
Minimizing the Maximal Loss: How and Why?

Shai Shalev-Shwartz∗ Yonatan Wexler†

Abstract

A commonly used learning rule is to approximately minimize the average loss over the training
set. Other learning algorithms, such as AdaBoost and hard-SVM, aim at minimizing the maximal loss
over the training set. The average loss is more popular, particularly in deep learning, due to three main
reasons. First, it can be conveniently minimized using online algorithms, that process few examples at
each iteration. Second, it is often argued that there is no sense to minimize the loss on the training set too
much, as it will not be reflected in the generalization loss. Last, the maximal loss is not robust to outliers.
In this paper we describe and analyze an algorithm that can convert any online algorithm to a minimizer
of the maximal loss. We prove that in some situations better accuracy on the training set is crucial to
obtain good performance on unseen examples. Last, we propose robust versions of the approach that can
handle outliers.

1 Introduction

In a typical supervised learning scenario, we have training examples, S = ((x1, y1), . . . , (xm, ym)) ∈
(X ×Y)m, and our goal is to learn a function h : X → Y . We focus on the case in which h is parameterized
by a vector w ∈ W ⊂ Rd, and we use hw to denote the function induced by w. The performance of w on
an example (x, y) is assessed using a loss function, ` :W×X ×Y → R+. A commonly used learning rule
is to approximately minimize the average loss, namely,

min
w∈W

Lavg(w) :=
1

m

m∑
i=1

`(w, xi, yi) . (1)

Another option is to approximately minimize the maximal loss, namely,

min
w∈W

Lmax(w) := max
i∈[m]

`(w, xi, yi) . (2)

Obviously, if there exists w∗ ∈ W such that `(w∗, xi, yi) = 0 for every i then the minimizers of both
problems coincide. However, approximate solutions can be very different. In particular, since Lmax(w) ≥
Lavg(w) for every w, the guarantee Lmax(w) < ε is stronger than the guarantee Lavg(w) < ε. Furthermore,
for binary classification with the hinge-loss, any vector for which Lmax(w) < 1 must predict all the labels
on the training set correctly, while the guarantee Lavg(w) < 1 is meaningless.

Some classical machine learning algorithms can be viewed as approximately minimizing Lmax. For
example, many boosting algorithms can be viewed as coordinate descent algorithms for solving Lmax with
∗School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel.
†Orcam Ltd., Jerusalem, Israel

1

ar
X

iv
:1

60
2.

01
69

0v
1

 [
cs

.L
G

]
 4

 F
eb

 2
01

6

respect to the loss `(w, xi, yi) = −yi〈w, xi〉 (here 〈w, xi〉 is the inner product of w and xi) and over the set
W being the probabilistic simplex (see for example [18] and the references therein). Hard-SVM can also be
viewed as solving Lmax with respect to the loss function `(w, xi, yi) = λ‖w‖2 + max{0, 1− yi〈w, xi〉}.

However, minimizing Lavg is a more popular approach, especially for deep learning problems, in which
w is the vector of weights of a neural network and the optimization is performed using variants of stochastic
gradient descent (SGD). There are several reasons to prefer Lavg over Lmax:

1. If m is very large, it is not practical to perform operations on the entire training set. Instead, we prefer
iterative algorithms that update w based on few examples at each iteration. This can be easily done for
Lavg by observing that if we sample i uniformly at random from [m], then the gradient of `(w, xi, yi)
with respect to w is an unbiased estimator of the gradeint of Lavg(w). This property, which lies at the
heart of the SGD algorithm, does not hold for Lmax.

2. Our ultimate goal is not to minimize the loss on the training set but instead to have a small loss on
unseen examples. As argued before, approximately minimizing Lmax can lead to a smaller loss on the
training set, but it is not clear if this added accuracy will also be reflected in performance on unseen
examples. Formal arguments of this nature were given in [6, 19].

3. The objective Lmax is not robust to outliers. It is easy to see that even a single outlier can make the
minimizer of Lmax meaningless.

In this paper we tackle the aforementioned disadvantages of Lmax, and by doing so, we show cases in
which Lmax is preferable. In particular:

1. We describe and analyze a meta algorithm that can take any online learner for w and convert it to a
minimizer of Lmax. A detailed description of our meta algorithm, its analysis, and a comparison to
other approaches, are given in Section 2.

2. The arguments in [6, 19] rely on a comparison of upper bounds. We show that these upper bounds
are not tight in many cases. Furthermore, we analyze the sample complexity of learning in situations
where the training examples are divided to “typical” scenarios and “rare” scenarios. We argue that in
many practical cases, our goal is to have a high accuracy on both typical and rare examples. We show
conditions under which minimizing even few rare examples suffice to guarantee good performance
on unseen examples from the rare scenario. In other words, few examples can have a dramatic effect
on the performance of the learnt classifier on unseen examples. This is described and analyzed in
Section 3.

3. Finally, in Section 4 we review standard techniques for generalizing the results from realizable cases
to scenarios in which there might be outliers in the data.

To summarize, we argue that in some situations minimizing Lmax is better than minimizing Lavg. We
address the “how” question in Section 2, the “why” question in Section 3, and the issue of robustness in
Section 4. Proofs are provided in the appendix.

2 How

In this section we describe and analyze an algorithmic framework for approximately solving the optimization
problem given in (2).

