
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Consistency Analysis of Empirical MEE Algorithm

Anonymous Author(s)

Affiliation

Address

email

Abstract

In this paper we study the consistency of the empirical minimum error entropy
(MEE) algorithm for regression learning. Two types of consistency are studied.
The error entropy consistency, which requires the error entropy of the learned
function approximates the minimum error entropy, is shown to be always true if
the bandwidth parameter tends to 0 at an appropriate rate. The regression consis-
tency, which requires the learned function approximates the regression function,
however, is a complicated issue. We prove that the error entropy consistency im-
plies the regression consistency for homoskedastic models where the noise is inde-
pendent of the input variable. But for heteroskedastic models, a counter-example
is used to show the two types of consistency do not coincide. A surprising re-
sult is that the regression consistency is always true, provided that the bandwidth
parameter tends to infinity at certain rates. This result, however, contradicts the
motivation of MEE principle because the minimum error entropy is believed to be
not approximated well with this choice of bandwidth parameter.

1 Introduction

Information theoretical learning (ITL) is an important research area in signal processing and machine
learning. It uses the concepts of entropies from information theory to substitute the conventional sta-
tistical descriptors of variances and covariances. The idea dates back at least to [7] while its blossom
was inspired by a series works of Principe and coworkers. In [2] the minimum error entropy (MEE)
principle was introduced to regression problems. Later on its theoretical properties were studied
and its applications in feature extraction, clustering, and blind source separation were developed
[3, 5, 1, 4]. More recently the MEE principle was applied to classification problems [9, 10]. For a
comprehensive survey and more recent advances on ITL and MEE principle, see [8] and references
therein.

The main purpose of this paper is rigorous consistency analysis of an empirical MEE algorithm.
Although the empirical MEE has been developed and successfully applied in various areas for more
than a decade, it is surprising that consistency analysis is still its lack. There are some theoretical
studies in the literature which provide some useful guidance on the understanding of the empirical
MEE and its parameter strategy. But they are not from asymptotic perspective and cannot explain
the effectiveness of the empirical MEE algorithm as the sample size gets large. In this paper we will
analyze the algorithm from a statistical learning theory perspective. The asymptotic analysis will
help to establish the consistency of the empirical MEE in several different situations. It turns out the
consistency of the empirical MEE is a very complicated issue which explains its difficulty.
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We will focus on a regression setting in learning theory. In statistics a regression problem is usually
modelled as the estimation of a target function f∗ from the input data space X to the output data
space Y ⊂ R for which a set of observations (xi, yi), i = 1, . . . , n, are obtained from a model

Y = f∗(X) + ε, E(ε|X) = 0. (1.1)

In statistical learning context [11], the regression setting is usually described as the learning of
regression function which is defined as conditional mean E(Y |X) of the output variable Y for
given input variable X under the assumption that there is an unknown joint probability measure ρ
on the product space X × Y. These two settings are equivalent by noticing that

f∗(x) = E(Y |X = x).

A learning algorithm for regression produces a function fz from the observations z = {(xi, yi)} as
the approximation of f∗. The goodness of this approximation can be measured by certain distance
between fz and f∗, for instance, ‖fz − f∗‖L2

ρX
, the L2 distance with respect to the marginal ρX .

MEE algorithms for regression are motivated by minimizing some entropies of the error function
E = E(f) = Y − f(X). In this paper we focus on the Rényi’s entropy of order 2 defined as

R(f) = − log (E[p
E
]) = − log

(∫
R
(p
E
(e))2 de

)
.

Here and in the sequel, p
E

is the probability density function of E. Denote ei = yi − f(xi). Then
p
E

can be estimated from the samples by a kernel density estimator by using a Gaussian kernel

Gh(t) =
1√
2πh

e−
t2

2h2 with bandwidth parameter h:

p
E,z(e) =

1

n

n∑
j=1

Gh(e− ej) =
1

n

n∑
j=1

1√
2πh

e−
(e−ej)

2

2h2 .

