is, f = fp, p = 1, ...,P, where f is a
feasible solution of (1).

In order to solve (2) by ADMM, we use the
redundant variables {w jp} to assist to decouple
fp of node p from its neighors j ∈Np. Thus the
distrubted regularized emprical risk minimization
problem (DR-ERM) becomes

min
{ fp}Pp=1

ZD.

s.t. fp = wp j,wp j = f j, p = 1, ...,P, j ∈Np

(3)

Then the node-p-based individual objective func-
tion of (3) is

Zp( fp|Dp) :=
CR

Bp

Bp

∑
i=1

L (yip f T
p xip)+ρR( fp).

The augmented Lagrange funciton associated with
the distributed optimization problem is:

LD({ fp},{wp j},{λ k
p j}) =ZD +

P

∑
p=1

∑
i∈Np

(
λ

a
pi
)T

( fp−wpi)

+
P

∑
p=1

∑
i∈Np

(
λ

b
pi
)T

(wpi− fi)

+
η

2

P

∑
p=1

∑
i∈Np

(‖ fp−wpi ‖2

+ ‖ wpi− fi ‖2).
(4)

The distributed iterations solving (3) are:

{ fp(t+1)}P
p=1 = arg min

{ fp}Pp=1

LD
(
{ fp},{wp j(t)},{λ k

p j(t)}
)
,

(5)



{wp j(t +1)}P
p=1 = arg min

{wp j}Pp=1

LD
(
{ fp(t +1)},{wp j},

{λ k
p j(t)}

)
,

(6)

λ
a
p j(t +1) = λ

a
p j(t)+η( fp(t +1)−wp j(t +1)),

p ∈P, j ∈Np,
(7)

λ
b
p j(t +1) = λ

b
p j(t)+η(wp j(t +1)− fp(t +1))′

p ∈P, j ∈Np.
(8)

The general ADMM convergence is shown
in Appendix A. Since the iterations (5)-(8) are
proved to have the general form of ADMM iter-
ations (see Appendix I), then the convergence of
the decentralized regularized ERM is guaranteed.

From (4), the augmented Lagrange function is
linear-quadratic in wpi; thus, there is a closed
form of wpi(t +1) at each iteration. Then we can
replace wpi terms in (5), (7), (8) by its closed
expression. Moreover, by initializing the dual
variables λ k

p j = 0d×d , and let λp(t) = ∑ j∈Np λ k
p j,

p∈P , j ∈Np, k = a, b, we then can combine (7)
and (8) into one update. As a result, the update
procedures (5) to (8) can be further simplified
through replacing wpi by its corresponding closed
form in (4). The simplified ADMM iteration is
shown as follows, due to Lemma 3 of [1].

Let LN(t) denotes LN({ fp},{ fp(t)},{λp(t)}),
and

LN(t) =ZD +2
P

∑
p=1

λp(t)T fp

+η

P

∑
p=1

∑
i∈Np

‖ fp−
1
2
( fp(t)+ fi(t)) ‖2 .

The ADMM iterations (5)-(8) can be reduced to

{ fp(t+1)}P
p=1 = arg min

{ fp}Pp=1

LN({ fp},{ fp(t)},{λp(t)}),

(9)

λp(t +1) = λp(t)+
η

2 ∑
j∈Np

[ fp(t +1)− f j(t +1)].

(10)
We denote the node-p-based non-

private augmented Lagrange function

Figure 2. Visualization of iterations in Lemma 1.1: every
node p ∈ P computes and broadcasts fp(t + 1) to all
neighbors i, j, k ∈Np.2: once every node p∈P has received
fx(t +1) from all x ∈Np, it computes λp(t +1).

LN p({ fp},{ fp(t)},{λp(t)}) as LN p(t):

LN p(t) =
CR

Bp

Bp

∑
i=1

L (yip f T
p xip)+ρR( fp)+2λp(t)T fp

+η ∑
i∈Np

‖ fp−
1
2
( fp(t)+ fi(t)) ‖2 .

(11)
Thus, every node p updates fp(t + 1) at each
iteration as follows

fp(t +1) = argmin
fp

LN p(t).

Algorithm 1 Distributed ERM
Required:Randomly initialize fp,λp = 0d×1 for
every p
Inputs:D̂
1: for t = 0,1,2,3, ... Do
2: for p = 1,2,3, ...P Do
3: Compute fp(t +1) via (9).
4: end for
5: for p = 1,2,3, ...P Do
6: Broadcast fp(t +1) to all neighbors j ∈Np
7: end for
8: for p = 1,2,3, ...P Do
9: Compute λp(t +1) via (10)
10: end for
11: end for
Outputs: f ∗

ADMM-based distributed ERM iterations (9)
to (10) is illustrated in Figure 2 and summarized
in Algorithm 1. Every node p ∈P updates its
local d×1 estimates fp(t) and λp(t). At iteration
t +1, node p updates the local fp(t +1) through



(9). Next, node p broadcasts the latest fp(t+1) to
all its neighboring nodes j ∈Np. Iteration t + 1
finishes as each node updates the λp(t + 1) via
(10).

Every iteration of our algorithm is still a
minimization problem similar to the centralized
problem (1). However, the number of variables
participating in solving (9) per node per iteration,
which is Np, is much smaller than that in the cen-
tralized problem, which is ∑

P
p=1 Np. There are sev-

eral methods to solve (9). For instance, projected
gradient method, Newton method, and Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) method
that approximates the Newton method, to name
a few.

ADMM based distributed machine learning
has benefits due to high scalability, economic
communication, and a certain level of privacy.
The privacy arised is mainly due to the local
parameter exchange among neighboring nodes
instead of centralized communication. Dually, the
parameter of each node is anonymous to the
non-neighboring nodes. However, the neighboring
nodes can access to the parameter without privacy
protection; also, as shown in Section 1, simple
anonymization is not good enough because it is
still possible for adversary to extract the sensi-
tive information with side information about the
target.

2.2. Privacy Concerns

Although the data stored at each node is not
exchanged during the entire ADMM algorithm,
the potential privacy risk still exists. Suppose the
dataset Dp stored at node p contains sensitive in-
formation in data point (xi,yi) that is not allowed
to be released to other nodes in the network or
anyone else outside.

In the distributed version of algorithm, node
p optimizes only the p-dependent parts of the
centralized problem. Let K : Rd → R be the ran-
domized version of Algorithm 1, and let { f ∗p}p∈P
be the output of K at all the nodes. Then { f ∗p}p∈P
is random. Let Kt

p be the node-p-dependent sub-
algorithm of K at iteration t, and let fp(t) be the
output of Kt

p(Dp) at iteration t inputing Dp. fp(t)
is random at each t.

Consider an adversary, who knows all the data
about node p except for the (xip,yip). The adver-
sary is able to extract much additional information
about (xip,yip) by observing the output of the
algorithm. For the adversary inside the network,
the sensitive information can even be leaked at
any iteration of the training process. Therefore,
it is necessary to develop a privacy preserved
distributed ADMM algorithm for classification
problem. We consider two types of attacks:
• Type 1: This attack is from adversaries

outside the network, who do not have
access to the intermediate ADMM it-
eration. The attack observes the output
{ f ∗p}p∈P of algorithm K and aims to
extract additional information of the pri-
vate data point of the training dataset.

• Type 2: This attack is from the adver-
saries that can get access to the inter-
mediate ADMM iterations. This attack
aims to obtain additional information
about the private data point of the the
training dataset by observing the in-
termediate output fp(t) of Kt

p for all
p ∈P .

We denote our privacy of distributed network
based on the definition of differential privacy in
[4]. Specifically, we require that a change of any
single data point in the dataset might only change
the distribution of the output of the algorithm
slightly, which is visible to the adversary; this is
done by adding randomness to the output of the
algorithm. Let Dp and D′p be two datasets differ-
ing in one data points; i.e., let (xip,yip)⊂Dp, and
(x′ip,y

′
ip)⊂D′p, then (xip,yip) 6= (x′ip,y

′
ip). In other

words, their Hamming Distance

Hd(Dp,D′p) =
Bp

∑
i=0

1{i : xi 6= x′i} (12)

equals 1: i.e. Hd(Dp,D′p) = 1.

Definition 1. (Networked αp-Differential Pri-
vacy) Consider a network consisits of P nodes
P = 1, 2, ...P, and each node p has a training
dataset Dp, and D̂ =

⋃
p∈P Dp. Let K : Rd→R be

a randomized version of Algorithm 1. K outputs
{ f ∗p}p∈P , where f ∗p =K(Dp) is the corresponding
output at node p. Let D′p be any dataset with



Hd(D′p,Dp) = 1, and let g∗p = K(D′p). Then, K
is networked αp-differential private, if for any
datasets D′p for all p ∈P , known by the adver-
sary of Type 1 attack, and for all possible sets
of the outcomes S ⊆ R, the following inequality
holds:

Pr[ f ∗p ∈ S]≤ eα
p ·Pr[g∗p ∈ S]. (13)

The probability is taken over f ∗p the output of K(·)
at each node p ∈P . The privacy raised is called
networked αp-differential Privacy.

Definition 1 specifies the privacy required
against Type 1 attack. More specifically, net-
worked αp-differential private algorithms can pre-
vent adversaries from obtaining much additional
information by simply observing the output of the
algorithm. This is because that no matter how the
adversaries adjust the dataset D′p (Hd(D′p,Dp) =
1), the distribution of output can only change
slightly.

For the privacy preserved against Type 2 attack,
we have the following definition.

Definition 2. (Dynamic α t
p-Differential Privacy)

Consider a network consisits of P nodes P =
1, 2, ...P, and each node p has a training dataset
Dp, and D̂ =

⋃
p∈P Dp. Let K : Rd → R be a

randomized version of Algorithm 1. Let Kt
p be the

node-p-dependent sub-algorithm of K, optimizat-
ing ADMM iteration at t and outputing fp(t). Let
D′p be any dataset with Hd(D′p,Dp) = 1, and let
gp(t) = Kt

p(D
′
p). We say that the algorithm K is

dynamic α t
p-differential private if for any dataset

D′p for all p∈P known by the adversary of Type
2 attack, and for all possible sets of the outcomes
S⊆R, the following inequality holds:

Pr[ fp(t) ∈ S]≤ eαt
p ·Pr[gp(t) ∈ S], (14)

for all time t during a learning process. The
probability is taken over fp(t), the output of Kt

p.
The privacy raised for algorithm K is called
dynamic α t

p-differential Privacy.

Definition 2 provides the privacy against Type 2
attack. Dually, in dynamic α t

p-differential private
algorithms, adversaries of Type 2 attack cannot
extract much additional information by observing
the intermediate updates of fp(t). This is because

that inputing any D′p with Hd(D′p,Dp) = 1 to the
algorithm, the distribution of the output will not
change much if any one data point is changed in
D′p.

Clearly, the algorithm with ADMM iterations
shown in (9) to (11) is neither networked αp-
differential private nor dynamic α t

p-differential
private. This is because the intermedate and final
optimal output fp’s are deterministic given dataset
Dp. For D′p with Hd(Dp,D′p) = 1, the classifier
will change completely, and the probability den-
sity Pr([ fp|D′p]) = 0, which leads to the ratio of
probabilities Pr[ fp|Dp]

Pr[ fp|D′p]
→ ∞.

In order to provide the differential privacies
defnined in Definition 1 and 2, we propose two
algorithms, dual variable perturbation and primal
variable perturbation, which are described in
Section 3.1 and 3.2, respectively. Both algorithms
can provide the two types of differential privacy
defined in Section 2.2. However, we modify the
primal variable perturbation by replacing the last
ADMM iteration with dual variable perturbation
in order to improve the accruacy of the final
outputed classifier.

3. Dynamic Private Preserving

In this section, we describe two algorithms that
provide networked and dynamic α-differential
privacy defined in Section 2.2, respectively.

3.1. Dual Variable Perturbation

In order to provide differential privacy defined
in Definition 1 and 2, we introduce our first
private algorithm, dual variable perturbation, in
which we perturb the dual variable {λp(t)}P

p=1
with a random noise vector εp(t), which has the
probability density function:

K (ε)∼ e−ζp(t)‖ε‖, (15)

where ζp(t) is a parameter related to the value of
αp(t). Let µp(t) = λp(t)+ εp(t) be the perturbed
dual variable. Now the corresponding node-
p-based augmented Lagrange function LN p(t)
becomes Ldual

(
fp, fp(t),µp(t + 1),{ fi(t)}i∈Np

)
.



(a) Dual variable perturbation: Intermediate iteration (b) Primal variable perturbation: Intermediate iteration

(c) Final iteration for both algorithms

Figure 3. Visualization of dual variable perturbation, primal variable perturbation. (a) shows the updates in the intermediate
iterations of dual variable perturbation; (b) shows the primal variable perturbation during intermediate iterations; (c) describes
the final updates for both algorithms. (a) and (b) prevent Type 2 attacks, and (c) prevents Type 1 attacks. The evail face and
lighting symbols denote the attacks.

