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Abstract. In this paper, we study an online learning algorithm in Reproducing
Kernel Hilbert Spaces (RKHSs) and general Hilbert spaces. We present a general form
of the stochastic gradient method to minimize a quadratic potential function by an
independent identically distributed (i.i.d.) sample sequence, and show a probabilistic
upper bound for its convergence.

1. Introduction

Consider learning from examples (xt , yt ) ∈ X × R (t ∈ N), drawn at random
from a probability measure ρ on X ×R. For λ > 0, one wants to approximate the
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function f ∗λ minimizing over f ∈H the quadratic functional∫
X×Y

( f (x)− y)2 dρ + λ‖ f ‖2
H,

where H is some Hilbert space. In this paper a scheme for doing this is given by
using one example at a time t to update to ft the current hypothesis ft−1 which
depends only on the previous examples. The scheme chosen here is based on the
stochastic approximation of the gradient of the quadratic functional of f displayed
above, and takes an especially simple form in the setting of a “Reproducing Kernel
Hilbert Space.” Such a stochastic approximation procedure was first proposed by
Robbins and Monro [18], and also by Kiefer and Wolfowitz [14]. Its convergence
and asymptotic rates have been widely studied (e.g., see [19], [9], [1], [12], [21],
or [13] and references therein). For more background on stochastic algorithms see,
for example, [2], [10], [16]. The main goal in our development of the algorithm is
to give error estimates which characterize in probability the distance of our updated
hypothesis to f ∗λ (and eventually the “regression function” of ρ). By choosing a
quadratic functional to optimize, one is able to give a deeper understanding of this
online learning phenomenon.

In contrast, in the more common setting for Learning Theory, the learner is
presented with the whole set of examples in one batch. One may call this type of
work batch learning.

The organization of this paper is as follows. Section 2 presents an online learning
algorithm in Reproducing Kernel Hilbert Spaces (RKHSs), and states Theorem A
for a probabilistic upper bound on initial error and sample error. Section 3 presents
a general form of the stochastic gradient method in Hilbert spaces and Theorem
B, together with a derivation of Theorem A from Theorem B. Section 4 gives
the proof of Theorem B and the various bounds appearing in Section 3. Section
5 compares our results with the case of “batch learning.” Section 6 discusses
the Adaline or Widrow–Hoff algorithm and related works. Appendix A collects
some estimates used throughout the paper, and Appendix B presents a generalized
Bennett’s inequality for independent sums in Hilbert spaces.

1.1 Notation. Let X be a closed subset of Rn , Y = R and Z = X × Y . Let ρ
be a probability measure on Z , let ρX be the induced marginal probability measure
on X , and let ρY |x be the conditional probability measure on Y with respect to
x ∈ X . Define fρ : X → Y by

fρ(x) =
∫

Y
y dρY |x ,

the regression function of ρ. In other words, for each x ∈ X , fρ(x) is the average
of y with respect to ρY |x . Let L 2

ρX
(X) be the Hilbert space of square integrable

functions with respect to ρX , and denoted by L 2
ρ(X) for simplicity. In the sequel,

‖ ‖ρ denotes the norm in L 2
ρ(X) and ‖ ‖∞ denotes the supreme norm with

respect to ρX (i.e., ‖ f ‖∞ = ess supρX
| f (x)|). We assume that ‖ fρ‖∞ < ∞ and
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fρ ∈ L 2
ρ(X). Finally, we use such a convention on the summation and product

sign: as the index m > n, let
∑n

i=m xi = 0 and
∏n

i=m xi = 1, for any summand xi .

2. An Online Learning Algorithm in RKHS

Let K : X× X → R be a Mercer kernel, i.e., a continuous symmetric real function
which is positive semidefinite in the sense that

∑l
i, j=1 ci cj K (xi , xj ) ≥ 0 for any

l ∈ N and any choice of xi ∈ X and ci ∈ R (i = 1, . . . , l). Note K (x, x) ≥ 0 for all
x . In the following ‖·‖ and 〈 , 〉 denote the Euclidean norm and the Euclidean inner
product in Rn , resp ectively. We give two typical examples of Mercer kernels. The
first is the Gaussian kernel K : Rn ×Rn → R defined by K (x, x ′) = exp(−‖x −
x ′‖2/c2) (c > 0). The second is the linear kernel K : Rn × Rn → R defined by
K (x, x ′) = 〈x, x ′〉 + 1. The restriction of these functions on X × X will induce
the corresponding kernels on subsets of Rn .