The MEE algorithm learns fz from a set of hypothesis spaceH by minimizing the empirical version
of the Renyi’s entropy

Rz(f) = − log

(
1

n

n∑
i=1

p
E,z(ei)

)
= − log

 1

n2

n∑
i,j=1

Gh(ei − ej)

 .

That is, fz = argmin
f∈H

Rz(f). It is obvious that the minimizers of R and Rz are not unique because

R(f) = R(f + b) and Rz(f) = Rz(f + b) for any constant b. Taking this into account, fz should
be adjusted by a constant when it is used as an empirical approximation of the regression function
f∗.

To study the asymptotical properties of the MEE algorithm we define two types of consistency.
Definition 1.1. The MEE algorithm is consistent with respect to the Rényi’s error entropy if R(fz)
converges to R∗ = inf

f :X→R
R(f) in probability as n→∞, i.e., for every ε > 0,

lim
n→∞

P
(
R(fz)−R∗ > ε

)
= 0

The MEE algorithm is consistent with respect to the regression function if fz plus a suitable constant
adjustment converges to f∗ in probability with the convergence measured in theL2

ρX
sense, i.e., there

is a constant bz such that fz + bz converges to f∗ in probability, i.e.,

lim
n→∞

P
(
‖fz + bz − f∗‖2L2

ρX
> ε
)
= 0.

Note that the error entropy consistency ensures the learnability of minimum error entropy, as is ex-
pected from the motivation of empirical MEE algorithms, while the regression function consistency
enables good approximations of the regression target function f∗. These two types of consistency,
however, is not necessarily coincident. Instead, they may contradict each other.

Our main contributions are to show the incoincidence of the two types of consistency and illustrate
complication of the regression function consistency. A couple of main results will be proved: Firstly
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we will prove that the error entropy consistency is always true by choosing the bandwidth parameter
h to tend to 0 slowly enough. This is somewhat an expected result. However the error entropy
consistency implies the regression function consistency only for very special cases, for instance, the
homoskedastic models, while in general this is not true. For heteroskedastic models, we present
a counter-example for which the error entropy consistency and regression function consistency do
not coincide. Lastly, we prove a quite surprising result which states that the empirical MEE is
always consistent with respect to the regression target function if the bandwidth parameter tends to
infinity at certain rate. This was observed in some earlier empirical work but clearly contradicts the
motivation of MEE algorithms because Parzen windowing for the minimum error entropy does not
lead to convergence without h → 0. These results show that the consistency of the empirical MEE
is a very complicated issue and needs further investigations.

2 Main results

We state our main results in this section while leaving their proofs in later sections. We need to
make some assumptions for analysis purposes. Two main assumptions, on the regression model and
the hypothesis class respectively, will be used throughout the whole paper.

For the regression model, we assume some regularity but still natural conditions to simplify our
analysis.
Definition 2.1. The regression model (1.1) is MEE admissible if

(i) the density function pε|X of the noise variable ε for given X = x ∈ X exists and is
uniformly bounded by a constant M .

(ii) the regression function f∗ is bounded by a constant M > 0;

(iii) the minimum of R(f) is achievable by a measurable function f∗R.

Note that if f∗R is a minimizer, then for any constant b, f∗R + b is also a minimizer. So we cannot
assume the uniqueness of f∗R. Also, no obvious relationship exists between f∗ and f∗R. To figure
out this relationship is one of our tasks below.

Our second assumption is on the hypothesis space which is required to be a learnable class and have
good approximation ability to the target function.
Definition 2.2. We say a function classH is MEE admissible if

(i) H is uniformly bounded, i.e., there is a constant M such that |f(x)| ≤ M for all f ∈ H
and all x ∈ X ;

(ii) The `2-norm empirical cover number (see e.g. [12] for its definition) satisfies
log(N2(H, ε)) ≤ cε−s for some constant c > 0 and some index 0 < s < 2;

(iii) A minimizer of R(f) and the regression function f∗ are inH.