Use Ldual(t) to denote Ldual
(

fp, fp(t),µp(t +
1),{ fi(t)}i∈Np

)
, and we have

Ldual(t) =
CR

Bp

Bp

∑
i=1

L (yip f T
p xip)+ρR( fp)

+2µp(t +1)T fp +
Φ

2
‖ fp ‖2

+η ∑
i∈Np

‖ fp−
1
2
( fp(t)+ fi(t)) ‖2,

(16)
where Φ

2 ‖ fp ‖2 is an additional penalizer. As
a result, the minimization of Ldual(t) becomes
random. We slightly change the iterations (9) to
(10) as follows:

µp(t +1) = λp(t)+
CR

2Bp
εp(t +1), (17)

fp(t +1) = argmin
fp

Ldual(t), (18)

λp(t +1) = λp(t)+
η

2 ∑
j∈Np

[ fp(t +1)− f j(t +1)].

(19)
We perturb the dual variable λp(t) via an ad-

ditional variable µp in (19). This is because the
dual variable is not exchanged during the training
and is only used within the corresponding node;
thus the direct perturbation to λp will affect the
accuracy by the accumulated noise and is not
necessary. We have the following theorem.

Theorem 1. Let α̂ = αp(t) − ln
(

1 +

c1
Bp
CR

(
ρ+2ηNp

))2
. If α̂ > 0, then Φ = 0; else,

let Φ = c1
Bp
CR (eαp(t)/4−1)

−ρ−2ηNp, and as a result

α̂ = αp(t)/2. Under Assumption 1, 2 and 3, if the
distributed classification optimization problem
with objective function (2) can be solved by
Algorithm 2, then the algorithm A1 solving this
distributed problem is dynamic α-differential
private with αp(t) for each node p ∈P at time



t. The ratio of conditional probabilities of fp(t)
is bounded as:

Q( fp(t)|D)

Q( fp(t)|D′p)
≤ eαp(t), (20)

where Q( fp(t)|D) and Q( fp(t)|D′p) are the prob-
ability density functions of fp(t) given dataset D
and D′p, respectively, and Hd(D,D′p) = 1.

Proof: See Appendix B

Algorithm 2 Dual Variable Perturbation
Required:Randomly initialize fp,λp = 0d×1 for
every p
Inputs:D̂,{[αp(1),αp(2), ...]}P

p=1
1: for t = 0,1,2,3,... Do
2: for p = 1,2,3,...P Do
3: Let α̂ = αp(t)− ln

(
1+ c1

Bp
CR

(
ρ+2ηNp

))2
.

4: If α̂ > 0, then Φ = 0, else, Φ =
c1

Bp
CR (eαp(t)/4−1)

−

ρ−2ηNp and α̂ = αp(t)/2.
5: Draw noise εp(t) according to (15) with

ζp(t) = α̂

6: Compute µp(t +1) via (17)
7: Compute fp(t +1) via (15)
8: with augmented Lagrange function as (16).
9: end for
10: for p = 1,2,3,...P Do
11: Broadcast fp(t+1) to all neighbors j ∈Np
12: end for
13: for p = 1,2,3,...P Do
14: Compute λp(t +1) via (16)
15: end for
16: end for
Outputs: { f ∗p}P

p=1

The algorithm corresponding to Theorem 1 is
illustrated in Figure 3 (a) and (c), and summarized
in Algorithm 2. All nodes have its corresponding
value of ρ . Every node p ∈P updates its local
estimates µp(t), fp(t) and λp(t) at time t; at time
t+1, node p first perturbs the dual variable λp(t)
obtained at time t to get µp(t + 1) via (17), and
then uses training dataset Dp to compute fp(t+1)
via (18). Next, node p distributes fp(t + 1) to
all its neighboring nodes. The (t + 1)-th update
finishes when each node has updated its local

λp(t + 1) via (19). The final iteration is exactly
the same as the intermeidate iterations.

Theorem 1 links Algorithm 1 with Definition 2.
We observe that an algorithm satisfies Definition
2 also satisfies Definition 1 for any individual
node p∈P . Therefore, any distributed algorithm
that is dynamic α-differential private is also net-
worked α-differential private. Thus, we have the
following corollary.

Corollary 1.1. If each node in the network
chooses the same privacy parameter αp(t) =
α∗(t) for all p ∈P at each time, then the al-
gorithm meets Theorem 1 also provide networked
α-differential privacy with α = α∗(t).

Corollary 1.1 can be proved by directly substi-
tuting αp(t) = α∗(t) for all p ∈P .

The definitions of differential privacy in Sec-
tion 2 (and also in, for example, [4, 11, 12])
only consider the change of output distribution
corresponding to a change of a single entry of
the dataset. However, in many cases, the sensitive
information may be contained in more than one
data point. Actually, Theorem 1 can be extended
to deal with the dataset that has multiple sensitive
data entries.

Corollary 1.2. Let D and D′p be two datasets
with Hd(D,D′p) = c2, c2 ≥ 1. Then an algorithm
meets Theorem 1 can compute a fp(t) that has the
following bounded ratio of condtional densities:

Q( fp(t)|D)

Q( fp(t)|D′p)
≤ ec2α ′p(t), (21)

Proof: See Appendix C.

However, the output distribution must change
corresponging to the a change of multiple data
entries; as a result, the level of privacy has to
decrease, especially for large c2 and large BP.

3.2. Primal Variable Perturbation

In this case, we perturb the primal vari-
able { fp(t + 1)}P

p=0 before releasing this vari-
able to the neighboring nodes of each local
node. This algorithm can also provide differen-
tial privacy defined in Definition 1 and 2. Let



the node-p-based augmented Lagrange function
Lprim

(
fp, fp(t),εp(t),λp(t),{Vi(t)}i∈Np

)
be repre-

sented as Lprim(t):

Lprim(t) =
CR

Bp

Bp

∑
i=1

L (yip f T
p xip)+ρR( fp)+2λp(t)T fp

+η ∑
i∈Np

‖ fp−
1
2
( fp(t)+Vi(t)− εp(t)) ‖2 .

We use the un-perturbed primal fp(t) obtained at
time t in the augmented Lagrange function and
subtract the noise vector εp(t) added at time t in
order to reduce the noise in the minimization in
(22); εp(t) is static at time t +1. The privacy of
releasing primal variable is not affected.

The following iterations specify the corre-
sponding ADMM iterations.

The distributed iteration provideing dynamic
αp(t)-differential privacy at time t is

fp(t +1) = argmin
fp

Lprim(t), (22)

Vp(t +1) = fp(t +1)+ εp(t +1), (23)

λp(t +1) = λp(t)+
η

2 ∑
j∈Np

[Vp(t +1)−Vj(t +1)],

(24)
where εp(t + 1) is the random noise vector with
the density function (15). The aurgmented La-
grange function is (11). When the ADMM iter-
ation meets the stop time, we input D̂, and the
latest { fp(t)}p and {λp(t)}p obtained from (22)
and (24), respectively, to Algorithm 1 to iterate
(17) to (19) one time.

The following theorem states the result of pri-
mal variable perturbation.

Theorem 2. Under Assumption 1, 2 and 3, if
the distributed classification optimization prob-
lem with objective function (2) can be solved
by Algorithm 3 with ζp(t) =

ρBpαp(t)
2 , then the

algorithm A2 solving this distributed problem is
dynamic α-differential private with αp(t) for each
node p ∈P at time t. The ratio of conditional
probabilities of fp(t) is bounded as in (20).

Proof: See Appendix D.

Corollary 1.1 and 1.2 also hold for Theorem 2.

Corollary 2.1. If all the nodes have the same
privacy parameter α∗(t) at each time, then the al-
gorithm meets Theorem 2 also provide networked
α-differential privacy with α = α∗(t).

Similar to Corollary 1.1, Corollary 2.1 can be
proved by substituting α = α∗(t) for all p ∈P .

Corollary 2.2. Let D and D′p be two datasets with
Hd(D,D′p) = c2, c2 ≥ 1. Any algorithm satisfies
Theorem 2 can produce a private fp(t), which
has the following bounded ratio of condtional
densities at each iteration:

Q( fp(t)|D)

Q( fp(t)|D′p)
≤ ec2α ′p(t). (25)

The proof of Corollary 2.2 is the same as that
of Corollary 1.2 in Appendix C.

Algorithm 3 Primal Variable Perturbation
Required:Randomly initialize fp,λp = 0d×1 for
every p
Inputs:D̂,{[αp(1),αp(2), ...]}P

p=1
1: for t = 0,1,2,3,... Do
2: for p = 1,2,3,...P Do
3: Draw noise εp(t) according to (15) with

ζp(t) =
ρBpαp(t)

2CR

4: Compute fp(t +1) via (22)
5: with augmented Lagrange function as (11).
6: Compute Vp(t +1) via (23)
7: end for
8: for p = 1,2,3,...P Do
9: Broadcast Vp(t +1) to all neighbors j ∈Np
10: end for
11: for p = 1,2,3,...P Do
12: Compute λp(t +1) via (16)
13: end for
14: if t = stop time
15 Input D̂, and the latest { fp(t)}p and {λp(t)}p
obtained

in above Step 4 and 12, respectively, to
Algorithm 1 to

iterate Step 1 once.
16: end for
Outputs: { f ∗p}P

p=1

The algorithm associated with Theorem 2 is
illustrated in Figure 3 (b)-(c), and is summarized
in Algorithm 3. Each node p ∈P updates fp(t),



Vp(t) and λp(t) at time t. Then, at time t + 1,
training dataset is used to compute fp(t + 1) via
(22), which is then perturbed to obtain Vp(t +1)
via (23). Next, Vp(t + 1) is distributed to all the
neighboring nodes of node p. Finally, λp(t+1) is
updated via (24). The final iteration follows the
dual variable perturbation.

4. Accuracy and Convergence Analysis

In this section, we discuss the accuracy of
Algorithm 1 and 2. We establish performance
bounds for regularization functions with L2 norm.
Our analysis is based on the following assump-
tions:

Assumption 4. - The data points {(xpi,ypi)}
Bp
i=1

are drawn i.i.d. from a fixed but unknown proba-
bility distribution Pxy(xpi,ypi).

Assumption 5. - εp(t) is drawn from (15) with
the same αp(t) = α(t) for all p ∈P .

We define the expected loss as

Ĉ( fp) :=CR
E(x,y)∼Pxy(L (y f T x)).

Let Ẑ be the expected objective as

Ẑ( fp) := Ĉ( fp)+ρR( fp).

We also defined the constrained objectives for
perturbed ADMM-based algorithms. Let ε pi(t) =
εp(t)− εi(t), for i ∈ Np. Specifically, at each
iteration t, we define:

Zdual( fp, t|Dp) := Zp( fp|Dp)+
CR

Bp
εp(t)T fp,

Zprim( fp, t|Dp) := Zp( fp|Dp)

−η ∑
i∈Np

(
( fp−

1
2
( fp(t)+ fi(t))T

· (ε pi(t))+
1
4
(
ε

pi(t)
)2
)
.

Let ε t
p = εp(t), the noise vector generated

at time t. The objective Zdual( fp, t|Dp) (respec-
tively, Zprim( fp, t|Dp)) is the corresponding node-
p based objective function for the Algorithm 1
(respectively, Algorithm 2) if we fix the noise as
ε t

p generated at time t for Ldual( fp, t|Dp) through-
out the entire ADMM process.

Let f̂p(t + 1), f non
p (t + 1) and f ∗p(t + 1) be

the population optimum, (non-private) empirical
optimum, and private (empirical) optimum, re-
spectively, defined at iteration t +1 as:

f̂p(t +1) = argmin
fp

Ẑ( fp),

f non
p (t +1) = argmin

fp
Zp( fp, t|Dp),

f ∗p(t +1) = argmin
fp

Z( fp, t|Dp),

where Z represents Zdual or Zprim, respectively.
Let Fp(t + 1) = argmin fp LnonP( fp, t|Dp)be the

updated non-private classifier at iteration t + 1.
From Theorem 9 (see Appendix A), the sequence
{Fp(t +1)} is bounded and converges to an opti-
mal value f non

p (t + 1) as time t → ∞. Thus,there
exists a constant ∆non(t) such that:

Ĉ(Fp(t))−Ĉ( f non(t))≤ ∆
non(t).

Let fp(t+1) be the minimizer of the correspond-
ing augmented Lagrange function of Zpriv at time
t. Since both Zdual( fp, t|Dp) and Zprim( fp, t|Dp)
are real and convex; similarly, the sequence
{ fp(t)} is bounded and fp(t) converges to f ∗p(t),
which is a limit point of fp(t), and there exists a
constant ∆

priv
p (t)=∆dual

p (t) or ∆
prim
p (t) given noise

vector εp(t) such that

Ĉ( fp(t))−Ĉ( f ∗p(t))≤ ∆
priv
p (t).

We will show that the performance of the algo-
rithm can depend on the number of data points,
Bp, of the dataset Dp, for all p∈P . Let f 0

p(t) be a
reference classifier at time t with the expected loss
as Ĉ∗ = Ĉ( f 0

p(t)). Specifically, the performance
of the algorithm is measured by the Bp, which
is a function of ‖ f 0

p(t) ‖ required to obtain a
classifier fp(t) that minimizes the expected loss
within some accuracy:

Ĉ( fp(t))≤ Ĉ∗(t)+αacc +∆
priv
p (t).

where αacc is the optimization accuracy. We say
that every learned fp(t) is αacc-optimal if it sat-
isfies the above inequality. First, we provide the
theorem about the performance of the non-private
ADMM-based algorithm.