2

Denote by Sm = {p ∈ [0, 1]m : ‖p‖1 = 1} the probabilistic simplex over m items. We also denote by
Λ :W → Rm the function defined by

Λ(w) = (`(w, x1, y1), . . . , `(w, xm, ym)) .

The first step is to note that the optimization problem given in (2) is equivalent to

min
w∈W

max
p∈Sm

〈p,Λ(w)〉 . (3)

This is true because for every w, the p that maximizes the inner optimization is the all zeros vector except 1
in the coordinate for which `(w, xi, yi) is maximal.

We can now think of (3) as a zero-sum game between two-players. The p player tries to maximize
〈p,Λ(w)〉 while the w player tries to minimize 〈p,Λ(w)〉. The optimization process is comprised of T game
rounds. At round t, the p player defines pt ∈ Sm and the w player defines wt ∈ W . We then sample it ∼ pt
and define the value of the round to be `(wt, xit , yit).

To derive a concrete algorithm we need to specify how player p picks pt and how player w picks wt.
For the w player one can use any online learning algorithm. We specify the requirement from the algorithm
below.

Definition 1 (Low regret w player). Let `s :W ×X × Y → R be a surrogate loss, namely, for every i and
w we have that `s(w, xi, yi) ≥ `(w, xi, yi). We say that the w player enjoys a regret of Rw(T) w.r.t. `s if
for every sequence of indices i1, . . . , iT and for every w? ∈ W we have that

1

T

T∑
t=1

`(wt, xit , yit) ≤
1

T

T∑
t=1

`s(w?, xit , yit) +Rw(T) . (4)

For the p player, we use the seminal work of [2]. In particular, recall that the goal of the p player is to
maximize the loss. Since the loss is in [0, 1], it is equivalent to minimizing 1 minus the loss, which is also in
[0, 1]. The basic idea of the construction is therefore to think of the m examples as m slot machines, where
at round t the loss of pulling the arms of the different machines is according to zt := 1 − Λ(wt) ∈ [0, c]m.
Crucially, the work of [2] do not assume that zt are sampled from a fixed distribution, but rather the vectors
zt can be chosen by an adversary. As observed in Auer et al. [2, Section 9], this naturally fits zero-sum
games, as we consider here.

In [2] it is proposed to rely on the algorithm EXP3.P.1 as the strategy for the p-player. The acronym
EXP3 stands for Exploration-Exploitation-Exponent, because the algorithm balances between exploration
and exploitation and rely on an exponentiated gradient framework. The “P” in EXP3.P.1 stands for a regret
bound that holds with high probability. This is essential for our analysis because we will later apply a union
bound over them examples. While the EXP3.P.1 algorithm gives the desired regret analysis, the runtime per
iteration of this algorithm scales with m. Here, we propose another variant of EXP3 for which the runtime
per iteration is O(log(m)).

To describe our strategy for the p player, recall that it maintains pt ∈ Sm. We will instead maintain
another vector, qt ∈ Sm, and will set pt to be the vector such that pt,i = 1

2qt,i + 1
2m . That is, pt is a half-half

mix of qt with the uniform distribution. While in general such a strong mix with the uniform distribution
can hurt the regret, in our case it only affects the convergence rate by a constant factor. On the up side, this
strong exploration helps us having an update step that takes O(log(m)) per iteration.

A pseudo-code of the resulting algorithm is given in Section 2.3. Observe that we use a tree structure
to ensure that the update step of the p player takes O(log(m)) time per iteration. The following theorem
summarizes the convergence of the resulting algorithm.

3

Theorem 1. Let (x1, y1), . . . , (xm, ym) be training examples which are realizable with respect to some sur-
rogate loss, and assume that we have an online learner with regret of Rw(T) with respect to the same surro-
gate. Suppose we run the online boosting algorithm with T, k such thatRw(T) ≤ ε/8, T = Ω(m log(m/δ)/ε),
and k = Ω(log(m/δ)/ε), and with η = 1/(2m). Then, with probability of at least 1− δ,

max
i

1

k

k∑
j=1

`(wtj , xi, yi) ≤ ε .

The proof of the theorem is given in Appendix A.
The above theorem tells us that we can easily find an ensemble of O(log(m)/ε) predictors, such that the

ensemble loss is smaller than ε for all of the examples.
We next need to show that we can construct a single predictor with a small loss. To do so, we consider

two typical scenarios. The first is classification settings, in which `(w, x, y) is the zero-one loss and the
second is convex losses in which `(w, x, y) has the form φy(hw(x)), where for every y, φy is a convex
function.

2.1 Classification

In classification, `(w, x, y) is the zero-one loss, namely, it equals to zero if hw(x) = y and it equals to 1 if
hw(x) 6= y. In this case, the value of c is 1 and we can take ε to be any number strictly smaller than 1/2,
say 0.499.

Observe that Theorem 1 tells us that the average loss of wt (over [T] or T) is smaller than ε = 0.499.
Since the values of the loss are either 1 or 0, it means that the loss of more than 1/2 of the classifiers is 0,
which implies that the majority classifier has a zero loss.

Corollary 1. Assume that `(w, x, y) is the zero-one loss function, namely, `(w, x, y) = 1[hw(x) 6= y]. Apply
Theorem 1 with ε = 0.49. Then, with probability of at least 1− δ, the majority classifier of hwt1 , . . . , hwtk
is consistent1 with all the examples.