Let H K be the Reproducing Kernel Hilbert Space (RKHS) associated with a
Mercer kernel K . Recall the definition as follows. Consider the vector space VK

generated by {Kt : t ∈ X}, i.e., all the finite linear combinations of Kt , where,
for each t ∈ X , the function Kt : X → R is defined by Kt (x) = K (x, t). An
inner product 〈 , 〉K on this vector space can be defined as the unique linear
extension of 〈Kx , Kx ′ 〉K := K (x, x ′) and its induced norm1 is ‖ f ‖K =

√〈 f, f 〉K
for each f ∈ VK . Let H K be the completion of this inner product space VK /V0.
It follows that for any f ∈H K , f (x) = 〈 f, Kx 〉K (x ∈ X ). This is often called
the reproducing property in literature. Define a linear map L K : L 2

ρ(X)→H K

by L K ( f )(x) = ∫X K (x, t) f (t) dρX . The operator L K + λI : H K →H K is an
isomorphism if λ > 0 (endomorphism if λ ≥ 0), where L K : H K →H K is the
restriction of L K : L 2

ρ(X)→H K .

Given a sequence of examples zt = (xt , yt ) ∈ X × Y (t ∈ N), our online
learning algorithm in RKHS is

ft+1 = ft − γt (( ft (xt )− yt )Kxt + λ ft ) for some f1 ∈H K , e.g., f1 = 0,
(1)

where:

(1) for each t ∈ N, (xt , yt ) is drawn identically and independently according
to ρ;

(2) the regularization parameter λ ≥ 0; and
(3) the step size γt > 0.

1 Note that the zero set V0 = { f ∈ VK : ‖ f ‖K = 0} = {0}, whence ‖ · ‖K is in fact a norm. To see
this, by the reproducing property and Cauchy–Schwartz inequality,

‖ f ‖K = 0 ⇒ | f (t)| = |〈 f, Kt 〉K | ≤ ‖ f ‖K ‖Kt‖ = 0, ∀ t ∈ X ⇒ f = 0,

which implies V0 = {0}.
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Note that for each f , the map X × Y → R given by (x, y) �→ f (x) − y is a
real-valued random variable and Kx : X →H K is a H K -valued random variable.
Thus ft+1 is a random variable with values in H K depending on (zi )

t
i=1. Moreover,

we see that ft+1 ∈ span{ f1, Kxi : 1 ≤ i ≤ t}, a finite-dimensional subspace of
H K . The derivation of (1) is given in the next section from a stochastic gradient
algorithm in general Hilbert spaces.

In the sequel we assume that

CK := sup
x∈X

√
K (x, x) <∞. (2)

For example, the following typical kernels have CK = 1:

(1) Gaussian kernel: K : Rn × Rn → R such that K (x, x ′) = e−‖x−x ′‖2/c2
.

(2) Homogeneous polynomial kernel: K : Rn× Rn → R such that K (x, x ′) =
〈x, x ′〉d . By the scaling property, we can restrict K to the sphere Sn−1×Sn−1.

(3) Translation invariant kernels: Any K : X × X → R such that K (x, x ′) =
K (x − x ′) and K (0) = 1.

In the sequel, we decompose ‖ ft− fρ‖ρ into several parts and give upper bounds
for each of them. Before that, we introduce several important quantities.

First consider the minimization of the regularized least squares problem in H K ,

min
f ∈HK

∫
Z
( f (x)− y)2 dρ + λ‖ f ‖2

K , λ > 0.

The existence and uniqueness of a minimizer is guaranteed by Proposition 7 in
Chapter III of Cucker and Smale [7] which exhibits it as

f ∗λ = (L K + λI )−1L K fρ, (3)

where fρ ∈ L 2
ρ(X) is the regression function. In fact, f ∗λ defined in this way is

also the equilibrium of the averaged update equation of (1),

E[ ft+1] = E[ ft ]− γt (E[( ft (xt )− yt )Kxt + λ ft ]). (4)

In other words, f ∗λ satisfies

E[( f ∗λ (x)− y)Kx + λ f ∗λ ] = 0. (5)

To see this, it is enough to notice that, by L K ( f )(x) = ∫
X K (x, t) f (t) dρX , we

have

L K ( f ∗λ ) = Ex [ f ∗λ (x)Kx ],

and

L K ( fρ) = Ex [[Ey|x y]Kx ],
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whence equation (5) turns out to be L K ( f ∗λ )+ λ f ∗λ = L K ( fρ), which leads to the
definition of f ∗λ in (3).