Theorem 3. Let R( fp(t))= 1
2 ‖ fp(t) ‖2, and f 0

p(t)
such that Ĉ( f 0

p(t)) = C∗E(t) for all p ∈ P at



time t, and a real number δ > 0. Let Fp(t +
1) = argmin fp LnonP( fp, t|Dp) be the output of
Algorithm 1. If Assumption 1 and 4 are satisfied,
then there exists a constant βnon such that if the
number of data points, Bp in Dp =

{
(xip,yip) ⊂

R
d×{−1,1}

}
satisfy:

Bp > βnon max

({CR ‖ f 0
p(t +1) ‖2 ln( 1

δ
)

α2
acc

}
t=1

)
,

then Fp(t +1) satisfies:

P
(
Ĉ(Fp(t+1))≤ Ĉ∗(t+1)+αacc+∆

non(t)
)
≥ 1−δ .

Proof: See Appendix E.

We now establish the performance bounds for
Algorithm 1, dual variable perturbation, which is
summarized in the following theorem.

Theorem 4. Let R( fp(t))= 1
2 ‖ fp(t) ‖2, and f 0

p(t)
such that Ĉ( f 0

p(t)) =C∗E(t) for all p ∈P , and a
real number δ > 0. If Assumption 1, 4 and 5 are
satisfied, then there exists a constant βdual such
that if the number of data points, Bp in Dp ={
(xip,yip)⊂Rd×{−1,1}

}
satisfy:

Bp > βdual max

({‖ f 0
p(t +1) ‖ d ln( d

δ
)

αaccαp(t)

}
t=1

,

{CRc1 ‖ f 0
p(t +1) ‖2

αaccαp(t)

}
t=1

,

{CR ‖ f 0
p(t +1) ‖2 ln( 1

δ
)

α2
acc

}
t=1

)
,

then f ∗p(t +1) satisfies:

P
(
Ĉ( f ∗p(t +1))≤ Ĉ∗(t +1)+αacc

)
≥ 1−2δ .

Proof: See Appendix F.

Corollary 4.1. Let fp(t + 1) =
argminLdual( fp, t|Dp) be the intermediate
updated classifier of Algorithm 2 and let f 0

p(t) be
a reference classifier such that Ĉ( f 0

p(t) = Ĉ∗(t).
If all the conditions of Theorem 3 are satisfied,
then, fp(t +1) satisfies

P
(
Ĉ( fp(t+1))≤ Ĉ∗(t)+αacc+∆

dual
p (t)

)
≥ 1−2δ .

Proof: The following holds for fp(t) and
f ∗p(t)

Ĉ( fp(t))−Ĉ( f ∗p(t))≤ ∆
dual
p (t).

From Theorem 3,

P
(
Ĉ( f ∗p(t +1))≤ Ĉ∗(t +1)+αacc

)
≥ 1−2δ .

Therefore, we can have:

P
(
Ĉ( fp(t +1))≤ Ĉ∗(t)+αacc +∆

dual
p
)
≥ 1−2δ .

Theorem 4 and Corollary 4.1 can guarantee the
privacy defined in both Definition 1 and 2. The
following theorem is used to analyze the perfor-
mance bound of un-perturbed classifier fp(t +1)
in (22), which minimizes Lprim(t) that involves
noise vectors from Vp(t) perturbed at the previous
iteration.

Theorem 5. Let R( fp(t))= 1
2 ‖ fp(t) ‖2, and f 0

p(t)
such that Ĉ( f 0

p(t)) = C∗E(t), and a real number
δ > 0. From Assumption 1, we have the loss
function L (·) is convex and differentiable with
L ′(·) ≤ 1. If Assumption 4 and 5 are satisfied,
then there exists a constant β A

prim such that if the

number of data points, Bp in Dp =
{
(xip,yip) ⊂

R
d×{−1,1}

}
satisfies:

Bp > β
A
prim max

({CR ‖ f 0
p(t +1) ‖3 ηNpd ln( d

δ
)

α2
accαp(t)

}
t=1

,

{CR ‖ f 0
p(t +1) ‖2 ln( 1

δ
)

α2
acc

}
t=1

)
,

then f ∗p(t +1) satisfies:

P
(
Ĉ( f ∗p(t +1))≤ Ĉ∗(t +1)+αacc

)
≥ 1−2δ .

Proof: See Appendix G.

Theorem 6. Let R( fp(t)) = 1
2 ‖ fp(t) ‖2, and

f 0
p(t) such that Ĉ( f 0

p(t)) = C∗E(t), and a real
number δ > 0. Let f ∗p(t + 1) = argminZprim(t)
be αacc-accurate according to Theorem 4. From
Assumption 1 we have that the loss function L (·)
is convex and differentiable with L ′(·) ≤ 1, and
we also assume that L ′ satisfies:

|L ′(a)−L ′(b)| ≤ c4|a−b|



for all pairs (a,b) with a constant c4. If Assump-
tion 4 and 5 are satisfied, then there exists a
constant β B

prim such that if the number of data

points, Bp in Dp =
{
(xip,yip) ⊂ Rd ×{−1,1}

}
satisfies:

Bp >β
B
prim max

({CR ‖ f 0
p(t +1) ‖3 ηNpd ln( d

δ
)

α2
accαp(t)

}
t=1

,{CR ‖ f 0
p(t +1) ‖2 ln( 1

δ
)

α2
acc

}
t=1

,

{4CB ‖ f 0(t +1) ‖ d
(

ln( d
δ
)
)2

αaccαp(t)

}
t=1

,

{4 ‖ f 0
p(t +1) ‖3 ηNpd ln( d

δ
)

α2
accαp(t)

}
t=1

,

{4
(
CR
) 3

2 ‖ f 0
p(t +1) ‖2 d ln( d

δ
)

α
3/2
acc αp(t)

}
t=1

)
,

then V ∗p (t +1) = f ∗p(t +1)+ εp(t +1) satisfies:

P
(
Ĉ(V ∗p (t +1))≤ Ĉ∗(t +1)+αacc

)
≥ 1−3δ .

Proof: See Appendix H.

Corollary 6.1. Let fp(t + 1) =
argminLprim( fp, t|Dp) be the intermediate
updated classifier of Algorithm 3, and let f 0

p(t) be
a reference classifier such that Ĉ( f 0

p(t) = Ĉ∗(t).
If all the conditions of Theorem 5 are satisfied,
then, Vp(t +1) = fp(t +1)+ εp(t +1) satisfies

P
(
Ĉ(Vp(t+1))≤ Ĉ∗(t)+αacc+∆

prim
p (t)

)
≥ 1−3δ .

Proof: Since

Ĉ( fp(t))−Ĉ( f ∗p(t))≤ ∆
prim
p (t),

then

Ĉ(Vp(t))−Ĉ(V ∗p (t))≤ ∆
prim
p (t).

From Theorem 5, V ∗p (t +1) satisfies

P
(
Ĉ(V ∗p (t +1))≤ Ĉ∗(t +1)+αacc

)
≥ 1−3δ .

Therefore, we have:

P
(
Ĉ(Vp(t +1))≤ Ĉ∗(t +1)+αacc+∆

prim
p (t)

)
≥ 1−3δ .

Since at the last iteration of primal variable
perturbation we use the same iteration as that

of the dual variable perturbation, Theorem 6 and
Corollary 6.1 only guarantee the dynamic α t

p-
differential privacy for primal variable perturba-
tion. As a result, we combine the conditions of
Theorem 4 and 6 to guarantee the networked αp-
differential privacy. Thus, we have the following
corollary.

Corollary 6.2. Let f ∗p be the final output classifier
of Algorithm 3 of node p, and let f 0

p(t) be a
reference classifier such that Ĉ( f 0

p(t) = Ĉ∗(t).
If all the conditions of Theorem 4 and 6 are
satisfied, then, f ∗p satisfies

P
(
Ĉ( f ∗p)≤ Ĉ∗(t)+αacc +∆

dual
p (t)

)
≥ 1−5δ .

Proof: We need all the conditions of The-
orem 6 to be satisfied in order to guarantee the
privacy during the intermediate iterations. All the
conditions of Theorem 4 are satisfied so that
the networked αp-differential privacy is provided.
Combining Theorem 4 and 6 gives the probability
no less than 1−5δ .

Clearly, the privacy rises by trading the accu-
racy. It is essential to manage the tradeoff between
the privacy and accuracy in order to establish both
the privacy and accuracy with at least satisfied
level.

Another important issue we care about is the
convergence of the Algorithm 1 and 2. Our
analysis based on the assumption that all the
conditions of Theorem 3 to 5 are satisfed. As
shown in Appendix A, the non-private ADMM
algorithm is convergent. In our private algorithms,
the augmented Lagrange function (11) and (16)
are solvable since both of them are convex. Also,
the matrix A = Id is an identity matrix in our
case, thus AT A is nonsingular. Theorem 9 shows
that the non-private ADMM-based optimizaiton
is convergent. However, our algorithms do not
necessarily converge to one optimum classifier for
all the nodes; different node can have different
value of convergent classifier, but all of them have
similar performance.

We first analysis the convergence of dual vari-
able perturbation. We summarize the convergence
analysis in the following theorem.

Proposition 7. Let f 0
p(t) be a reference classifier

such that Ĉ( f 0
p) = C∗E(t) for all node p ∈P at



time t. If all the conditions of Theorem 4 are
satisfied, then fp(t) = argminLdual( fp, t − 1|Dp)
is convergent in distribution with probability ≤
1−2δ .
Proof: See Appendix J.

The convergence of primal variable perturba-
tion only consider the primal variable fp(t+1) at
each time before perturbation. It is summarized
in the folowing theorem.

Proposition 8. Let R( fp(t)) = 1
2 ‖ fp(t) ‖2, and

f 0
p(t) such that Ĉ( f 0

p(t)) = C∗E(t), and a real
number δ > 0. If all the conditions of Theorem 6
is satisfied, then fp(t) = argminLprim( fp, t|Dp) is
convergent in distribution with probability 1−3δ .
Proof: See Appendix K.

5. Numerical Experiments

In this section, we test Algorithm 2 and 3 with
real world training dataset. Consider the follow-
ing examples. The classification method used is
logistic regression. Potential application scenarios
include but nor limited to the following two.

Example 5.1. (Potential Customer Classification)
Consider a network of P companies agreed to col-
laborate to develop an algorithm that can classify
the target customers by predicting their annual
incomes based on thier information such as age,
sex, occupation, and education. Suppose Dp is the
customer data records stored at company p. The
learning process of the algorithm is based on all
available datasets {Dp}P

p=1, rather than company
p alone. The company p learns the model only
by its own training dataset Dp, and there is
no data exchange between different companies.
The intermediate updated classifier fp(t) is the
only shared information. Moreover, company p
only communicate with its neighboring compa-
nies. The companies want to increase the privacy
level of the algorithm, and make sure the final
algorithm and also the learning process preserves
the privacy of the sensitive information against
other companies in this network as well as other
parties from outside.

Example 5.2. (International Collaborative Anti-
Terrorist) Consider a group of countries with

corresponding datasets D containing intelligence
about the terrorism. All the countries are willing
to collaborate in order to classify jointly possible
terrorist entering their countries. However, the
confidential information involved in the intelli-
gence prevents each countries to open access to
the dataset of other countries. In this case, differ-
ential privacy model can preserve the confidential
intelligence while producing an accurate classifier
of terrorist.

5.1. Privacy Preserved Logistic Regression

In the experiments, we use our algorithm to
develop a dynamic differential private logisitic
regression. The logistic regression has the loss
function:

LLR(yip f T xip) = log(1+ exp(−yip f T
p xip)).

(26)
The first derivative and teh second derivative

are:
L ′

LR =
−yipxip

1+ exp(yip f T
p xip)

L ′′
LR =

y2
ipxipxT

ip

(1+ exp(yip f T
p xip)(1+ exp(−yip f T

p xip)
,

which can be bounded as |L ′
LR| ≤ 1 and L ′′

LR≤ 1
4 ,

respectively, according to Assumption 3. There-
fore, the loss function of logistic regression satis-
fies the conditions shown in Assumption 1. In this
case, R(Fp) =

1
2 ‖ fp ‖2, and c1 =

1
4 . And we can

directly apply the loss function LLR to Theorem
1 and 2 with R( f ) = 1

2 ‖ fp ‖2, and c1 =
1
4 , and

then it can provide αp(t)-differential privacy for
any p ∈P at time t = 1, 2, ... of a distributed
logistic regression problem.

5.2. Pre-Processing

We test our algorithms to this example. The
classification method used is logistic regression.
We simulate the customer information by Adult
dataset from UCI Machine Learning Repository
[11], which contains demographic information
such as age, sex, education, occupation, mari-
tal status, and native country. There are 48842
data samples. The prediction task is to determine
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Figure 4. Convergence of algorithms, at iteration 100 (before the stop time)

whether a person’s annul income is greater than
$50k.

In order to process the Adult dataset to our
algorithm, we remove all the missing data points,
and follow the data cleaning process of [12]. Also,
we convert the categorial attributes to a binary
vector. For other non-numerical descriptive at-
tributes such as different countries in the category
of native country, we replace them by their own
frequency of occurance in the corresponding cat-
egory. Moreover, each column is first normalized
to make sure the maximum value is 1; then each
row is normalized so that the L2 norm of each
data sample is at most 1.