The first condition is usual and natural since we do not expect to learning unbounded functions. The
second condition ensures H is a learnable class so that overfitting will not happen. This is a very
common assumption in learning theory. It is also easily fulfilled by many usually used function
classes. The third condition guarantees the target function can be well approximated by H for
otherwise no algorithm is able to learn the target function well fromH.

Our first main result is the error entropy consistency.
Theorem 2.3. Let the regression model and the hypothesis class H be MEE admissible. If the
bandwidth parameter h = h(n) is chosen to satisfy

lim
n→∞

h(n) = 0, lim
n→∞

h2
√
n = +∞, (2.1)

then R(fz) converges to R∗ in probability.

If, in addition, the derivative p′ε|X of the density function exists and is uniformly bounded by a

constant M independent of X , a convergence rate of order O(n−
1
6 ) can be obtained by choosing

h(n) ∼ n− 1
6 .
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In the literature of MEE study, the optimal choice of h is suggested to be h(n) ∼ n−
1
5 (see e.g.

[8]). We see this choice satisfies our condition for the error entropy consistency. But the optimal
rate analysis is out of the scope of this paper.

The error entropy consistency in Theorem 2.3 states the minimum error entropy can be approximated
with a suitable choice of the bandwidth parameter. This is a somewhat expected result because
empirical MEE algorithms are motivated by minimizing the sample version of the error entropy risk
functional. However, later we will show that this does not necessarily imply the consistency with
respect to the regression function. Instead, the regression consistency is a complicated problem. We
show this by results for two different situations.
Definition 2.4. The regression mode (1.1) is homoskedastic if the noise ε is independent of X .
Otherwise it is said to be heteroskedastic.
Theorem 2.5. If the regression model is homoskedastic, we have

(i) R∗ = R(f∗). As a result, for any constant b, f∗R = f∗ + b is a minimizer of R(f);

(ii) There is an absolute constant C such that, for any measurable function f bounded by M ,

‖f +E(f∗ − f)− f∗‖L2
ρX
≤ C (R(f)−R∗) ;

(iii) If (2.1) is true, then fz +Ex(f
∗ − fz(x)) converges to f∗ in probability.

(iv) If, in addition, p′ε|X exists and is uniformly bounded by a constant M independent of X ,

the convergence rate of order O(n−
1
6 ) can be obtained by choosing h ∼ n− 1

6 .

Theorem 2.5 (iii) shows the regression consistency for homoskedastic models. It is easy to see that
it is the corollary of error entropy consistency in Theorem 2.3 and the relationship between the L2

ρX
distance and the excess error entropy in Theorem 2.5 (ii). Thus the homoskedastic model is a special
case for which the error entropy consistency and regression consistency coincide each other.

Things are much more complicated for heteroskedastic models. The first result we want to show is
the incoincidence of the minimizer f∗R and the regression function f∗.
Theorem 2.6. There exists a heteroskedastic model such that the regression function f∗ is not a
minimizer of R(f) and the regression consistency fails even if the error entropy consistency is true.

This result shows that, in general, the error entropy consistency does not imply the regression con-
sistency. Therefore, these two types of consistency do not coincide for heteroskedastic models.

However, this observation does not mean the empirical MEE algorithm cannot be consistent with
respect to the regression function. Surprisingly we can show that the regression consistency is also
always true provided that the bandwidth parameter h is chosen appropriately.
Theorem 2.7. Let the regression model and the hypothesis class be MEE admissible. Choosing the
bandwidth parameter h = h(n) such that

lim
n→∞

h(n) = +∞, lim
n→∞

h√
n
= 0, (2.2)

we have fz+Ex(f
∗(x)−fz(x)) converges to f∗ in probability. A convergence rate of orderO(n−

1
4 )

can be obtained by taking h ∼ n 1
8 .