Notice that the map (x, y) �→ ( f ∗λ (x)− y)Kx + λ f ∗λ is a H K -valued random
variable, with zero mean. Thus the following variance

σ 2 = Ez[‖( f ∗λ (x)− y)Kx + λ f ∗λ ‖2
K ], (6)

characterizes the fluctuation about the equilibrium caused by the random sample
z = (x, y). If σ 2 = 0, we have the deterministic gradient method (see Section 3).
If Mρ > 0 is a constant, such that supp(ρ) ⊆ X × [−Mρ,Mρ], then Proposition
3.4 in the next section implies

σ 2 ≤
(

2CK Mρ(λ+ C2
K )

λ

)2

.

The main purpose in this paper is to obtain a probabilistic upper bound for

‖ ft − fρ‖ρ.
By the triangle inequality we may write

‖ ft − fρ‖ρ ≤ ‖ ft − f ∗λ ‖ρ + ‖ f ∗λ − fρ‖ρ. (7)

The second part of the right-hand side in (7), ‖ f ∗λ − fρ‖ρ , is called the approx-
imation error. An upper bound for the approximation error will be given at the
end of this section. In the following we will give a probabilistic upper bound on
‖ ft − f ∗λ ‖K , whence via ‖ ft − f ∗λ ‖ρ ≤ CK‖ ft − f ∗λ ‖K we obtain an upper bound
on the sample error. Before the statement of the theorem, we define

α = λ

λ+ C2
K

, (8)

whose meaning, as the inverse condition number, will be discussed in the next
section.

Theorem A. Let γt = 1/(λ+ C2
K )t

θ (t ∈ N) for some θ ∈ ( 1
2 , 1

)
. Then, for

each t ∈ N, we may write

‖ ft − f ∗λ ‖K ≤ E init(t)+ E samp(t), (9)

where

E init(t) ≤ e[α/(1−θ)](1−t1−θ )‖ f1 − f ∗λ ‖K ;
and with probability at least 1− δ (δ ∈ (0, 1)) in the space Zt−1,

E 2
samp(t) ≤

Cθσ
2

δ(λ+ C2
K )

2

(
1

α

)θ/1−θ (1

t

)θ
.
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Here σ 2 is the variance in (6) and the positive constant Cθ satisfies

Cθ = 8+ 2

2θ − 1

(
θ

e(2− 2θ )

)θ/1−θ
.

The proof will be deferred to later sections.

Remark 2.1. Assume λ ≤ 1 and consider the upper bound

σ 2 ≤ (2CK Mρ(λ+ C2
K )/λ)

2.

Then the following holds with probability at least 1− δ (δ ∈ (0, 1)),

‖ ft − f ∗λ ‖K ≤ eC1λ(1−t1−θ )‖ f1 − f ∗λ ‖K + C2√
δ

(
1

λ

)(2−θ)/2(1−θ) (1

t

)θ/2
, (10)

where

C1 = 1

(1− θ)(1+ C2
K )

and C2 = 2CK Mρ

√
Cθ

(
1+ C2

K

)θ/2(1−θ)
.

Remark 2.2. In decomposition (9) in Theorem A, E init(t) has a deterministic
bound and characterizes the accumulated effect from the initial choice, which is
called the initial error. E samp(t) depends on the random sample and thus has a
probabilistic bound, which is called the sample error. We can also give upper
bounds on the approximation error, ‖ f ∗λ − fρ‖ρ .

The approximation error can be bounded if we put some regularity assump-
tions on the regression function fρ . For example, the following result appears in
Theorem 4 of Smale and Zhou [20].

Theorem 2.3.

(1) Suppose L−r
K fρ ∈ L2

ρ(X) for some r ∈ (0, 1]. Then

‖ f ∗λ − fρ‖ρ ≤ λr‖L−r
K fρ‖ρ.