5.3. Privacy-Accuracy Tradeoff

In this experiment, we study the privacy-
accuracy tradeoff of Algorithm 2 and 3. The
privacy is quantified by the value of αp(t).

When αp(t) becomes larger, the ratio of den-
sities of the classifier fp(t) on two different data
sets is larger, which implies a higher belief of the
adversary when one data point in data set D is
changed; thus, it provides lower privacy. However,
the accuracy of the algorithm increases as αp(t)
becomes larger. As shown in Figure 4, larger
αp(t) gives better convergence of the algorithms;
moreover, from Figure 4, we can see that the dual
variable perturbation is slightly more robust to
noise than is the primal case given the same value
of αp(t). When αp(t) is small, the model is more
private but less accurate. Therefore, the utilities of
privacy and accuracy shoud satisfy the following
assumption:

Assumption 6. - the utilities of privacy and
accuracy should be monotonic with respect to

αp(t) but in different directions, say decreasingly
and increasingly, respectively.

As a result, The quality of classifier
is measured by the empirical loss
C(t) = CR

Bp
∑

Bp
i=1 L (yip fp(t)T xip). Given the

dataset Dp and a αp(tx) at a specific time tx,
there exists a corresponding fp(tx) minimizing
(16). Thus, there must be a function Lacc()
to capture relationship between αp(t) and
C(t): Lacc(αp(t)) = C(t). The function Lacc is
obtained by curve fitting given the experimental
data points (αp(t),C(t)). Let Upriv(αp(t)) be
the utility of privacy. Besides the decreasing
monotonicity, Upriv(αp(t)) should be convex and
doubly differentiable function of αp(t).

Given the privacy utility function Upriv(αp(t)),
there exists an optimal value of α∗p(t) that mini-
mizes the following problem:

minJ (t) = Lacc(αp(t))−Upriv(αp(t))

s.t. 0 < αp(t)≤ αU , 0≤ Lacc(αp(t))≤ c3
(27)

where αU and c3 are the threshold values for αp(t)
and Lacc, respectively, beyond which is considered
as non-private and non-accurate, respectively. The
above discussion is summarized in the following
definition.

Definition 3. (Optimal Private) If there exists a
value of privacy parameter α∗p(t) that minimizes
(35):

α
∗
p(t) = arg min

αp(t)
J (t)

s.t. αL ≤ αp(t)≤ αU , 0≤ Lacc(αp(t))≤ c3
(28)

then by choosing thie value as the privacy
prarmeter, every iteration of Algorithm 1 and 2
for each node p ∈P is optimal private.
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Figure 5. Privacy-Accuracy Tradeoff: Dual Variable Perturbation, with ωp1 = 0.02, ωp2 = 6, ωp3 = 9, ωp4 = 1(before the stop
time)

(a) t = 2 (b) t = 3 (c) t = 100

Figure 6. Privacy-Accuracy Tradeoff: Primal Variable Perturbation, with ωp1 = 0.02, ωp2 = 6, ωp3 = 9, ωp4 = 1 (before the
stop time)

For training the classifier, we tried a few fixed
values of ρ and test the empirical loss Lep(t) of
the classifier. Then, we selected the value of ρ

that minimizes the empirical loss for a fixed αp
(0.3 in this experiment). We also test the non-
private version of Algorithm, and the correspond-
ing minimum value of ρ is obtained as the control.
We chose the corresponding optimal value of the
regularization prarmeter ρ for each algorithm as
shown in Table 1.

Table 1. Optimal value of Λ for different algorithms

Algorithm Non-Private Dual Var Pert Primal Pert

ρ 10−10 10−2.5 10−1

Table 2. Value of CR for different algorithms

Algorithm Non-Private Dual Var Pert Primal Pert
CR 1750 1750 146

Table 2 shows the values of CR chosen for
each algorithm and the non-private case. Figure
(4) shows the convergence of dual and primal

variable perturbations at different value of αp(t).
Larger values of αp yields better convergence for
both perturbations. Moreover, the dual variable
perturbation has smaller variance of empirical
loss than does the primal perturbation. However,
larger αp incurs poorer privacy. This tradeoff is
discussed below.

The utility function of privacy is chosen ac-
cording to the specification in Section 4 as:

Upriv(αp(t)) = ωp1 · ln
ωp2

ωp3αp(t)+ωp4α2
p(t)

,

(29)
where ωp1 and ωp2 are two positive constants.
Taking the derivatives and double derivatives with
respective to αp(t),

U ′priv(αp(t)) =−
ωp1
(
ωp3 +2ωp4αp(t)

)
ωp3αp(t)+ωp4α2

p(t)
,

U ′′priv(αp(t))=
−2ωp1ωp4 +ωp1

(
ωp3 +2ωp4αp(t)

)2

α2
p(t)+ωp3

.

For αp(t) > 0, U ′priv(αp(t)) < 0 and
U ′′priv(αp(t)) > 0, which imply decreasingly



monotonicity and convexity, respectively. The
function Lacc(αp(t)) is determined by data fitting
from {(αp(t),Lep(t)}t=0. In our experiment, we
choose ωp1 = 0.02, ωp2 = 6, ωp3 = 9, ωp4 = 1.

Figure 5 shows the privacy-accuracy tradeoff of
dual variable perturbation at different iterations.
From curve fitting, we model the function

Lacc(αp(t)) = c4 · e−c5αp(t)+ c6 (30)

where c4, c5,c6 and are three non-negative con-
stant. From the experimental results, we deter-
mine c4 = 0.2, c5 = 25, c6 = min{Lep(t1)}t1=0;
these values are applicable for all iteraions.

Figure 6 presents the privacy-accuracy tradeoff
of primal perturbation at different iterations. We
model the function Lacc the same as (38). From
the plots in Figure 5, we can see that the exper-
imental results of Lacc(αp(t)) given {αp(t)} for
primal variable perturbation experimences more
oscillation than the dual variable perturbation
does. For iteration t > 1, c4 = 20, c5 = 20,
c6 = 1

81 ∑
100
t=20 Lep(t). Figure 7 and 8 compare

the privacy-accuracy tradeoff of dual and primal
variable perturbations in terms of empirical loss
and misclassification error rate, respectively. As
shown, the reaction of empirical loss of dual vari-
able perturbation is more stable than the primal
variable perturbation for most values of αp(t).
Moreover, the dual perturbation gives better error
rate for most of αp, which implies better manage-
ment of tradeoff between privacy and accuracy.

We determine αU = 1, c3 = 0.135. Let α∗p be
the value such that the corresponding is optimal
private. Substitute (37) and (38) to (35), and we
then take derivative of T in (35) with respect to
αp(t), and set it to 0 at α∗p:

ωp1(ωp3−2ωp4αp(t)) =c4c5(ωp3αp(t)

+ωp4α
2
p(t)) · e−c5αp(t).

The optimum value of αp(t) at each time t is
obtained by soving the above equation.

Figure 7 and 8 shows the privacy-accuracy
tradeoff of the final optimum classifier in terms
of empirical loss and misclassification error rate
(MER). The MER is determined by the fraction of
times the trained classifier predict a wrong label.
We can see that primal variable peroforms slightly

better than dual variable perturbation with respect
to the empirical loss.

Figure 7. Privacy-Accuracy Tradeoff: Empirical Risk vs. αp of
final optimum output

Figure 8. Privacy-Accuracy Tradeoff: Misclassification Error
Rate vs. αp at iteration 100

6. Conclusion

This work developed two ADMM-based algo-
rithms to solve a centralized regularized ERM in a
distributed fashion while providing α-differential
privacy for the ADMM iterations as well as the
final trained output. Thus, the sensitive informa-
tion stored in the training dataset at each node is
protected against both the internal and the external
adversares.

Based on distributed training datasets, Algo-
rithm 1 perturbs the dual variable λp(t) for every



node p ∈P at iteration t; For the next iteration,
t + 1, the perturbed version of λp(t) is involved
in the update of primal variable fp(t + 1). Thus
the perturbation created at time t provides privacy
at time t + 1. In Algorithm 2, we perturb the
primal variable fp(t), whose noisy version is then
released to the neighboring nodes. In this case, the
perturbation added at time t make the training pro-
cess private at time t. Moreover, since the primal
variables are shared among all the nieghboring
nodes, at time t, the noise directly involved in
the optimization of parameter update comes from
multiple nodes; as a result, the updated variable
has more randomness than the dual perturbation
case.

In general, the accuracy decreases as privacy
requirements are more stringent. The tradeoff
between the privacy and accuracy is studied.
Our experiments on real data from UCI Machine
Learning Repository show that dual variable per-
turbation is more robust to the noise than the
primal variable perturbation. The dual variable
perturbation outperforms the primal case at bal-
ancing the privacy-accuracy tradeoff as well as
learning quality.

However, there are several conditions for the
loss function and the regularizer function, which
are summarized in Assumption 1 to 3. The con-
ditions for dual variable perturbation and primal
variable perturbation are similar except that the
loss funciton is required to be bounded doubly
differentiable for dual variable perturbation. Thus,
for the loss functions and regularizer functions
satisfing Assumption 1 to 3, we recommand the
dual variable perturbation algorithm, which can
obtain more accurate results while keep the α-
differential privacy to a good level.

Appendix A.
Alternating Direction Method of Multipli-
ers

Consider a convex optimization problem:

min
x

g1(x)+g2(Ax)

s.t. x ∈ S1, Ax ∈ S2,
(31)

where g1 : Rs1 → R and g2 : Rs2 → R1 are both
convex functions, A ∈ Rs2×s1 is a matrix, S1 ∈ Rs1

and S2 ∈ Rs2 are two non-empty polyhedral sets.
Using an additional auxiliary variable v ∈ Rs2

yields an equivalent form of (33) as:

min
x

g1(x)+g2(v).

s.t. Ax = v

x ∈ S1, v ∈ S2

(32)

The corresponding augmented Lagrange function
of (34) is:

L(x,v,λ ) =g1(x)+g2(v)+λ
T (Ax− v)

+
η

2
‖ Ax− v ‖2,

(33)

where λ ∈ Rs2 is the Lagrange multiplier corre-
sponding to the constraints Ax = v, and η > 0
is a penalty parameter that controls the effect of
constraints violation in (34). The ADMM first
minimizes L(x,v,λ ) with respect to primal vari-
able x, and then keeping the value of x fixed
at the just computed value, with respect to the
auxiliary variable v. After that, the dual variable
λ is updated in a gradient ascending manner.
Specifically, ADMM iterates at time t +1 is:

x(t +1) = min
x

L(x,v(t),λ (t)), (34)

v(t +1) = min
x

L(x(t +1),v,λ (t)), (35)

λ (t +1) = λ (t)+η(Ax(t +1)− v(t +1)), (36)

The following theorem states the convergence of
ADMM.

Theorem 9. ([51]) Assume (33) is solvable, and
either AT A is nonsingular or S1 is bounded. Then
• a sequence {x(t),v(t),λ (t)} generated

by ADMM iterations (36) to (38) is
bounded, and every limit points of
{x(t)} is an optimal solution of (33):
{x(t),v(t)} converges to a solution of
(33).

• {λ} converges to a solution of the dual
problem:

min
λ∈S2

G1(λ )+G2(λ ), (37)

where

G1(λ ) = inf
x

g1(x)+λ
T Ax,

G2(λ ) = inf
v

g2(v)−λ
T v.



Appendix B.
Proof of Theorem 1

Proof: (Theorem 1)
Let fp(t + 1) be the optimal primal variable

with zero duality gap. From the Assumption 1
and 2, we know that both the loss funciton L and
the regularizer R(·) are differentiable and convex,
and by using the Karush-Kuhn-Tucker (KKT)
optimality condition (stationarity), we have

0 =
CR

Bp

Bp

∑
i=1

yipL
′(yip fp(t +1)T xip)xip +ρ∇R( fp)

+2
( CR

2Bp
εp(t)+λp(t)

)
+(Φ+2ηNp) fp(t +1)

−η ∑
i∈Np

( fp(t)+ fi(t)),

from which we can establish the relationship
between the noise εp(t) and the optimal primal
variable fp(t +1) as:

εp(t) =−
Bp

∑
i=1

yipL
′(yip fp(t +1)T xip)xip−

Bp

CR ρ∇R( fp)

−
2Bp

CR λp(t)−
Bp

CR (Φ+2ηNp) fp(t +1)

+
Bpη

CR ∑
i∈Np

( fp(t)+ fi(t)).

(38)
Under Assumption 1, the augmented Lagrange
function Ldual(t) is strictly convex, thus there is
a unique value of fp(t + 1) for fixed εp(t) and
dataset Dp. The equation (38) shows that for any
value of fp(t + 1), we can find a unique value
of εp(t) such that fp(t + 1) is the minimizer of
Ldual . Therefore, given a dataset Dp, the relation
between εp(t) and fp(t +1) is bijective.