Example 1. Consider a binary classification problem in which the data is linearly separable by a vector
w∗ with a margin of 1. We can use the online Perceptron algorithm as our w learner (see [16]). Then,
after Õ

(
m+ ‖w∗‖2

)
iterations, we will find an ensemble of O(log(m)) halfspaces, whose majority vote is

consistent with all the examples. In Section 2.4 we compare the runtime of the method to state-of-the-art
approaches. Here we just note that to obtain a consistent hypothesis using SGD one needs order ofm ‖w∗‖2
iterations, which is significantly larger in most scenarios.

2.2 Convex Losses

Consider now the case in which `(w, x, y) has the form φy(hw(x)), where for every y, φy is a convex
function. Note that this assumption alone does not imply that ` is a convex function of w (this will be true
only if hw(x) is an affine function).

In the case of convex φy, combining Theorem 1 with Jensen’s inequality we obtain:

Corollary 2. Under the assumptions of Theorem 1, if `(w, x, y) has the form φy(hw(x)), where for every
y, φy is a convex function, then the predictor hT (x) = 1

k

∑
t∈T hwt(x) satisfies

∀i, φyi(hT (xi)) ≤ ε .

1A consistent hypothesis is a hypothesis that makes no mistakes on the training set.

4

If we further assume that hw(x) is an affine function of w, and let wT = 1
k

∑
t∈T wt, then we also have that

∀i, φyi(hwT (xi)) ≤ ε .

Example 2. Consider a linear regression problem where X is the `2 ball of radius X , W is the `2 ball of
radius W , Y = [0, 1], hw(x) = max{0,min{1, 〈w, x〉}}, and `(w, x, y) = |hw(x) − y|. For the w player
we can use the online gradient descent algorithm (see [16]) with respect to the surrogate loss `s(w, x, y) =
|〈w, x〉 − y|. The regret bound is Rw(T) ≤ XW/

√
T . It follows that to find a predictor with error of at

most ε on all the examples we need that T = Ω
(
X2W 2

ε2
+ m log(m)

ε

)
. In contrast, to achieve the same result

with SGD we need order of X
2W 2m2

ε2
iterations.

2.3 Pseudo-code

Below we describe a pseudo-code of the algorithm. We rely on a tree data structure for maintaining the
probability of the p-player. It is easy to verify the correctness of the implementation. Observe that the
runtime of each iteration is the time required to perform one step of the online learner plus O(log(m)) for
sampling from pt and updating the tree structure.

Focused Online Learning (FOL)

Input:
Training examples (x1, y1), . . . , (xm, ym)
Loss function ` :W ×X × Y → [0, 1]
Parameters η, T, k
Oracle access to online learning algorithm OLA

Initialization:
Tree.initialize(m) (see the Tree pseudo-code)
w1 = OLA.initialize()

Loop over t ∈ {1, . . . , T :
(it, pit) = Tree.sample(1/2)
OLA.step(xit , yit)
Tree.update(it, exp(η `(wt, xit , yit)/pit))

Output:
Sample (t1, . . . , tk) indices uniformly from [T]
Output Majority/Average of (hwt1 , . . . , hwtk)

5

Tree

initialize(m)
Build a full binary tree of height h = 2dlog2(m)e

Set value of the first m leaves to 1 and the rest to 0
Set the value of each internal node to be

the sum of its two children
Let qi be the value of the i’th leaf divided by

the value of the root
sample(γ)

Sample b ∈ {0, 1} s.t. P[b = 0] = γ
If b = 0

Sample i uniformly at random from [m]
Else

Set v to be the root node of the tree
While v is not a leaf:

Go to the left/right child by sampling
according to their values

Let i be the obtained leaf
Return: (i, γ/m+ (1− γ)qi)

update(i, f)
Let v be the current value of the i’th leaf of the tree
Let δ = f v − v
Add δ to the values of all nodes on

the path from the i’th leaf to the root

2.4 Related Work

As mentioned before, our algorithm is a variant of the approach given in Auer et al. [2, Section 9], but
has the advantage that the update of the p player at each iteration scales with log(m) rather than with m.
Phrasing the max-loss minimization as a two players game has also been proposed by [7, 12]. These works
focus on the specific case of binary classification with a linear predictor, namely, they tackle the problem
minw∈Rd:‖w‖2≤1 maxp∈Sm

∑
i pi〈w, xi〉. Assuming that the data is linearly separable with a margin of γ,

[7] presents an algorithm that finds a consistent hypothesis in runtime of Õ((m + d)/γ2). For the same
problem, our algorithm (with the Perceptron as the weak learner) finds a consistent hypothesis in runtime of
Õ((m+ 1/γ2)d). Furthermore, if the instances are d̄-sparse (meaning that the number of non-zeros in each
xi is at most d̄), then the term d in our bound can be replaced by d̄. In any case, our bound is sometimes
better and sometimes worse than the one in [7]. We note that we can also use AdaBoost [10] on top of
the Perceptron algorithm for the same problem. It can be easily verified that the resulting runtime will be
identical to our bound. In this sense, our algorithm can be seen as an online version of AdaBoost.

Finally, several recent works use sampling strategies for speeding up optimization algorithms for mini-
mizing the average loss. See for example [3, 4, 21, 1].