This result looks surprising. Note that the empirical MEE algorithm is motivated by minimizing an
empirical version of the error entropy. This empirical error entropy approximates the true one when
h tends to zero. But the regression consistency is in general true as h tends to infinity, a condition
under which the error entropy consistency may not be true. From this point of view, the regression
consistency of empirical MEE algorithm does not justify its motivation.

Another interesting observation is that the regression consistency in Theorem 2.5 and Theorem 2.7
suggest the constant adjustment to be b = Ex[f

∗(x) − fz(x)]. In practice the constant adjustment

is usually taken as
1

n

n∑
i=1

(yi − fz(xi)) which is exactly the sample mean of b.

4
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3 Error entropy consistency

In this section we will prove that R(fz) converges to R∗ in probability. We need several useful
lemmas.
Lemma 3.1. For any measurable function f , the probability density function for the error variable
E = Y − f(X) is given as

p
E
(e) =

∫
X
pε|X(e+ f(x)− f∗(x)|x)dρX (x). (3.1)

As a result, we have |p
E
(e)| ≤M .

Proof. The equation (3.1) follows from the fact that
ε = Y − f∗(X) = E + f(X)− f∗(X)

and |p
E
(e)| ≤M follows from the assumption |pε|X(t)| ≤M .

Denote by BL and BU the lower bound and upper bound of E[p
E
] overH ,

BL = inf
f∈H

∫
R
(p
E
(e))2de and BU = sup

f∈H

∫
R
(p
E
(e))2de.

Lemma 3.2. We have 0 < BL and BU ≤M.

Define
V (f) = −E[p

E
] = −

∫
(f
E
(e))2 de.

Then R(f) = − log(−V (f)). Since − log(−t) is strictly increasing when t < 0, minimizing
R(f) is equivalent to minimizing V (f). As a result, their minimizers are the same. Denote V ∗ =
inf

f :X→R
V (f) = − log(−R∗). We have the following lemma.

Lemma 3.3. For any f ∈ H we have
1

BU

(
V (f)− V ∗

)
≤ R(f)−R∗ ≤ 1

BL

(
V (f)− V ∗

)
.

From Lemma 3.3 we see that, to prove Theorem 2.3, it is equivalent to prove the convergence of
V (fz) to V ∗. To this end we define

Eh,z(f) = −
1

n2

n∑
i,j=1

Gh(ei − ej) = −
1

n2

n∑
i,j=1

Gh

(
(yi − f(xi)− (yj − f(xj))

)
and its sample limit form

Eh(f) = −
∫
R

∫
R
Gh(e− τ)pE (e)pE (τ)dedτ

= −
∫
Z

∫
Z
Gh

(
(y − f(x))− (v − f(u))

)
dρ(x, y)dρ(u, v).

Again we see the equivalence of minimizing Rz(f) to minimizing Eh,z(f). So fz is also a minimizer
of Eh,z over the hypothesis classH. We then can bound V (fz)− V ∗ as follows:

V (fz)− V ∗ =
(
V (fz)− Eh,z(fz)

)
+
(
Eh,z(fz)− Eh,z(f∗R)

)
+
(
Eh,z(f∗R)− V (f∗R)

)
≤ 2 sup

f∈H
|Eh,z(f)− V (f)| ≤ 2 sup

f∈H
|Eh,z(f)− Eh(f)|+ 2 sup

f∈H
|Eh(f)− V (f)|

=: 2Sz + 2Ah.

Next we will estimate Sz and Ah respectively.

The first term Sz depends on the sample. Its estimation requires the use of uniform central limit
theorems.
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Proposition 3.4. With B = 4C1
√
c

(2−s)
√
π
M1−s/2 + 2M√

π
+ 2√

2π
, we have for any ε1 > 0,

P

(
Sz > ε1 +

B

h2
√
n

)
≤ e−2nh

2ε21 .

This proposition implies that Sz is bounded by O
(

1
h2
√
n
+ 1

h
√
n

)
with large probability. The proof

of this proposition is complicated but rather standard in the context of learning theory. So we omit
the proof.
Proposition 3.5. lim

h→0
Ah = 0. If in addition |p′ε|X | ≤M , the convergence rate is of order O(h).