(2) Suppose L−r
K fρ ∈ L2

ρ(X) for some r ∈ ( 1
2 , 1]. Then

‖ f ∗λ − fρ‖K ≤ λr−1/2‖L−r
K fρ‖ρ.

Notice that since L−1/2
K is an isomorphism, H K → L2

ρ(X), the second condition
implies fρ ∈H K .
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3. A Stochastic Gradient Algorithm in Hilbert Spaces

In this section, we extend the setting in the first section to general Hilbert spaces.
Let W be a Hilbert space with inner product 〈 , 〉. Consider the quadratic potential
map V : W → R given by

V (w) = 1
2 〈Aw,w〉 + 〈B, w〉 + C, (11)

where A: W → W is a positive definite bounded linear operator whose inverse is
bounded, i.e., ‖A−1‖ <∞, B ∈ W , and C ∈ R. Then the gradient grad V : W →
W is given by

grad V (w) = Aw + B,

V has a unique minimal point w∗ ∈ W such that grad V (w∗) = Aw∗ + B = 0,
i.e.,

w∗ = −A−1 B.

Our concern is to find an approximation of this point, when A, B, and C are random
variables on a space Z . We give a sample complexity analysis (i.e., the sample
size sufficient to achieve an approximate minimizer with high probability) of the
so-called stochastic gradient method given by the update formula

wt+1 = wt − γt grad V (wt ), for t = 1, 2, 3, . . . , (12)

with γt a positive step size. For each example z, the stochastic gradient of Vz ,
grad Vz : W → W , is given by the affine map grad Vz(w) = A(z)w + B(z),
with A(z), B(z) denoting the values of random variables A, B at z ∈ Z . Our
analysis will benefit from this affine structure and independent sampling. Thus
(12) becomes:

For t = 1, 2, 3, . . ., let zt be a sample sequence and define an update by

wt+1 = wt − γt (Atwt + Bt ) for some w1 ∈ W, (13)

where:

(1) zt ∈ Z (t ∈ N) are drawn independently and identically according to ρ;
(2) the step size γt > 0; and
(3) the map A: Z → SL(W ) is a random variable depending on z with values

in SL(W ), the vector space of symmetric bounded linear operators on W ,
and B: Z → W is a W -valued random variable depending on z. For each
t ∈ N, let At = A(zt ) and Bt = B(zt ).

From the stochastic gradient method in equation (12), we derive equation (1)
for our online algorithm in RKHSs. Consider the Hilbert space W = H K . For
fixed z = (x, y) ∈ Z , take the following quadratic potential map V : H K → R

defined by

Vz( f ) = 1
2 {( f (x)− y)2 + λ‖ f ‖2

K }.
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Recall that the gradient of Vz is a map grad Vz : H K → H K such that, for all
g ∈H K ,

〈 grad Vz( f ), g〉K = DVz( f )(g),

where the Frèchet derivative at f , DVz( f ): H K → R, is the linear functional
such that, for g ∈H K ,

lim
‖g‖→0

|Vz( f + g)− Vz( f )− DVz( f )(g)|
‖g‖ = 0.

Hence

DVz( f )(g) = ( f (x)− y)g(x)+ λ〈 f, g〉K = 〈( f (x)− y)Kx + λ f, g〉K ,

where the last step is due to the reproducing property g(x) = 〈g, Kx 〉K . This gives
the following proposition:

Proposition 3.1. grad Vz( f ) = ( f (x)− y)Kx + λ f .

Taking f = ft and (x, y) = (xt , yt ), by ft+1 = ft − γt grad Vzt ( ft ), we have

ft+1 = ft − γt (( ft (xt )− yt )Kxt + λ ft ),

which establishes equation (1).
In the sequel we assume that

Finiteness Condition.

(1) For almost all z ∈ Z , µmin I ≤ A(z) ≤ µmax I (0 < µmin ≤ µmax < ∞);
and

(2) ‖B(z)‖ ≤ β <∞ for almost all z ∈ Z .