6

3 Why

In this section we tackle the “Why” question, namely, why should we prefer minimizing the maximal loss
instead of the average loss. For simplicity of presentation, throughout this section we deal with binary
classification problems with the zero-one loss, in the realizable setting. In this context, minimizing the
maximal loss to accuracy of ε < 1 leads to a consistent hypothesis2. On the other hand, minimizing the
average loss to any accuracy of ε > 1/m does not guarantee to return a consistent hypothesis. Therefore, in
this context, the “why” question becomes: why should we find a consistent hypothesis and not be satisfied
with a hypothesis with Lavg(h) ≤ ε for some ε > 1/m.

In the usual PAC learning model (see [17] for an overview), there is a distribution D over X × Y and
the training examples are assumed to be sampled i.i.d. from D. The goal of the learner is to minimize
LD(h) := E(x,y)∼D[`(h, x, y)] = P(x,y)∼D[h(x) 6= y]. For a fixed h ∈ H, the random variable Lavg(h)
is an unbiased estimator of LD(h). Furthermore, it can be shown (Boucheron et al. [5, Section 5.1.2]) that
with probability of at least 1− δ over the choice of the sample S ∼ Dm we have that:

∀h ∈ H, LD(h) ≤ Lavg(h)+

Õ

(√
Lavg(h)

VC(H)− log(δ)

m
+

VC(H)− log(δ)

m

)

where VC(H) is the VC dimension of the classH and the notation Õ hides constants and logarithmic terms.
From the above bound we get that any hwith Lavg(h) = 0 (i.e., a consistent h) guarantees that LD(h) =

Õ
(

VC(H)+log(1/δ)
m

)
. However, we will obtain the same guarantee (up to constants) if we will choose any h

with Lavg(h) ≤ ε, for ε = Õ
(

VC(H)+log(1/δ)
m

)
. Based on this observation, it can be argued that it is enough

to minimize Lavg to accuracy of ε = Õ
(

VC(H)+log(1/δ)
m

)
> 1

m , because a better accuracy on the training
set will in any case get lost by the sampling noise.

Furthermore, because of either computational reasons or high dimensionality of the data, we often do
not directly minimize the zero-one loss, and instead minimize a convex surrogate loss, such as the hinge-
loss. In such cases, we often rely on a margin based analysis, which means that the term VC(H) is replaced
by B2, where B is the restriction of the norm of the weight vector that defines the classifier. It is often the
case that the convergence rate of SGD is of the same order, and therefore there is no added value of solving
the ERM problem over performing a single SGD path over the data (or few epochs over the data). Formal
arguments of this nature were given in [6, 19].

Despite of these arguments, we show below reasons to prefer the max loss formulation over the avg loss
formulation. The first reason is straightforward: arguments that are based on worst case bounds are prob-
lematic, since in many cases the behavior is rather different than the worst case bounds. In subsection 3.1
we present a simple example in which there is a large gap between the sample complexity of SGD and the
sample complexity of ERM, and we further show that the runtime of our algorithm will be much better than
the runtime of SGD for solving this problem.

Next, we describe a family of problems in which the distribution from which the training data is being
sampled is a mix of “typical” examples and “rare” examples. We show that in such a case, few “rare”
examples may be sufficient for learning a hypothesis that has a high accuracy on both the “typical” and

2Recall that a consistent hypothesis is a hypothesis that makes no mistakes on the training set. We also use the term Empirical
Risk Minimization (ERM) to describe the process of finding a consistent hypothesis, and use ERM(S) to denote any hypothesis
which is consistent with a sample S.

7

“rare” examples, and therefore, it is really required to solve the ERM problem as opposed to being satisfied
with a hypothesis for which Lavg(h) is small.

3.1 A Simple Example of a Gap

Consider the following distribution. Let z1 = (α, 1) and z2 = (α,−2α) for some small α > 0. To
generate an example (x, y) ∼ D, we first sample a label y uniformly at random from {±1}, then we set
x = yz1 with probability 1 − ε and set x = yz2 with probability ε. The hypothesis class is halfspaces:
H = {x→ sign(〈w, x〉) : w ∈ R2}.

The following three lemmas, whose proofs are given in the appendix, establish the gap between the
different approaches.

Lemma 1. For every δ ∈ (0, 1), if m ≥ 2 log(4/δ)
ε then, with probability of at least 1− δ over the choice of

the training set, S ∼ Dm, any hypothesis in ERM(S) has a generalization error of 0.

Lemma 2. Suppose we run SGD with the hinge-loss and any η > 0 for less than T = Ω(1/(αε)) iterations.
Then, with probability of 1−O(ε) we have that SGD will not find a solution with error smaller than ε.

Lemma 3. Running our algorithm takes Õ
(

1
ε + 1

α

)
iterations.

3.2 Typical vs. Rare Distributions

To motivate the learning setting, consider the problem of face detection, in which the goal is to take an image
crop and determine whether it is an image of a face or not. An illustration of typical random positive and
negative examples is given in Figure 1 (top row). By having enough training examples, we can learn that the
discrimination between face and non-face is based on few features like “an ellipse shape”, “eyes”, “nose”,
and “mouth”. However, from the typical examples it is hard to tell whether an image of a watermelon is a
face or not — it has the ellipse shape like a face, and something that looks like eyes, but it doesn’t have a
nose, or a mouth. The bottom row of Figure 1 shows some additional “rare” examples.

Figure 1: Top: typical positive (left) and negative (right) examples. Bottom: rare negative examples.