Let Dp and D′p be two datasets with
Hd(Dp,D′p) = 1, (xi,yi) ∈ Dp and (x′i,y

′
i) ∈ D′p

are the corresponding two different data points.
Let two matrices J f (εp(t)|Dp) and J f (ε

′
p(t)|D′p)

denote the Jacobian matrices of mapping from
fp(t + 1) to εp(t) and ε ′p(t), respectively. Then,
transformation from noise fp(t + 1) to εp(t) by

Jacobian yields:

Q( fp(t +1)|Dp)

Q( fp(t +1)|D′p)

=
q(εp(t)|Dp)

q(ε ′p(t)|D′p)
|det(J f (εp(t)|Dp))|−1

|det(J f (ε ′p(t)|D′p))|−1 ,

(39)

where q(εp(t)|Dp) and q(ε ′p(t)|D′p) are the densi-
ties of εp(t) and ε ′p(t), respectively, given fp(t +
1) when the datasets are Dp and D′p, respectively.

Therefore, in order to prove the ratio of con-
ditional densities of optimal primal variable is
bounded as:

Q( fp(t)|D)

Q( fp(t)|D′p)
≤ eαp(t),

we have to show:

q(εp(t)|Dp)

q(ε ′p(t)|D′p)
·
|det(J f (εp(t)|Dp))|−1

|det(J f (ε ′p(t)|D′p))|−1

≤ eαp(t).

We first bound the ratio of the determinant of Ja-
cobian matrices, and then the ratio of conditional
densities of the noise vectors.

Let xa be the a-th element of the vector x, and
(a,b). Let E ∈Rd×d be a matrix, then let E(a,b)

denote the (a,b)-th entry of the matrix E. Thus,
the (m,n)-th entry of J f (εp(t)) is:

J f (εp(t))(m,n) =−
Bp

∑
i=1

(y2
i L
′′(yi fp(t +1)T xi)x

(m)
i x(n)i

−
Bp

CR ρ∇
2R( fp(t +1))(m,n)

−
Bp

CR (Φ+2ηNp)1( j = k).

Let J0
f (xi,yi)= (y2

i L
′′(yi fp(t+1)T xi)xixT

i , thn the
Jacobian matrix can be expressed as:

J f (εp(t)|Dp) =−
Bp

∑
i=1

J0
f (xi,yi)−

Bp

CR ρ∇
2R( fp(t +1))

−
Bp

CR (Φ+2ηNp)Id .

Let M = J0
f (x
′
i,y
′
i) − J0

f (xi,yi), and H =
−J f (εp(t)|Dp), and thus J f (εp(t)|D′p) = −(M+
H). Let h j(W) be the j-th largest eigenvalue of



a symmetric matrix W ∈Rd×d with rank θ Then
we have the following fact:

det(I+W) =
θ

∏
j
(1+h j(W)).

Since the matrix xixT
i has rank 1, then matrix M

has rank at most 2; thus matrix H−1M has rank
at most 2; therefore, we have:

det(H+M) = det(H) ·det(I+H−1M)

= det(H) · (1+h1(H−1M))(1+h2(H−1M).

Thus, the ratio of determinants of the Jacobian
matrices can be expressed as:

|det(J f (εp(t)|Dp))|−1

|det(J f (ε ′p(t)|D′p))|−1 =
|det(H+M)|
|det(H)|

=|det(I+H−1M)|
=(1+h1(H−1M))(1+h2(H−1M)

=|1+h1(H−1M)+h2(H−1M)

+h1(H−1M)h2(H−1M)|.

Based on Assumption 2, all the eigenvalues
of ∇2R( fp(t + 1)) is greater than 1 [32]. Thus,
from Assumption 1, matrix H has all eigen-
values at least Bp

CR

(
ρ + Φ + 2ηNp

)
. Therefore,

|h1(H−1M)| ≤ |hi(M)|
Bp
CR

(
ρ+Φ+2ηNp

) .

Let σi(M) be the non-negative singular value
of the symmetric matrix M. According to [3], we
have the inequality

∑
i
|hi(M)| ≤∑

i
σi(M). (40)

Thus, we have

|h1(M)|+ |h2(M)| ≤ σ1(M)+σ2(M).

Let ‖ X ‖Σ= ∑i σi be the trace norm of X. Then
according to the trace norm inequality, we have:

‖M ‖Σ≤‖ J0(x′i,y
′
i) ‖Σ + ‖ −J0(xi,yi) ‖Σ .

As a result, based on the upper bounds from
Assumption 1 and 3, we have:

|h1(M)|+ |h2(M)| ≤‖ J0(x′i,y
′
i) ‖Σ + ‖ −J0(xi,yi) ‖Σ

≤ |(y2
i L
′′(yi fp(t +1)T xi)|· ‖ xi ‖

+ |(y′2i L ′′(y′i fp(t +1)T x′i)|· ‖ x′i ‖
≤ 2c1,

which follows h1(M)h2(M) ≤ c2
1. Finally, the

ratio of determinants of Jacobian matrices is
bounded as:

|det(J f (εp(t)|Dp))|−1

|det(J f (ε ′p(t)|D′p))|−1 ≤ (1+
c1

Bp
CR

(
ρ +Φ+2ηNp

)
)
)2

= eα ,
(41)

where α = ln
(

1+ c1
Bp
CR

(
ρ+Φ+2ηNp

))2
.

Now, we bound the ratio of densities of εp(t).
Let sur(E) be the surface area of the sphere in
d dimension with radius E, and sur(E) = sur(1) ·
Ed−1. We can write:

q(εp(t)|Dp)

q(ε ′p|D′p)
=

K (εp(t))
‖εp(t)‖d−1

sur(‖ε1(t)‖)

K (ε ′p(t))
‖ε ′p(t)‖d−1

sur(‖ε ′p(t)‖)

≤ eζp(t)(‖ε ′p(t)‖−‖εp(t)‖)

≤ eα̂ ,

(42)

where α̂ is a constant satisfying the above in-
equality. Since we want to bound the ratio of
densities of fp(t +1)

Q( fp(t +1)|Dp)

Q( fp(t +1)|D′p)
≤ eαp(t),

we need α̂ ≤ αp(t)−α. For non-negative Φ, let

α̂ = αp(t)− ln
(

1+
c1

Bp
CR

(
ρ +2ηNp

))2
.

If α̂ > 0, then we fix Φ= 0, and thus α̂ =αp(t)−
α . Otherwise, let Φ = c1

Bp
CR (eαp(t)/4−1)

−ρ − 2ηNp,

and α̂ =
αp(t)

2 which makes α̂ =αp(t)−α . There-
fore, we can have

|det(J f (b1|Dp))|−1

|det(J f (b2|D′p))|−1 ≤ eαp(t)−α̂ .

From the upper bounds stated in Assumption 1
and 3, the l2 norm of the difference of ε1 and ε2
can be bounded as:

‖ ε
′
p(t)− εp(t) ‖=

Bp

∑
i=1
‖ yipL

′(y′ip fp(t +1)T x′ip)x
′
ip

− (yipL
′(yip fp(t +1)T xip)xip ‖

≤2.



Thus,‖ ε ′p(t) ‖ − ‖ εp(t) ‖≤‖ ε ′p(t)− εp(t) ‖≤ 2.
Therefore, by selecting ζp(t) = α̂

2 , we can bound
the ratio of conditional densities of fp(t +1) as:

Q( fp(t +1)|Dp)

Q( fp(t +1)|D′p)
≤ eαp(t),

and prove that the dual variable perturbation can
provide αp(t)-differential privacy.

Appendix C.
Proof of Corollary 1.2

Proof: (Corollary 1.2) We prove this corol-
lary by induction. For c2 = 1, it is true since this is
exactly the case of Theorem 1. Suppose Corollary
1.2 is held for Hd(Dp,D′p)= c2. Let Hd(Dp,D′p)=
c2+1. Clearly, there must exist a dataset D′′p such
that Hd(Dp,D′′p) = 1, and Hd(D′p,D

′′
p) = c2. Thus,

from (13), we have:

Q( fp(t)|Dp)

Q( fp(t)|D′p)
=

Q( fp(t)|Dp)

Q( fp(t)|D′′p)
·

Q( fp(t)|D′′p)
Q( fp(t)|D′p)

≤ eαp(t)ec2αp(t) = e(c2+1)αp(t).
(43)

Therefore, the induction hypothesis is true and
Corollary 1.2 is proven.

Appendix D.
Proof of Theorem 2

Proof: (Theorem 2)
Let Dp and D′p be two datasets with

Hd(Dp,D′p) = 1. Since only Vp(t) is released, then
our target is to prove the following:

Q(Vp(t +1)|Dp)

Q(Vp(t +1)|D′p)
≤ eαp(t). (44)

From (23), we have:

Q(Vp(t +1)|Dp)

Q(Vp(t +1)|D′p)
=

K (εp(t))
K (ε ′p(t))

=
e−ζp(t)‖εp(t)‖

e−ζp(t)‖ε ′p(t)‖
.

(45)
Therefore, in order to make the model to provide
αp(t)-differential privacy, we need to find a ζp(t)
that satisfies

ζp(t)(‖ εp(t) ‖ − ‖ ε
′
p(t) ‖)≤ αp(t). (46)

Let V A = argminVp Lprim(t|Dp), and V B =
argminVp Lprim(t|D′p), where Lprim(t|D) is the

augmented Lagrange function for primal variable
perturbation given dataset D.

Let F , G be defined at each node p ∈P as:

F(Vp(t)) = Lprim(t|Dp),

G(Vp(t)) = Lprim(t|D′p)−Lprim(t|Dp).

Thus, G(Vp) = CR

Bp
∑

Bp
i=1(L (y′ipV T

p x′ip) −
L (yipV T

p xip)). According to Assumption 2,
we can imply that Lprim(t|Dp) = F(Vp(t)) and
Lprim(t|D′p) = F(Vp(t)) + G(Vp(t)) are both
ρ-strong convex. Differentating G(Vp(t)) with
respect to Vp(t) gives:

∇G(Vp) =
CR

Bp
(y′ipL

′(y′ipV T
p x′ip)x

′
ip

− (yipL (yipV T
p xip)xip.

From Assumption 1 and 3, ‖ ∇G(Vp) ‖≤ 2CR

Bp
.

From definitions of V A and V B, we have:

∇F(V A) = ∇F(V B)+∇F(V B) = 0

From Lemma 14 in [52] and the fact that F(·)
is ρ-strongly convex, weh have the following
inequality:

〈∇F(V A)−F(V B),V A−V B〉 ≥ ρ ‖V A−V B ‖2;

therefore, Cauchy-Schwarz inequality yields:

‖V A−V B ‖ · ‖ ∇G(V B) ‖
≥ (V A−V B)T

∇G(V B)

= 〈∇F(V A)−F(V B),V A−V B〉
≥ ρ ‖V A−V B ‖2 .

Dividing both sides by ρ ‖V A−V B ‖ gives:

‖V A−V B ‖≤ 1
ρ
‖ ∇G(V B) ‖≤ 2CR

ρBp
. (47)

From (23), we have

‖V A−V B ‖≤ 1
ρ
‖ ∇G(V B) ‖=‖ εp(t)− ε

′
p(t) ‖ .

Thus, we can bound

ζp(t)(‖ εp(t) ‖ − ‖ ε
′
p(t) ‖)≤ ζp(t)(‖ εp(t)− ε

′
p(t) ‖)

≤ 2CR

Bpρ
ζp(t)



Therefore, by choosing ζp(t) =
ρBpαp(t)

2CR , the in-
equality (43) holds; thus primal variable pertur-
bation is dynamic αp-differential private at each
node p.

Appendix E.
Proof of Theorem 3

Proof: (Theorem 3) Let

f̂p(t +1) = argmin Ẑ( fp, t),

f̃p(t +1) = argminZp( fp, t|Dp),

and let f non
p (t +1) be the estimated optimum that

is practical result of the algorithm. We assume
that f non

p (t+1) is very close to the actually so that
Zp( f non

p (t+1), t|Dp)−Zp( f̃p(t+1), t|Dp)≈ 0. For
the non-private ERM, Shalev-Shwartz and Srebro
in [53] show that for a specific reference classifier
f0(t + 1) at time t + 1 such that Ĉ( f 0(t + 1)) =
C∗E, we have:

Ĉ( f non
p (t +1)) =Ĉ∗

+
(
Ẑ( f non

p (t +1), t)− Ẑ( f̂p(t +1), t)
)

+
(
Ẑ( f̂p(t +1), t)− Ẑ( f 0

p(t +1), t)
)

+
ρ

2
‖ f 0

p(t +1) ‖2 −ρ

2
‖ f non

p (t +1) ‖2 .

From Sridharan et al. [54], we have, with proba-
bility at least 1−δ

Ẑ( f non
p (t +1), t)− Ẑ( f̂p(t +1), t)

≤ 2
(
Zp( f non

p (t +1), t|Dp)−Zp( f̃p(t +1), t|Dp)
)

+O
(

CR ln( 1
δ
)

Bpρ

)
.

Since Zp( f non
p (t+1), t|Dp)−Zp( f̃p(t+1), t|Dp)≈

0, then

Ẑ( f non
p (t +1), t)− Ẑ( f̂p(t +1), t)

≤ O
(

CR ln( 1
δ
)

Bpρ

)
.

If we choose ρ ≤ αacc
‖ f 0

p (t+1)‖2 , then

ρ

2
‖ f 0

p(t +1) ‖2 −ρ

2
‖ f non

p (t +1) ‖2≤ αacc

2
.