Proof. We have

Ah = sup
f∈H

∣∣∣∣∫
R
(p
E
(e))2de−

∫
R

∫
R
Gh(e− τ)pE (e)pE (τ)dedτ

∣∣∣∣
= sup
f∈H

∣∣∣∣∫
R
(p
E
(e))2de−

∫
R

∫
R
G1(τ̃)pE (e− τ̃h)dτ̃pE (e)de

∣∣∣∣
≤ sup
f∈H

∫
R
p
E
(e)

∫
R
G1(τ̃)

∣∣∣pE (e)− pE (e− τ̃h)∣∣∣dτ̃de
By the dominated convergence theorem, we have lim

h→0
Ah = 0 when h→ 0.

If |p′ε|X | ≤ M , we have
∣∣pε|X(e+ f(x)− f∗(x)|x)− pε|X(e− τ̃h+ f(x)− f∗(x)|x)

∣∣ ≤ Mτ̃h

which implies |p
E
(e)− p

E
(e− τ̃h)| ≤Mτ̃h. This proves the convergence rate of O(h).

We see that Theorem 2.3 is an easy corollary of Propositions 3.4 and 3.5.

4 Regression consistency for homoskedastic models

In this section we prove the regression consistency for homoskedastic models stated in Theorem
2.5. Under the homoskedasticity assumption, the noise ε is independent of x, so throughout this
section we will simply use pε to denote the density function for the noise. Also, we use the notations
E = E(f) = Y − f(X) and E∗ = Y − f∗(X). The Fourier transform of a function f ∈ L2(R) is
denoted by f̂ . For complex numbers, we use i to denote the imaginary unit and a the conjugate of a
complex number a.

Proof of Theorem 2.5. By Lemma 3.1 we have∫
R
(p
E
(e))2de =

∫
X

∫
X

∫
R
pε(e+ f(x)− f∗(x))pε(e+ f(u)− f∗(u))dedρX (x)dρX (u).

We apply the Planchel formula and find∫
R
pε(e+f(x)−f∗(x))pε(e+f(u)−f∗(u))de =

1

2π

∫
R
p̂ε(ξ)e

iξ(f(x)−f∗(x))p̂ε(ξ)eiξ(f(u)−f
∗(u))dξ.

It follows that∫
R
(p
E
(e))2de =

1

2π

∫
X

∫
X

∫
R
|p̂ε(ξ)|2eiξ(f(x)−f

∗(x)−f(u)+f∗(u))dξdρX (x)dρX (u).

This is obviously maximized when f = f∗ since |eiξt| ≤ 1. This proves that f∗ is a minimizer of
V (f) and R(f). Since V (f) and R(f) are invariant with respect to constant shifts, we prove part
(i) of Theorem 2.5.

To prove part (ii), we study the excess quantity V (f)− V (f∗). We have

V (f)− V (f∗) =
1

2π

∫
X

∫
X

∫
R
|p̂ε(ξ)|2

(
1− eiξ(f(x)−f

∗(x)−f(u)+f∗(u))
)
dξdρX (x)dρX (u)

=
1

2π

∫
X

∫
X

∫
R
|p̂ε(ξ)|22 sin2

ξ(f(x)− f∗(x)− f(u) + f∗(u))

2
dξdρX (x)dρX (u)

6
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where the last equality follows from the fact that V (f) − V (f∗) is real and hence equals to its real
part.

As both f and f∗ take values on [−M,M ], we know that |f(x) − f∗(x) − f(u) + f∗(u)| ≤ 4M
for any x, u ∈ X . Using the preliminary inequality | sin(t)| < 2

π |t| for |t| < π
2 , we obtain∫

R
|p̂ε(ξ)|22 sin2

ξ(f(x)− f∗(x)− f(u) + f∗(u))

2
dξ

≥
∫
|ξ|≤ π

4M

|p̂ε(ξ)|22 sin2
ξ(f(x)− f∗(x)− f(u) + f∗(u))

2
dξ

≥
∫
|ξ|≤ π

4M

|p̂ε(ξ)|2
2

π2
ξ2 (f(x)− f∗(x)− f(u) + f∗(u))

2
dξ.