Such a phenomenon can be formally described as follows. There are two distributions over the examples,
D1 and D2. Our goal is to have an error of at most ε on both distributions, namely, we would like to find h
such that LD1(h) ≤ ε and LD2(h) ≤ ε. However, the training examples that we observe are sampled i.i.d.
from a mixed distribution, D = λ1D1 + λ2D2, where λ1, λ2 ∈ (0, 1) and λ1 + λ2 = 1. We assume that
λ2 � λ1, namely, typical examples in the training set are from D1 while examples from D2 are rare.

Fix some ε. If λ2 < ε, then a hypothesis with Lavg(h) ≤ ε might err on most of the “rare” examples,
and is therefore likely to have LD2(h) > ε. If we want to guarantee a good performance on D2 we must
optimize to a very high accuracy, or put another way, we would like to minimize Lmax instead of Lavg. The

8

question is how many examples do we need in order to guarantee that a consistent hypothesis on S will have
a small error on both D1 and D2. A naive approach is to require order of VC(H)/(λ2ε) examples, thus
ensuring that we have order of VC(H)/ε examples from both D1 and D2. However, this is a rough estimate
and the real sample complexity might be much smaller. Intuitively, we can think of the typical examples
from D1 as filtering out most of the hypotheses in H, and the goal of the rare examples is just to fine tune
the exact hypothesis. In the example of face detection, the examples from D1 will help us figure out what is
an “ellipse like shape”, what is an “eye”, and what is a “mouth” and a “nose”. After we understand all this,
the rare examples from D2 will tell us the exact requirement of being a face (e.g., you need an ellipse like
shape and either eyes or a mouth). We can therefore hope that the number of required “rare” examples is
much smaller than the number of required “typical” examples. This intuition is formalized in the following
theorem.

Theorem 2. Fix ε, δ ∈ (0, 1), distributions D1, D2, and let D = λ1D1 + λ2D2 where λ1 + λ2 =
1, λ1, λ2 ∈ [0, 1], and λ2 < λ1. Define H1,ε = {h ∈ H : LD1(h) ≤ ε} and c = max{c′ ∈ [ε, 1) :
∀h ∈ H1,ε, LD2(h) ≤ c′ ⇒ LD2(h) ≤ ε}. Then, if

m ≥ Ω

(
VC(H) log(1/ε) + log(1/δ)

ε
+

VC(H1,ε) log(1/c) + log(1/δ)

c λ2

)
we have, with probability of at least 1− δ over the sampling of a sample S ∼ Dm:

LD1(ERM(S)) ≤ ε and LD2(ERM(S)) ≤ ε

The proof of the theorem is given in the appendix. The first term in the sample complexity is a standard
VC-based sample complexity. The second term makes two crucial improvement. First, we measure the
VC dimension of a reduced class (H1,ε), containing only those hypotheses in H that have a small error on
the “typical” distribution. Intuitively, this will be a much smaller hypothesis class compared to the original
class. Second, we apply an analysis of the sample complexity similar to the “shell analysis” of [11], and
assume that the error of all hypotheses in H1,ε on D2 is either smaller than ε or larger than c, where we
would like to think of c as a constant.

All in all, the theorem shows that a small number of “rare” examples in the training set can have a
dramatic effect on the performance of the algorithm on the rare distribution D2. But, we will see this effect
only if we will indeed find a hypothesis consistent with all (or most) examples from D2, which requires an
algorithm for minimizing Lmax and not Lavg.

4 Robustness

In the previous section we have shown cases in which minimizing Lmax is better than minimizing Lavg.
However, in the presence of outliers, minimizing Lmax might lead to meaningless results — even a single
outlier can change the value of Lmax and might lead to a trivial, non-interesting, solution. In this section
we describe two tricks for addressing this problem. The first trick replaces the original sample with a new
sample whose examples are sampled from the original sample. The second trick relies on slack variables.
We note that these tricks are not new and appears in the literature in various forms. See for example [13, 15].
The goal of this section is merely to show how to apply known tricks to the max loss problem.

9

Recall that in the previous section we have shown that a small amount of “rare” examples can have a
dramatic effect on the performance of the algorithm on the “rare” distribution. Naturally, if the number of
outliers is larger than the number of rare examples we cannot hope to enjoy the benefit of rare examples.
Therefore, throughout this section we assume that the number of outliers, denoted k, is smaller than the
number of “rare” examples, which we denote by m2.

4.1 Sub-sampling with repetitions

The first trick we consider is to simply take a new sample of n examples, where each example in the new
sample is sampled independently according to the uniform distribution over the original m examples. Then,
we run our algorithm on the obtained sample of n examples.

Intuitively, if there are k outliers, and the size of the new sample is significantly smaller than m/k, then
there is a good chance that no outliers will fall into the new sample. On the other hand, we want that enough
“rare” examples will fall into the new sample. The following theorem, whose proof is in the appendix,
shows for which values of k and m2 this is possible.

Theorem 3. Let k be the number of outliers, m2 be the number of rare examples, m be the size of the
original sample, and n be the size of the new sample. Assume that m ≥ 10k. Then, the probability
that the new sample contains outliers and/or does not contain at least m2/2 rare examples is at most
0.01 + 0.99kn/m+ e−0.1nm2/m.

For example, if n = m/(100k) and m2 ≥ 1000 log(100) k, then the probability of the bad event is at
most 0.03.

4.2 Slack variables

Another common trick, often used in the SVM literature, is to introduce a vector of slack variables, ξ ∈ Rm,
such that ξi > 0 indicates that example i is an outlier. We first describe the ideal version of outlier removal.
Suppose we restrict ξi to take values in {0, 1}, and we restrict the number of outliers to be at most K. Then,
we can write the following optimization problem:

min
w∈W,ξ∈Rm

max
i∈[m]

(1− ξi) `(w, xi, yi) s.t.