Thus

Ĉ( f non
p (t +1))≤Ĉ∗+O

(
CR ln( 1

δ
)

Bpρ

)
+

αacc

2
.

Therefore, we can find the value of Bp by solving

O
(

CR ln( 1
δ
)

Bpρ

)
+

αacc

2
≤ αacc

We get:

Bp > βnon max

(
CR ‖ f 0

p(t +1) ‖2 ln( 1
δ
)

α2
acc

)
.

If we determine different reference classifier
f 0
p(t + 1) at different time, then we need to find

the maximum value across the time and among
different value of ‖ f 0

p(t +1) ‖:

Bp > βnon max

({CR ‖ f 0
p(t +1) ‖2 ln( 1

δ
)

α2
acc

}
t=1

)
.

Let Fp(t +1) = argmin fp Lnon( fp, t|Dp). Since

Ĉ(Fp(t +1)) = Ĉ( f non
p (t +1))+∆

non(t),

then

Ĉ(Fp(t +1))≤ Ĉ∗(t +1)+αacc +∆
non(t),

with probability no less than 1−δ .

Appendix F.
Proof of Theorem 4

Proof: (Theorem 4) First we define the
following optimal variables:

f̂p(t +1) = argmin Ẑ( fp, t),

f non
p (t +1) = argminZp( fp, t|Dp),

f ∗p(t +1) = argminZdual( fp, t|Dp),

and as defined in Theorem 3, Ĉ( f 0
p(t + 1)) = Ĉ∗

at time t + 1. We use the analysis of Shalev-
Shwartz and Srebro in [53] (also see the work of
Chaudhuri et al. in [11]), and have the follows:

Ĉ( f ∗p(t +1)) =Ĉ( f 0
p(t +1))

+
(
Ẑ( f ∗p(t +1), t)− Ẑ( f̂p(t +1), t)

)
+
(
Ẑ( f̂p(t +1), t)− Ẑ( f 0

p(t +1), t)
)

+
ρ

2
‖ f 0

p(t +1) ‖2 −ρ

2
‖ f ∗p(t +1) ‖2 .

(48)
Now we bound each terms in the right hand side
of (47) as follows. From Assumption 1, we have



L ′ ≤ c1. By choosing Bp >
5c1CR‖ f 0

p (t+1)‖2
αaccαp(t)

, and
ρ > αacc

2‖ f 0
p (t+1)‖2 , and since αp(t)≤ 1, we have:

α̂ =αp(t)− ln
(

1+
c1

Bp
CR

(
ρ +2ηNp

))2

>αp(t)− ln(1+
c1CR

Bpρ
)2

>αp(t)− ln(1+
2αp(t)

5
)2

>αp(t)−
4αp(t)

5
=

αp(t)
5

.

Then, according to Algorithm 1, we choose the
corresponding ζp(t) =

αp(t)
4 because α̂ > 0. Let Λ

be the event

Λ :=
{

Zp( f ∗p(t +1), t|Dp)≤ Zp( f non
p (t +1), t|Dp)

+
16d2

(
ln( d

δ
)
)2

ρB2
pαp(t)2

}
.

Since α̂ >
αp(t)

2 > 0, and applying Lemma 11
yields:

Pεp(t)

(
Λ

)
≥ 1−δ .

From the work of Sridharan et al. in [54], the
following inequality holds with probability 1−δ

Ẑ( f ∗p(t +1))− Ẑ( f̂p(t +1))≤ 2
(

Zp( f ∗p(t +1), t|Dp)

−Zp( f non
p (t +1), t|Dp)

)
+O

( ln( 1
δ
)

Bpρ

)

≤
32d2

(
ln( d

δ
)
)2

ρB2
pαp(t)2

+O
( ln( 1

δ
)

Bpρ

)
.

The big-O notation hides only fixed numerical
constants, which depend on the derivative of the
loss function and the upper bounds of the data
points shown in Assumption 3. Combining the
above two processes, Ẑ( f ∗p(t +1))− Ẑ( f̂p(t +1))
is bounded as shown above with probability 1−
2δ .

From the definitions of f 0
p(t+1) and f̂p(t+1),

we can get Ẑ( f̂p(t + 1), t)− Ẑ( f 0
p(t + 1), t) < 0.

Since P≥ 1, then by selecting ρ = αacc
‖ f 0

p (t+1)‖2 , we
can bound

ρ

2
‖ f 0

p(t +1) ‖2 −ρ

2
‖ f ∗p(t +1) ‖2≤ αacc

2
.

Therefore, from (47), we have:

Ĉ( f ∗p(t +1))≤C∗E +
32d2

(
ln( d

δ
)
)2

ρB2
pαp(t)2

+O
(

CR ln( 1
δ
)

Bpρ

)
+

αacc

2
,

with ρ = 6αacc
‖ f 0

p (t+1)‖2 . The lower bounds of Bp is
determined by solving the following:

32d2
(

ln( d
δ
)
)2

ρB2
pαp(t)2 +O

(
CR ln( 1

δ
)

Bpρ

)
+

αacc

2
≤ αacc.

Lemma 10. Let Z be a gamma random variable
with density function Γ(k,θ), where k is an inte-
ger, and let δ > 0. Then we have:

P(Z < kθ ln(
k
δ
))≥ 1−δ .

Proof: (Lemma 10) Since Z is a gamma
random variable Γ(k,θ), then we can express Z
as follows:

Z =
k

∑
i=1

Zi,

where {Zi}k
i=1 are independent exponential ran-

dom variable with density function Exp( 1
θ
); thus,

for each Zi we have:

P(Zi ≤ θ ln(
k
δ
)) = 1− δ

k
.

Since Zii=1 are independent, we have:

P(Z < kθ ln(
k
δ
)) =

k

∏
i=1
P(Zi ≤ θ ln(

k
δ
))

= (1− δ

k
)k ≥ 1−δ .

Lemma 11. Let α̂ > 0, and f ∗p(t + 1) =
argminZdual( fp, t|Dp), and f non

p (t + 1) =



argminZp( fp, t|Dp). Let Λ be the event

Λ :=
{

Zp( f ∗p(t +1), t|Dp)≤ Zp( f non
p (t +1), t|Dp)

+
16d2

(
ln( d

δ
)
)2

ρB2
pαp(t)2

}
.

Under Assumption 1 and 2, we have:

Pεp(t)

(
Λ

)
≥ 1−δ .

The probability Pεp(t) is taken over the noise
vector εp(t).

Proof: (Lemma 11) Since α̂ > 0, Φ = 0;
then f ∗p(t + 1) = argminZdual( fp, t|Dp) can be
expressed as:

f ∗p(t +1) = argmin
(

Zp( fp, t|Dp)+2εp(t)T fp

)
.

Thus, we have:

Zp( f ∗p(t +1), t|Dp)≤ Zp( f non
p (t +1), t|Dp)

+
CR

Bp
εp(t)T ( f non

p (t +1)− f ∗p(t +1)).

Firstly, we bound the l2-norm ‖ f non
p (t + 1)−

f ∗p(t + 1) ‖. We use the similar procedure to
establish (46) in Appendix D by setting F(Y ) =
Zp(Y, t|Dp) and G(Y ) = CR

Bp
εp(t); thus, based on

Assumption 1 and 2, we have:

‖ f non
p (t +1)− f ∗p(t +1) ‖≤ 1

ρ
‖ ∇
(
2εp(t)T fp

)
‖

≤
CR ‖ εp(t) ‖

Bpρ
.

Cauchy-Schwarz inequality yields:

Zp( f ∗p(t +1), t|Dp)−Zp( f non
p (t +1), t|Dp)

≤‖ Zp( f ∗p(t +1), t|Dp)−Zp( f non
p (t +1), t|Dp) ‖

≤ 2
Bp
‖ εp(t)T ( f non

p (t +1)− f ∗p(t +1) ‖

≤
(
CR
)2 ‖ εp(t) ‖2

B2
pρ

.

Since the noise vector εp(t) is drawn from

K (ε)∼ e−ζp(t)‖ε‖,

then ‖ εp(t) ‖ is drawn from Γ(d, 1
ζp(t)

) = Γ(d, 2
α̂
).

Then by using Lemma 10 with ‖ εp(t) ‖≤
2d ln( d

δ
)

α̂
,

we have:

LnonP( f ∗p(t +1), t|Dp)−LnonP( f non
p (t +1), t|Dp)

≤
4d2
(

ln( d
δ
)
)2

ρB2
pαp(t)2 .

with probability no less than 1−δ .

Appendix G.
Proof of Theorem 5

Proof: (Theorem 5) Similar to the proof of
Theorem 4 in Appendix F, we define the following
optimal variables:

f̂p(t +1) = argminZE( fp, t),

f non
p (t +1) = argminZp( fp, t|Dp),

f ∗p(t +1) = argminZprim( fp, t|Dp).

Let Ĉ( f 0
p(t + 1)) = Ĉ∗ at time t + 1. We use the

analysis of Shalev-Shwartz and Srebro in [53]
(also see the work of Chaudhuri et al. in [11]),
and have the follows,

Ĉ( f ∗p(t +1)) =Ĉ( f 0
p(t +1))

+
(
Ẑ( f ∗p(t +1), t)− Ẑ( f̂p(t +1), t)

)
+
(
Ẑ( f̂p(t +1), t)− Ẑ( f 0

p(t +1), t)
)

+
ρ

2
‖ f 0

p(t +1) ‖2 −ρ

2
‖ f ∗p(t +1) ‖2 .

(49)
According to Theorem 2, we choose ζp(t) =

ρBpαp(t)
2CR > 0. Thus, applying Lemma 14, we have:

Zp( f ∗p(t +1), t|Dp)−Zp( f non
p (t +1), t|Dp)

≤
16
(
CR
)2

η2N2
pd2
(

ln( d
δ
)
)2

ρ3B2
pαp(t)2 ,

with probability no smaller than 1−δ . Then we
use the result of Sridharan et al. in [54], with



probability no smaller than 1−δ :

Ẑ( f ∗p(t +1))−Ẑ( f̂p(t +1))≤ 2
(

Zp( f ∗p(t +1), t|Dp)

−Zp( f ∗p(t +1), t|Dp)
)

+O
( ln( d

δ
)

Bpρ

)
≤

32
(
CR
)2

η2N2
pd2
(

ln( d
δ
)
)2

ρ3B2
pαp(t)2

+O
( ln( 1

δ
)

Bpρ

)
.

Combining the above two processes, we have the
probability no smaller than 1−2δ .

In order to bound the last two terms in (48),
we select ρ = αacc

‖ f 0
p (t+1)‖2 ; as a result,

ρ

2
‖ f 0

p(t +1) ‖2 −ρ

2
‖ f ∗p(t +1) ‖2≤ αacc

2
.

From the definitions of f̂p(t + 1) and f 0
p(t + 1),

we have:

Ẑ( f̂p(t +1), t)− Ẑ( f 0
p(t +1), t)≤ 0.

The value of Bp is determined such that

Ĉ( f ∗p(t +1))≤ Ĉ∗+αacc.

Therefore, we find the bounds of Bp by solving

32
(
CR
)2

η2N2
pd2
(

ln( d
δ
)
)2

ρ3B2
pαp(t)2 +O

(CR ln( 1
δ
)

Bpρ

)
+

αacc

2

≤ αacc,

with ρ = αacc
‖ f 0

p (t+1)‖2 .

Lemma 12. Let f and g be two probability
density functions. If there exists a constant c6 such
that f (x) = c6g(x) for all x ∈Rd , then:

f (x) = g(x).

Proof: (Lemma 12) From the property of
probability density function, we have:

1 =
∫

∞

−∞

f (x)dx

=c6 ·
∫

∞

−∞

g(x)dx

=c6.

Therefore, c6 = 1, and f (x) = g(x).

Lemma 13. Let {Z j}K
j=1 be independent gamma

random variables with density Γ(β j,h). Then
Z = ∑

K
j=1 is a gamma random variable with

Γ(∑K
j β j,h)

Proof: (Lemma 13) We prove Lemma 11 by
induction. First, we show it is true for K = 2. Let
g(·) = Γ(β1 + β2,h), and fZ1+Z2(z) be the joint
probability density of Z1 and Z2. Then, we have
fZ1+Z2(z) = 0 = g(z) for all z < 0. Let r > 0, then

fZ1+Z2(r) =( fZ1 ∗ fz2)(r)

=
∫ r

0
fZ1(x)∗ fZ2(r− x)dx

=
1

Γ(β1)Γ(β2)

∫ r

0
he−hx(hx)β1−1heh(r−x)

·
(
h(r− x))

)β2−1dx

=
hβ1+β2e−hr

Γ(β1)Γ(β2)

∫ r

0
xβ1−1(r− x)β2−1dx

=
he−hrhβ1+β2−1

Γ(β1)Γ(β2)

∫ 1

0
(ry)β1−1(r(1− y)

)β2−1rdy

=
he−hr(rh)β1+β2−1

Γ(β1 +β2)
· Γ(β1 +β2)

Γ(β1)Γ(β2)

·
∫ 1

0
yβ1−1(1− y)β2−1dy

=g(r) · c6,
(50)

where c6 = Γ(β1+β2)
Γ(β1)Γ(β2)

∫ 1
0 yβ1−1(1 − y)β2−1dy is

a constant. From Lemma 11, we prove that
fZ1+Z2(z) = g(z).