Therefore,

V (f)− V (f∗)≥ 1

π3

∫
|ξ|≤ π

4M

ξ2|p̂ε(ξ)|2dξ
∫
X

∫
X
(f(x)− f∗(x)− f(u) + f∗(u))

2
dρX (x)dρX (u).

It is easy to check [6] that∫
X

∫
X
(f(x)− f∗(x)− f(u) + f∗(u))

2
dρX (x)dρX (u) = 2‖f − f∗ +E(f∗ − f)‖2L2

ρX
.

So we have

V (f)− V (f∗) ≥

(
2

π3

∫
|ξ|≤ π

4M

ξ2|p̂ε(ξ)|2dξ

)
‖f − f∗ +E(f∗ − f)‖2L2

ρX
.

Since the probability density function pε is integrable, its Fourier transform p̂ε is continuous. This
together with p̂ε(0) = 1 ensures that p̂ε(ξ) is nonzero over a small interval around 0. As a result
ξ2|p̂ε(ξ)|2 is not identically zero on [− π

4M , π
4M ]. Hence the constant c =

∫
|ξ|≤ π

4M
ξ2|p̂ε(ξ)|2dξ is

positive and the conclusion in (ii) is proved by taking C = π3BU
2c and applying Lemma 3.3.

Parts (iii) and (iv) are easy corollaries of part (ii) and Theorem 2.3. This finishes the proof of
Theorem 2.5

5 Incoincidence between error entropy consistency and regression
consistency

In the previous section we proved that for homoskedastic models the error entropy consistency
implies the regression consistency. But for heteroskedastic models, this is not necessarily true. Here
we present a counter example to show this incoincidence between two types of consistency.

Let 1(·) denote the indicator function on a set specified by the subscript.

Example 5.1. Let X = X1

⋃
X2 = [0, 12 ]

⋃
[1, 32 ] and ρX be uniform on X (so that dρX = dx). The

conditional distribution of ε|X is uniform on [− 1
2 ,

1
2 ] if x ∈ [0, 12 ] and uniform on [− 3

2 ,−
1
2 ]
⋃
[ 12 ,

3
2 ]

if x ∈ [1, 32 ]. Then

(i) A function f∗R : X → R is a minimizer of R(f) if and only if there are two constant f1, f2
with |f1 − f2| = 1 such that f∗R = f11X1 + f21X2 .

(ii) R∗ = − log( 58 ) and R(f∗) = − log( 38 ). So the regression function f∗ is not a minimizer
of the error entropy functional R(f).

(iii) Let F∗R denote the set of all minimizers. For any measurable function f bounded by M ,
there is an absolute constant C independent of f such that

min
f∗R∈F

∗
R

‖f − f∗R‖L2
ρX
≤ C

(
R(f)−R∗

)
.

7
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(iv) If the error entropy consistency is true, there holds

min
f∗R∈F

∗
R

‖fz − f∗R‖L2
ρX
−→ 0 and min

b∈R
‖fz + b− f∗‖L2

ρX
−→ 1

2

in probability. As a result, the regression consistency cannot be true.

6 Regression consistency

In this section we prove that the regression consistency is true for both homoskedastic models and
heteroskedastic models when the bandwidth parameter h is chosen to tend to infinity in a suitable
rate. We need the following result proved in [6].
Proposition 6.1. There exists an absolute constant C such that

‖f − f∗ −E(f − f∗)‖L2
ρX
≤ C

(
h3 (Eh(f)− E∗h) +

1

h2

)
where E∗h = min

f∈H
Eh(f).

Theorem 2.7 is an easy consequence of Propositions 6.1 and 3.4. To see this, it suffices to notice
that Eh(f)− E∗h ≤ 2Sz.
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