ξ ∈ {0, 1}m, ‖ξ‖1 ≤ K .

This optimization problem minimizes the max loss over a subset of examples of size at least m −K. That
is, we allow the algorithm to refer to at most K examples as outliers.

Note that the above problem can be written as a max-loss minimization:

min
w̄∈W̄

max
i

¯̀(w̄, xi, yi) where

W̄ = {(w, ξ) : w ∈ W, ξ ∈ {0, 1}m, ‖ξ‖1 ≤ K} and
¯̀((w, ξ), xi, yi) = (1− ξi)`(w, xi, yi)

We can now apply our framework on this modified problem. The p player remains as before, but now the
w̄ player has a more difficult task. To make the task easier we can perform several relaxations. First, we
can replace the non-convex constraint ξ ∈ {0, 1}m with the convex constraint ξ ∈ [0, 1]m. Second, we can
replace the multiplicative slack with an additive slack, and re-define: ¯̀((w, ξ), xi, yi) = `(w, xi, yi) − ξi.

10

This adds a convex term to the loss function, and therefore, if the original loss was convex we end up with
a convex loss. The new problem can often be solved by combining gradient updates with projections of ξ
onto the set ξ ∈ [0, 1]m, ‖ξ‖1 ≤ K. For efficient implementations of this projection see for example [8].
We can further replace the constraint ‖ξ‖1 ≤ K with a constraint of ‖ξ‖22 ≤ K, because projection onto the
Euclidean ball is a simple scaling, and the operation can be done efficiently with an adequate data structure
(as described, for example, in [20]).

A Proof of Theorem 1

A.1 Background

Bernstein’s type inequality for martingales: A sequence B1, . . . , BT of random variables is Markovian
if for every t, given Bt−1 we have that Bt is independent of B1, . . . , Bt−2. A sequence A1, . . . , AT of
random variables is a martingale difference sequence with respect to B1, . . . , BT if for every t we have
E[At|B1, . . . , Bt] = 0.

Lemma 4 (Hazan et al. [12, Lemma C.3] and Fan et al. [9, Theorem 2.1]). Let B1, . . . , BT be a Markovian
sequence and let A1, . . . , AT be a martingale difference sequence w.r.t. B1, . . . , BT . Assume that for every
t we have |At| ≤ V and E[A2

t |B1, . . . , Bt] ≤ s. Then, for every α > 0 we have

P

(
1

T

T∑
t=1

At ≥ α

)
≤ exp

(
−T α2/2

s+ αV/3

)
In particular, for every δ ∈ (0, 1), if

T ≥ 2(s+ αV/3) log(1/δ)

α2
,

then with probability of at least 1− δ we have that 1
T

∑T
t=1At ≤ α.

The EG algorithm: Consider a sequence of vectors, z1, . . . , zT , where every zt ∈ Rm. Consider the
following sequence of vectors, parameterized by η > 0. The first vector is q̃1 = (1, . . . , 1) ∈ Rm and for
t ≥ 1 we define q̃t+1 to be such that:

∀i ∈ [m], q̃t+1,i = q̃t,i exp(−ηzt,i) .

In addition, for every t define qt = q̃/(
∑m

i=1 q̃i) ∈ Sm. The algorithm that generates the above sequence is
known as the EG algorithm [14].

Lemma 5 (Theorem 2.22 in [16]). Assume that ηzt,i ≥ −1 for every t and i. Then, for every u ∈ Sm we
have:

T∑
t=1

〈qt − u, zt〉 ≤
log(m)

η
+ η

T∑
t=1

m∑
i=1

qt,iz
2
t,i .

A.2 Proof

To simplify our notation we denote `i(wt) = `(wt, xi, yi). We sometimes omit the time index t when it is
clear from the context (e.g., we sometime use qi instead of qt,i).

11

A.2.1 The w player

By our realizability assumption and the assumption that Rw(T) ≤ ε/6 we have that, for every i1, . . . , iT ,

1

T

T∑
t=1

`it(wt) ≤ ε/6 (5)

A.2.2 The p player

Recall that pi = 1
2m + qi

2 . Note that, for every i,

1

pi
≤ 2m and

qi
pi
≤ 2

Define let zt = − `it (wt)

pit
eit . Observe that the p player applies the EG algorithm w.r.t. the sequence

z1, . . . , zT . Since zt,i ≥ −2m we obtain from Lemma 5 that if η ≤ 1/(2m) then, for every u ∈ Sm,

1

T

T∑
t=1

〈qt − u, zt〉 ≤
log(m)

ηT
+
η

T

T∑
t=1

m∑
i=1

qt,iz
2
t,i

≤ log(m)

ηT
+
η

T

T∑
t=1

qt,it
`it(wt)

2

p2
t,it

≤ log(m)

ηT
+
η

T

T∑
t=1

4m`it(wt)
2

≤ log(m)

ηT
+
η4m

T

T∑
t=1

`it(wt)

≤ ε/8 +
2

T

T∑
t=1

`it(wt) ,

where in the last inequality we used η = 1/(2m) and T = Ω(m log(m)/ε). Rearranging, and combining
with (5) we obtain

1

T

T∑
t=1

〈u, 1

pt,it
`it(wt)eit〉 ≤

1

T

T∑
t=1

(
qt,it
pt,it

+ 2

)
`it(wt) + ε/8 ≤ 4

T

T∑
t=1

`it(wt) + ε/8 ≤ 5ε

8
. (6)

A.2.3 Measure concentration

Note that, if u = ei, then

E[〈u, 1

pt,it
`it(wt)eit〉2|qt, wt] =

m∑
j=1

pt,j
p2
t,j

`j(wt)
2uj ≤

1

pt,i
≤ 2m .