Now we assume it is also true for K = K. We
next prove it is also true for K′ = K + 1. Let
f K(z)= f

∑
K
j=1

(z), and gK(z)=Γ(∑K
j=1 β j,h). Then

we have:

f K+1(z) = ( f K(z)∗ fZK+1)(z).

By replacing fZ1(z) by f K(z), fZ2(z) by fZK+1(z),
β1 by ∑

K
j=1 β j, and β2 by βK+1 in (47), we can

prove
f K+1(z) = gK+1(z) · c7,

where c7 =
Γ(∑K

j=1 β j+βK+1)

Γ(∑K
j=1 β j)Γ(βK+1)

∫ 1
0 y∑

K
j=1 β j−1(1 −

y)βK+1−1dy is a constant. Thus form Lemma
12, f K+1(z) = gK+1(z) Therefore, by induction,
Lemma 13 is proved.



The following Lemma is analogous to Lemma
11

Lemma 14. Let ζp(t) > 0, and
f ∗p(t + 1) = argminZprim( fp, t|Dp), and
f non
p (t + 1) = argminZp( fp, t|Dp). Suppose

that the noise vector εt(t) generated at time t
has the same value of αp(t) for all p ∈P . Let
Λ be the event

Λ :=
{

Zp( f ∗p(t +1), t|Dp)≤ Zp( f non
p (t +1), t|Dp)

+
16
(
CR
)2

η2N2
pd2
(

ln( d
δ
)
)2

ρ3B2
pαp(t)2

}
.

If the loss function L is convex and differentiable
with |L | ≤ 1, then we have:

Pεp(t)

(
Λ

)
≥ 1−δ .

The probability Pεp(t) is taken over the noise
vector εp(t).

Proof: (Lemma 14)
Let ε pi(t) = εp(t)− εi(t) with probability den-

sity Pε pi . Let f ∗p(t + 1) = argminZprim( fp, t|Dp),
and it can be expressed as:

f ∗p(t +1) =argmin
(

Zp( fp, t|Dp)

−η ∑
i∈Np

(
( fp−

1
2
( fp(t)+ fi(t))T

· (ε pi(t))+
1
4
(
ε

pi(t)
)2
)
.

Thus, we have:

Zp( f ∗p(t +1), t|Dp)

≤ Zp( f non
p (t +1), t|Dp)

−η ∑
i∈Np

( f non
p (t +1)− f ∗p(t +1))T · ε pi.

Firstly, we bound the l2-norm ‖ f non
p (t +

1)− f ∗p(t + 1) ‖. We use the similar procedure
to establish (46) in Appendix D by setting
F(·) = Zp(Z, t|Dp) and G(Z) = η ∑i∈Np

(
ε pi
)T

(·);

thus,based on Assumption 1 and 2, we have:

‖ f non
p (t +1)− f ∗p(t +1) ‖

≤ 1
ρ
‖ ∑

i∈Np

∇(ηNp( f ∗p(t +1))T
ε

pi) ‖

≤ ∑
i∈Np

η ‖ ε pi(t) ‖
ρ

= ∑
i∈Np

η

(
‖ εp(t)− ε j(t) ‖

)
ρ

≤ ∑
i∈Np

η

(
‖ εp(t) ‖+ ‖ ε j(t) ‖

)
ρ

.

Since αp(t) is the same for all p ∈P at time t;
thus ζ j(t) =

ρBpαp(t)
2CR for all j ∈P . Since ε j(t) is

drawn from (15), then, ‖ εp(t) ‖ is gamma with
Γ(d, 1

ζp(t)
) for all p ∈P . Let

‖ εpi ‖⊕=‖ εp(t) ‖+ ‖ εi(t) ‖ .

Thus

‖ f non
p (t +1)− f ∗p(t +1) ‖ ≤ ∑

i∈Np

η

(
‖ εpi ‖⊕

)
ρ

=
ηNp

(
‖ εpi ‖⊕

)
ρ

.

Cauchy-Schwarz inequality yields:

Zp( f ∗p(t +1), t|Dp)−Zp( f ∗p(t +1), t|Dp)

≤‖ Zp( f ∗p(t +1), t|Dp)−Zp( f ∗p(t +1), t|Dp) ‖

≤
η2N2

p

(
‖ εpi ‖⊕

)2

ρ
,

and from Lemma 12 we have the P‖ε p j‖ =

Γ(2d, 2CR

ρBpαp(t)
). Applying Lemma 10 with ‖

ε p j(t) ‖⊕≤ 4CRd ln( d
δ
)

ρBpαp(t)
yields:

Zp( f ∗p(t +1), t|Dp)−Zp( f non
p (t +1), t|Dp)

≤
16
(
CR
)2

η2N2
pd2
(

ln( d
δ
)
)2

ρ3B2
pαp(t)2

with probability no smaller than 1−δ



Appendix H.
Proof of Theorem 6

Proof: (Theorem 6) Again, we define the
following optimal variables:

f̂p(t +1) = argminZE( fp, t),

f non
p (t +1) = argminZp( fp, t|Dp),

f ∗p(t +1) = argminZprim( fp, t|Dp),

V ∗p (t +1) = f ∗p(t +1)+ εp(t).

Now we make f 0
p(t +1) such that Ĉ( f ∗p(t +1)) =

Ĉ∗(t + 1) be the reference at time t + 1. We use
the analysis of Shalev-Shwartz and Srebro in [53]
(also see the work of Chaudhuri et al. in [11]), and
have the follows,

Ĉ(V ∗p (t +1)) =Ĉ( f 0
p(t +1))

+
(
Ẑ(V ∗p (t +1), t)− Ẑ( f̂p(t +1), t)

)
+
(
Ẑ( f̂p(t +1), t)− Ẑ( f 0

p(t +1), t)
)

+
ρ

2
‖ f 0

p(t +1) ‖2 −ρ

2
‖V ∗p (t +1) ‖2 .

(51)
If R( fp(t)) = 1

2 ‖ fp(t) ‖2, then ‖∇2R( fp(t)) ‖≤ 1.
Thus, we can apply Lemma 15 with τ = 1:

Zprim(V ∗p (t +1), t|Dp)−Zprim( f ∗p(t +1), t|Dp)

≤
4
(
CR
)2d2

(
ρ + c4CR

)(
ln( d

δ
)
)2

ρ2B2
pαp(t)2 ,

with probability ≥ 1− δ over the noise. In the
proof of Theorem 5, we have, with probability
1−δ :

Zp( f ∗p(t +1), t|Dp)−Zp( f non
p (t +1), t|Dp)

≤
4η2N2

pd2
(

ln( d
δ
)
)2

ρ3B2
pαp(t)2 .

Therefore, with probability 1−2δ , we have

Zp(V ∗p (t +1), t|Dp)−Zp( f non
p (t +1), t|Dp)

≤
4η2N2

pd2
(

ln( d
δ
)
)2

ρ3B2
pαp(t)2 +

4d2
(

ρ + c4

)(
ln( d

δ
)
)2

ρ2B2
pαp(t)2 .

Sridharan et al. in [54] shows, with probability
1−δ :

Ẑ(V ∗p (t +1))− Ẑ( f̂p(t +1))

≤ 2
(

Zprim(Vp(t +1), t|Dp)−Zprim( f ∗p(t +1), t|Dp)
)

+O
(

CR ln( d
δ
)

Bpρ

)

≤
8
(
CR
)2d2

(
ρ + c4CR

)(
ln( d

δ
)
)2

ρ2B2
pαp(t)2 +

8η2N2
pd2
(

ln( d
δ
)
)2

ρ3B2
pαp(t)2

+O
(

CR ln( 1
δ
)

Bpρ

)
.

Combining the above two processes, we have the
probability no smaller than 1−3δ .

Since f̂p(t + 1) = argmin Ẑ( fp, t), then(
Ẑ( f̂p(t +1), t)− Ẑ( f 0

p(t +1), t) ≤ 0. For the last
two terms, we select ρ = αacc

‖ f 0
p (t+1)‖2 in order to

make them bounded by αacc
2 .

The value of Bp is determined by solving

8
(
CR
)2d2

(
ρ + c4CR

)(
ln( d

δ
)
)2

ρ2B2
pαp(t)2 +

8η2N2
pd2
(

ln( d
δ
)
)2

ρ3B2
pαp(t)2

+O
(

CR ln( 1
δ
)

Bpρ

)
+

αacc

2
= αacc,

with ρ = αacc
‖ f 0

p (t+1)‖2 , such that

P
(
Ĉ(V ∗p (t +1))≤ Ĉ∗(t +1)+αacc

)
≥ 1−3δ .

We get:

Bp =max

({4CB ‖ f 0(t +1) ‖ d
(

ln( d
δ
)
)2

αaccαp(t)

}
t=1

,

{4 ‖ f 0
p(t +1) ‖3 ηNpd ln( d

δ
)

α2
accαp(t)

}
t=1

,

{4
(
CR
) 3

2 ‖ f 0
p(t +1) ‖2 d ln( d

δ
)

α
3/2
acc αp(t)

}
t=1

)
.

However, the accuracy of V ∗p (t+1) depends on
f ∗p(t +1), thus we also have to make

P
(
Ĉ( f ∗p(t +1))≤ Ĉ∗(t +1)+αacc

)
≥ 1−2δ .



Combining the result of Theorem 5, we have

Bp >β
B
prim max

({CR ‖ f 0
p(t +1) ‖3 ηNpd ln( d

δ
)

α2
accαp(t)

}
t=1

,{CR ‖ f 0
p(t +1) ‖2 ln( 1

δ
)

α2
acc

}
t=1

,

{4CB ‖ f 0(t +1) ‖ d
(

ln( d
δ
)
)2

αaccαp(t)

}
t=1

,

{4 ‖ f 0
p(t +1) ‖3 ηNpd ln( d

δ
)

α2
accαp(t)

}
t=1

,

{4
(
CR
) 3

2 ‖ f 0
p(t +1) ‖2 d ln( d

δ
)

α
3/2
acc αp(t)

}
t=1

)
.

As a result, the value of Bp is determined by
taking the intersection of

Lemma 15. Assume R( fp(t)) is doubly differen-
tiable w.r.t. fp(t) with ‖ ∇2R( fp(t)) ‖≤ τ for all
fp(t). Suppose the loss function L is differen-
tiable, L ′ is continuous, and satisfies

|L ′(a)−L ′(b)| ≤ c4|a−b|

for all pairs (a,b) with a constant c4. Let
f ∗p(t + 1) = argminZprim( fp, t|Dp), and V ∗p (t +
1) = f ∗p(t + 1) + εp(t), where the noise vector
εp(t) is drawn from (15) with the same αp(t) for
all p ∈P at time t. Let Λ be the event

Λ :=
{

Zprim(V ∗p (t +1), t|Dp)≤ Zprim( f ∗p(t +1), t|Dp)

+
4
(
CR
)2d2

(
ρτ + c4CR

)(
ln( d

δ
)
)2

ρ2B2
pαp(t)2 .

Under Assumption 1 and 2, we have:

Pεp(t)

(
Λ

)
≥ 1−δ .

The probability Pεp(t) is taken over the noise
vector εp(t).

Proof: (Lemma 15) From Assumption 3, we
know that the data points in dataset Dp satisfy:
‖ xip ‖≤ 1, and |yip|= 1. From Assumption 1 and
2, R(·) and L are differentiable. Suporse R(·)
is doubly differentiable and ∇2R(·)≤ τ . Let 0≤

ϕ ≤ 1, then the Mean Value Theorem and Cauchy-
Schwarz inequality give:

Zprim(V ∗p (t +1), t|Dp)−Zprim( f ∗p(t +1), t|Dp)

= (V ∗p (t +1)− f ∗p(t +1))T
∇Zprim

(
ϕ f ∗p(t +1)

+(1−ϕ)V ∗p (t +1)
)

≤‖V ∗p (t +1)− f ∗p(t +1) ‖

· ‖ ∇Zprim

(
ϕ f ∗p(t +1)+(1−ϕ)V ∗p (t +1)

)
‖ .

Let ε pi(t) = εp(t)− εi(t). From the definition of
Zprim( fp, t|Dp), we have:

Zprim( fp, t|Dp) =Zp( fp, t|Dp)

−η ∑
i∈Np

(
( fp−

1
2
( fp(t)+ fi(t))T · (ε pi(t))

+
1
4
(ε pi(t))2

)
.

Taking the derivative of Zprim w.r.t. fp gives

∇Zprim( fp, t|Dp) =
CR

Bp

Bp

∑
i=1

yipL
′(yip f T

p xip)xip

+ρ∇R( fp)−η ∑
j∈Np

ε
pi(t).

Since ∇Zprim( f ∗p(t +1), t|Dp) = 0, then we have:

∇Zprim

(
ϕ f ∗p(t +1)+(1−ϕ)V ∗p (t +1)|Dp

)
= ∇Zprim( f ∗p(t +1), t|Dp)

−ρ

(
∇R( f ∗p(t +1))−∇R

(
ϕ f ∗p(t +1)

+(1−ϕ)V ∗p (t +1)
))

−CR

Bp

Bp

∑
i=1

(
yip

(
L ′(yip f ∗p(t +1)T xip)

−L ′(yip
(
ϕ f ∗p(t +1)+(1−ϕ)V ∗p (t +1)

)T xip)
)

xip

)
.