Define the martingale difference sequence A1, . . . , AT where At = `i(wt) − 〈u, 1
pt,it

`it(wt)eit〉. We have

that |At| ≤ (2m + 1) and E[A2
t |qt, wt] ≤ 2m. Therefore, the conditions of Lemma 4 holds and we obtain

12

that if T ≥ 6m log(m/δ)/(ε/8)2 then with probability of at least 1 − δ/m we have that 1
T

∑
tAt ≤ ε/8.

Applying a union bound over i ∈ [m] we obtain that with probability of at least 1− δ it holds that

∀i ∈ [m],
1

T

∑
t

`i(wt) ≤
1

T

∑
t

〈u, 1

pit
`it(wt)eit〉+ ε/8 .

Combining with (6) we obtain that, with probability of at least 1− δ,

∀i ∈ [m],
1

T

T∑
t=1

`i(wt) ≤
6ε

8
.

Finally, relying on Bernstein’s inequality (see Lemma B.10 in [17]), it is not hard to see that if k =
Ω(log(m/δ)/ε) then, with probability of at least 1− δ we have that

∀i ∈ [m],
1

k

k∑
i=1

`i(wt,i) ≤
1

T

T∑
t=1

`i(wt) +
ε

4
,

and this concludes our proof.

B Proofs of Lemmas in Section 3.1

Proof of Lemma 1. There are only 4 possible examples, so an ERM will have a generalization error of 0
provided we see all the 4 examples. By a simple direct calculation together with the union bound over the 4
examples it is easy to verify that the probability not to see all the examples is at most 4(1−ε/2)m ≤ 4e−mε/2,
and the claim follows.

Proof of Lemma 2. For SGD, we can assume (due to symmetry) that y is always 1. Therefore, there are
only two possible examples z1, z2. With probability 1− ε the first examples is z1. Also, wT has always the
form

η(kz1 + rz2) = η((k + r)α, k − 2rα) ,

where k is the number of times we had a margin error on z1 and r is the number of times we had a margin
error on z2. To make sure that 〈wT , z2〉 > 0 we must have that

(k + r)α2 − 2(k − 2rα)α > 0 ⇒ r > k
2α− α2

5α2
≈ k 2

5α
(7)

Note that the first example is z1 with probability of 1−ε, hence we have that k ≥ 1 with probability of at least
1− ε. In addition, r is upper bounded by the number of times we saw z2 as the example, and by Chernoff’s
bound we have that that the probability that this number is greater than 2mε is at most e−ε/3 ≈ (1 − ε/3).
Therefore, with probability of 1−O(ε) we have the requirement that m must be at least Ω(1/(αε)), which
concludes our proof.

Proof of Lemma 3. We have shown that m = 1/ε examples suffices. Specifying our general analysis to
classification with the hinge-loss, it suffices to ensure that the regret of both players will be smaller than
1/2. The regret of the sampling player is bounded by O(m log(m)). As for the halfspace player, to simplify
the derivation, lets use the Perceptron as the underlying player. I is easy to verify that the vector wT has
the form kz1 + rz2 = ((k + r)α, k − 2rα), for some integers k, r. Lets consider two regimes. The first is

13

the first time when r, k satisfies 〈wT , z2〉 > 0. As we have shown before, this happens when r is roughly
2k/(5α). Once this happens we also have that

〈wT , z1〉 = ((k + r)α2 + k − 2rα) ≈ (k − 2rα)
≈
> 4k/5 > 0 ,

So, the Perceptron will stop making changes and will give us an optimal halfspace. Next, suppose that we
have a pair r, k for which 〈wT , z2〉 ≤ 0. If we now encounter z2 then we increase r. If we encounter z1 then

〈wT , z1〉 ≈ (k − 2rα)
≈
> 4k/5 > 0 ,

so we’ll not increase k. Therefore, k will increase only up to a constant, while r will continue to increase
until roughly 2k/(5α), and then the Perceptron will stop making updates. This implies that the regret of the
Perceptron is bounded by O(1/α), which concludes our proof.

C Proof of Theorem 2

We can think of the ERM algorithm as following the following three steps. First, we sample (i1, . . . , im) ∈
{1, 2}m, where P[ir = j] = λj . Let m1 be the number of indices for which ir = 1 and let m2 = m−m1.
Second, we sample S1 ∼ Dm1

1 , and define Ĥ1 to be all hypotheses inH which are consistent with S1. Last,
we sample S2 ∼ Dm2

2 and set the output hypotheses to be some hypothesis in Ĥ1 which is consistent with
S2.

The proof relies on the following three claims, where we use C to denote a universal constant:

• Claim 1: With probability of at least 1 − δ/3 over the choice of (i1, . . . , im) we have that both
m1 ≥ λ1m/2 and m2 ≥ λ2m/2.

• Claim 2: Assuming that m1 ≥ C
(

VC(H) log(1/ε)+log(1/δ)
ε

)
, then with probability of at least 1− δ/3

over the choice of S1 we have that Ĥ1 ⊆ H1,ε.

• Claim 3: Assume that m2 ≥ C
(

VC(H1,ε) log(1/c)+log(1/δ)
c

)
, then with probability of at least 1− δ/3

over the choice of S2, any hypothesis inH1,ε which is consistent with S2 must have LD2(h) ≤ c.

Claim 1 follows directly from Chernoff’s bound, while Claim 2-3 follows directly from standard VC bounds
(see for example Shalev-Shwartz and Ben-David [17, Theorem 6.8]).

Equipped with the above three claims we are ready to prove the theorem. First, we apply the union
bound to get that with probability of at least 1 − δ, the statements in all the above three claims hold. This
means that Ĥ1 ⊆ H1,ε hence LD1(ERM(S)) ≤ ε. It also means that ERM(S) must be inH1,ε, and therefore
from the third claim and the assumption in the theorem we have that LD2(ERM(S)) ≤ ε as well, which
concludes our proof.

D Proof of Theorem 3

The probability that all of the outliers do not fall into the sample of n examples is

(1− k/m)n ≥ 0.99 e−kn/m .

14

Therefore, the probability that at least one outlier falls into the sample is at most

1− 0.99 e−kn/m ≤ 1− 0.99(1− kn/m) = 0.01 + 0.99kn/m

On the other hand, the expected number of rare examples in the sample is nm2/m and by Chernoff’s bound,
the probability that less than half of the rare examples fall into the sample is at most exp(−0.1nm2/m).
Applying the union bound we conclude our proof.

References

[1] Zeyuan Allen-Zhu and Yang Yuan. Even faster accelerated coordinate descent using non-uniform
sampling. arXiv preprint arXiv:1512.09103, 2015.

[2] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

[3] Yoshua Bengio and Jean-Sébastien Senécal. Adaptive importance sampling to accelerate training of a
neural probabilistic language model. Neural Networks, IEEE Transactions on, 19(4):713–722, 2008.

[4] Guillaume Bouchard, Théo Trouillon, Julien Perez, and Adrien Gaidon. Accelerating stochastic gra-
dient descent via online learning to sample. arXiv preprint arXiv:1506.09016, 2015.

[5] Stéphane Boucheron, Olivier Bousquet, and Gábor Lugosi. Theory of classification: A survey of some
recent advances. ESAIM: probability and statistics, 9:323–375, 2005.

[6] Olivier Bousquet and Léon Bottou. The tradeoffs of large scale learning. In Advances in neural
information processing systems, pages 161–168, 2008.

[7] Kenneth L Clarkson, Elad Hazan, and David P Woodruff. Sublinear optimization for machine learning.
Journal of the ACM (JACM), 59(5):23, 2012.

[8] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto the l
1-ball for learning in high dimensions. In Proceedings of the 25th international conference on Machine
learning, pages 272–279. ACM, 2008.

[9] Xiequan Fan, Ion Grama, and Quansheng Liu. Hoeffding’s inequality for supermartingales. Stochastic
Processes and their Applications, 122(10):3545–3559, 2012.

[10] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning and an
application to boosting. In Computational learning theory, pages 23–37. Springer, 1995.

[11] David Haussler, Michael Kearns, H Sebastian Seung, and Naftali Tishby. Rigorous learning curve
bounds from statistical mechanics. Machine Learning, 25(2-3):195–236, 1996.

[12] Elad Hazan, Tomer Koren, and Nati Srebro. Beating sgd: Learning svms in sublinear time. In Advances
in Neural Information Processing Systems, pages 1233–1241, 2011.

[13] Peter J. Huber and Elvezio M. Ronchetti. Robust Statistics (second edition). J. Wiley, 2009.

[14] J. Kivinen and M. Warmuth. Exponentiated gradient versus gradient descent for linear predictors.
Information and Computation, 132(1):1–64, January 1997.

15

[15] Ricardo A Maronna, R Douglas Martin, and Victor J Yohai. Robust Statistics: Theory and Methods.
J. Wiley, 2006.

[16] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in
Machine Learning, 4(2):107–194, 2011.

[17] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algo-
rithms. Cambridge university press, 2014.

[18] Shai Shalev-Shwartz and Yoram Singer. On the equivalence of weak learnability and linear separabil-
ity: New relaxations and efficient boosting algorithms. Machine learning, 80(2-3):141–163, 2010.

[19] Shai Shalev-Shwartz and Nathan Srebro. Svm optimization: inverse dependence on training set size.
In Proceedings of the 25th international conference on Machine learning, pages 928–935. ACM, 2008.

[20] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Primal estimated
sub-gradient solver for svm. Mathematical programming, 127(1):3–30, 2011.

[21] Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling. arXiv preprint
arXiv:1401.2753, 2014.

16

	1 Introduction
	2 How
	2.1 Classification
	2.2 Convex Losses
	2.3 Pseudo-code
	2.4 Related Work

	3 Why
	3.1 A Simple Example of a Gap
	3.2 Typical vs. Rare Distributions

	4 Robustness
	4.1 Sub-sampling with repetitions
	4.2 Slack variables

	A Proof of Theorem ??
	A.1 Background
	A.2 Proof
	A.2.1 The w player
	A.2.2 The p player
	A.2.3 Measure concentration

	B Proofs of Lemmas in Section ??
	C Proof of Theorem ??
	D Proof of Theorem ??