Let

T =yip

(
L ′(yip f ∗p(t +1)T xip)

−L ′(yip
(
ϕ f ∗p(t +1)+(1−ϕ)V ∗p (t +1)

)T xip)
)

xip.

Based on the condition on the loss function:

|L ′(a)−L ′(b)| ≤ c4|a−b|,



we can bound T as:
T ≤|yip| ‖ xip ‖
· |L ′(yip f ∗p(t +1)T xip)

−L ′(yip
(
ϕ f ∗p(t +1)+(1−ϕ)V ∗p (t +1)

)T xip)|
≤|yip| ‖ xip ‖ ·c4 · |yip(1−ϕ)( f ∗p(t +1)−V ∗p (t +1))T xip|
≤c4 · (1−ϕ)|yip|2 ‖ xip ‖2‖ f ∗p(t +1)−V ∗p (t +1) ‖
≤c4 · (1−ϕ) ‖ f ∗p(t +1)−V ∗p (t +1) ‖ .

Since we assume R(·) is doubly differentiable, we
then apply the Mean Value Theorem:

‖ ∇R( f ∗p(t +1))−∇R
(
ϕ f ∗p(t +1)+(1−ϕ)V ∗p (t +1)

)
‖

≤ (1−ϕ) ‖ f ∗p(t +1)−V ∗p (t +1) ‖ · ‖ ∇
2R(ξ ) ‖,

where ξ ∈Rd . Therefore, we have:

∇Zprim

(
ϕ f ∗p(t +1)+(1−ϕ)V ∗p (t +1)|Dp

)
≤ (1−ϕ) ‖ f ∗p(t +1)−V ∗p (t +1) ‖ ·ρ· ‖ ∇

2R(ξ ) ‖
+CRc4 · (1−ϕ) ‖ f ∗p(t +1)−V ∗p (t +1) ‖

≤ (1−ϕ)· ‖ f ∗p(t +1)−V ∗p (t +1) ‖
(

ρτ +CRc4

)
≤‖ f ∗p(t +1)−V ∗p (t +1) ‖

(
ρτ +CRc4

)
.

Since f ∗p(t + 1)−V ∗p (t + 1) = εp(t), with density
Γ(d, 2CR

ρBpαp(t)
) then we can apply Lemma 10 to

‖ f ∗p(t+1)−V ∗p (t+1) ‖. Thus, with ‖ f ∗p(t+1)−

V ∗p (t +1) ‖≤ 2CRd ln( d
δ
)

ρBpαp(t)
, we have:

Zprim(V ∗p (t +1), t|Dp)−Zprim( f ∗p(t +1), t|Dp)

≤
4
(
CR
)2d2

(
ρτ + c4CR

)(
ln( d

δ
)
)2

ρ2B2
pαp(t)2 ,

with probability no less than 1−δ .

Appendix I.
Proof that iterations (5) to (8) are conver-
gent ADMM algorithm shown in Appendix
A

The goal here is to cast (3) in the form of
(31) and show that updates (5)-(8) correspond
to (33)-(35) in Appendix A. We first reform
the constraints { fp = wp j, wp j = f j}p∈P, j∈Np to
A f = w, where f = [ f1, f2, ..., fP]

T . For all the

nodes in the network, the constraint fp = wp j can
be written as:

{ f1 = w1 j} j∈N1

...

{ fP = wP j} j∈NP .

(52)

Let
w = [{wT

1 j} j∈N1 , ...,{w
T
P j} j∈NP ]

T

and let A be a block-diagonal matrix with diago-
nal

Ai = [Id , ...,Id ]
T .

Thus,

A =

∣∣∣∣∣∣∣
A1

. . .
AP

∣∣∣∣∣∣∣ .
Therefore, we can write (51) in the form of matrix
and vector as:

A f = w. (53)

Let |E | be the number of links in the network.
Then there are ∑

P
i=1 Np = 2|E |, where the factor

2 of 2|E | is from the fact that there are two
constraints between two nodes: fp = wp j and
f j = w jp. Then matrix A ∈ R2d|E |×dP, and Ai ∈
RdNp×dNp .

Now we consider the constraint fp = w jp. We
can also list it acorss the nodes as:

{ f1 = w j1} j∈N1

...

{ fP = w jP} j∈NP .

(54)

Similarly, let

w1 = [{wT
j1} j∈N1 , ...,{w

T
jP} j∈NP ]

T .

and then we can write (53) in the form as:

A f = w1. (55)

It can be observed that replacing each wi j in w
by w ji gives w1. Now we express w1 in terms of
w. Let Sw be a 2|E |×2|E | matrix defined as:

Sw = [{s1 j} j∈N1 , ...,{sP j} j∈NP ],

where
sp j = [

(
s1

p j
)T

, ...,
(
sP

p j
)T

]T



is a 2|E | × 1 indictor vector. Let δ (·, ·) be the
Kronecker’s delta. Then

sa
p j = [{δ (p−b, j−b)}b∈Na ]

T .

Thus, we can write w1 in terms of w as:

w1 =
(
Sw⊗ Id

)
w. (56)

Therefore, (54) can be written as:

A f =
(
Sw⊗ Id

)
w, (57)

where ⊗ denotes Kronecker product.
Let A1 =

[
AT AT

]T , and S1 =
[
IT

2d|E |
(
Sw ⊗

Id
)T ]T . Then, we can combine (54) and (56) as:

A1 f = S1w. (58)

Thus, we can re-write (3) as:

min Zdec =
CR

Bp

P

∑
p=1

Bp

∑
i=1

L (yip f T
p xip)+

P

∑
p=1

ρR( fp)

s.t. A1 f = S1w.
(59)

Now, let

g1( f ) =
CR

Bp

P

∑
p=1

Bp

∑
i=1

L (yip f T
p xip)+

P

∑
p=1

ρR( fp)

g2(w) = 0

S1 = RdP

S2 =
{

w ∈ R4d|E ||w = S1w′for somew′ ∈ R2d|E |}.
Thus, problem (3) has the type of (31). Therefore,
the ADMM-based algorithm with updates (5)-
(8) is convergent according to Theorem 9 in
Appendix A.

Appendix J.
Proof of Proposition 7

Proof: (Proposition 7) According to Corol-
lary 4.1, fp(t) is αacc-optimal at each time t, and

P
(
Ĉ( fp(t))≤ Ĉ∗(t)+αacc +∆

dual
p (t)

)
≥ 1−2δ ,

and from Theorem 3, we have

P
(
Ĉ(Fp(t))≤ Ĉ∗(t)+αacc +∆

non(t)
)
≥ 1−δ .

Then, we have:

P
(
Ĉ( fp(t))≤ Ĉ(Fp(t))+∆

dual
p (t)−∆

non(t)
)
≥ 1−2δ .

It also holds for t→∞ when the Fp(t) converges
to f non

p (t + 1). Therefore, fp(t) performs similar
to f non

p (t), and the error between them is caused
by the noise {εp(t)}.

Taking the gradient of Ldual (16) and setting it
to 0 at fp(t) give (37) in Appendix:

εp(t) =−
Bp

∑
i=1

yipL
′(yip fp(t +1)T xip)xip−

Bp

CR ρ∇R( fp)

−
2Bp

CR λp(t)−
Bp

CR (Φ+2ηNp) fp(t +1)

+
Bpη

CR ∑
i∈Np

( fp(t)+ fi(t)).

Following the similar argument in the proof of
Theorem 1 in Appendix B, we claim that the
relation between εp(t) and fp(t +1) is bijective.

Let J f (εp(t)|Dp) be the Jacobian matrix trans-
forming from fp(t+1)→ εp(t) as (See Appendix
B for more details):

J f (εp(t)|Dp) =−
Bp

∑
i=1

J0
f (xi,yi)−

Bp

CR ρ∇
2R( fp(t +1))

−
Bp

CR (Φ+2ηNp)Id .

By transformation through Jacobian, we have:

Q( fp(t)|Dp)

=K (εp(t))
‖ εp(t) ‖d−1

sur(‖ εp(t) ‖)
|det(J f (εp(t)|Dp))|−1

=K (εp(t))
1

sur(‖ 1 ‖)
|det(J f (εp(t)|Dp))|−1,

where sur(E) is the surface area of the sphere in
d dimension with radius E, and sur(E) = sur(1) ·
Ed−1. Since εp(t) is Laplace random variable with
density K , and |det(J f (εp(t)|Dp))| is a bounded
function of fp(t + 1). Thus, Q( fP(t)|Dp) is a
bounded density function. Therefore, with proba-
bility greater than 1−2δ , Algorithm 2 converges
in distribution.

Appendix K.
Proof of Proposition 8

Proof: (Proposition 8) From Corollary 6.1,
we have:
P
(
Ĉ(Vp(t +1))≤ Ĉ∗(t +1)+αacc+∆

prim
p (t)

)
≥ 1−3δ ,



and from Theorem 3,

P
(
Ĉ(Fp(t))≤ Ĉ∗(t)+αacc +∆

non(t)
)
≥ 1−δ ,

then,
P
(
Ĉ(Vp(t +1))≤ Ĉ(Fp(t))+∆

prim
p (t)−∆

non(t)
)

≥ 1−3δ .

It also holds for t→∞ when the Fp(t) converges
to f non

p (t + 1). Therefore, Vp(t) performs similar
to f non

p (t), and the error between them is caused
by the noise {εp(t)}.

Let fp(t + 1) = argminLprim(t) with zero du-
ality gap, and let ε pi(t) = εp(t)− εi(t). Under
the Assumption 1 and 2, using the Karush-Kuhn-
Tucker (KKT) optimality condition (stationarity),
we have

0 =
CR

Bp

Bp

∑
i=1

yipL
′(yip fp(t +1)T xip)xip +ρ∇R( fp)

−η ∑
i∈Np

ε
pi(t).

Let ε p(t) = ∑i∈Np ε pi(t). Then we can establish
the relationship between the noise ε pi(t) and the
optimal primal variable fp(t +1) as:

ε
p(t) =

CR

Bpη

Bp

∑
i=1

yipL
′(yip fp(t +1)T xip)xip

+
ρ

η
∇R( fp).

Again, following the similar argument in the proof
of Theorem 1 in Appendix B, we claim that there
is bijection between εp(t) and fp(t +1).

Let J1
f (ε

p(t)|Dp) be the Jacobian matrix trans-
forming from fp(t + 1) to ε p(t) based on the
above equation. Let J1

f (ε
p(t)|Dp)

(a,b) be the (a,b)
entry of matrix J1

f (ε
p(t)|Dp), then

J1
f (ε

p(t)|Dp)
(a,b)

=
CR

Bpη

Bp

∑
i=1

y2
ipL

′′(yip fp(t +1)T xip)x
(a)
ip x(b)ip

+
ρ

η
∇

2R( fp)
(a,b).

Thus,

J1
f (ε

p(t)|Dp) =
CR

Bpη

Bp

∑
i=1

y2
ipL

′′(yip fp(t +1)T xip)xipxT
ip

+
ρ

η
∇

2R( fp).

We now find the probability density function of
ε pi(t). Since εp(t) and εi(t) are independent, then
their joint density function Ppi(z) is:

Ppi(z) =
1
κ

e−
(

ζp(t)+ζ j(t)
)
‖z‖,

where κ is a normalizing constant. Since αp(t) is
fixed for all nodes at time t, then all the nodes
have the same value of ζp(t) = ζ (t). Then

Ppi(εp(t),εi(t)) =
1
κ

e−2ζ (t)
(
‖εp(t)‖−‖εi(t)‖

)
.

Then the cumulative distribution function of ε pi(t)
is

Fε pi(t)(z) =P(ε pi ≤ z)

=
∫

∞

∞

∫
∞

ε p−z
Ppi(εp(t),εi(t))Ppi(z)dεp(t)dε j(t).

Thus, the density function of ε pi(t) is

Ppi(z) =
dFε pi(t)(z)

dz
.

Therefore, the density function of ε p(t) =

∑i∈Np ε pi(t) can be expressed as:

Pε p(t)(z) =
Np

∏
i∈Np

*Ppi(z),

where ∏
Np
i∈Np

* is the Np-fold convolution.
By transformation through Jacobian, we have:

QA( fp(t +1)|Dp) =Pε p(t)(εp(t))
‖ εp(t) ‖d−1

sur(‖ ε1(t) ‖)
· |det(J1

f (ε
p(t)|Dp))|−1

= Pε p(t)(εp(t))
1

sur(‖ 1 ‖)
· |det(J1

f (ε
p(t)|Dp))|−1,

where sur(E) is the surface area of the sphere in
d dimension with radius E, and sur(E) = sur(1) ·
Ed−1. |det(J1

f (ε
p(t)|Dp))| is a bounded function

of fp(t +1).
Since Vp(t + 1) = fp(t + 1) + εp(t + 1) and

fp(t +1) and εp(t +1) are independent, then we
can find the probability density function, Pt+1

Vp
, of

Vp(t +1) as:

Pt+1
Vp

(z) = (QA( fP(t +1)|Dp)∗K )(z).

Therefore, with probability greater than 1− 3δ ,
Algorithm 2 converges in distribution.
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