Consider the following averaging of equation (13), by taking the expectation
over the truncated history (zi )

t
i=1,

Ez1,...,zt [wt+1] = Ez1,...,zt−1 [wt ]− γt (Ezt [At ]wt + Ezt [Bt ]), (14)

where wt depends on the truncated sample up to time t − 1, (zi )
t−1
i=1. Then the

equilibrium for this averaged equation (14) will satisfy

Ezt [At ]wt + Ezt [Bt ] = 0 ⇐⇒ wt = −Ezt [At ]
−1
Ezt [Bt ]. (15)

This motivates the following definitions:

Definition A.

(1) The equilibrium w∗ = − Â−1 B̂ where Â = Ez[A(z)] and B̂ = Ez[B(z)].
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(2) The inverse condition number for the family {A(z): z ∈ Z},
α = µmin/µmax ∈ (0, 1].

For each w ∈ W , the stochastic gradient at w as a map grad Vz(w): Z → W
such that z �→ A(z)w + B(z), is a W -valued random variable depending on z. In
particular, grad Vz(w

∗) has zero mean, with variance defined by

σ 2 = E[‖ grad Vz(w
∗)‖2] = Ez[‖Azw

∗ + Bz‖2],

which reflects the fluctuations of grad Vz(w
∗) caused by the randomness of sam-

ple z. Observe that when σ 2 = 0, we have the following deterministic gradient
algorithm to minimize V ,

wt+1 = wt − γt grad V (wt )

where grad V (w) = Âw + B̂.
Now we are ready to state the general version of the main theorem for Hilbert

spaces. Here we consider the product probability measure on Zt−1, which makes
sense since zi (1 ≤ i ≤ t−1) are i.i.d. random variables. As in the first section, we
will decompose and give a deterministic bound on E init and a probabilistic bound
on E samp, respectively.

Theorem B. Assume (13) and the finiteness condition. Let γt = 1/µmaxtθ (t ∈
N) for some θ ∈ ( 1

2 , 1). Then, for each t ∈ N, we have

‖wt − w∗‖ ≤ E init(t)+ E samp(t) (16)

where

E init(t) ≤ e[α/(1−θ)](1−t1−θ )‖w1 − w∗‖,
and with probability at least 1− δ (δ ∈ (0, 1)),

E 2
samp(t) ≤

σ 2

µmax
2δ
ψθ(t, α).

Here

ψθ(t, α) =
t−1∑
k=1

1

k2θ

t−1∏
i=k+1

(
1− α

i θ

)2
.

Remark 3.2. As in the first section, E init(t) has a deterministic upper bound
and characterizes the accumulated effect from the initial choice, which is called
the initial error, and E samp(t) depends on the random sample and thus has a
probabilistic bound, which is called the sample error.
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Remark 3.3. In summary, wt in equation (13) satisfies that for arbitrary integer
t ∈ N, the following holds with probability at least 1−δ in the space of all samples
of length t − 1, i.e., Zt−1,

‖wt − w∗‖ ≤ e[α/(1−θ)](1−t1−θ )‖w1 − w∗‖ +
√
σ 2

µmax

√
δ
ψ

1/2
θ (t, α).

When σ 2 = 0, we have the following convergence rate for the deterministic
gradient algorithm

‖wt − w∗‖ ≤ e[α/(1−θ)](1−t1−θ )‖w1 − w∗‖,
which is faster than any polynomial rate.

Proposition 3.4. Let α ∈ (0, 1] and θ ∈ ( 1
2 , 1). The following upper bounds

hold for all t ∈ N:

(1) σ 2 ≤ (2β/α)2; and
(2) ψθ(t, α) ≤ Cθ (1/α)

θ/(1−θ) (1/t)θ , where

Cθ = 8+ 2

2θ − 1

(
θ

e(2− 2θ )

)θ/(1−θ)
.

Remark 3.5. In the setting of equation (1) in RKHS, we have

β = CK Mρ and α = λ

λ+ C2
K

,

whence

σ 2 ≤
(

2CK Mρ(λ+ C2
K )

λ

)2

.

Remark 3.6. Choose the initializationw1 = 0 for simplicity. Notice that ‖w∗‖ =
‖ Â−1 B̂‖ ≤ β/µmin. Then we have the following bound, with probability at least
1− δ,

‖wt − w∗‖ ≤ β

µmin

(
1

t

)θ/2 (
tθ/2e[α/(1−θ)](1−t1−θ ) + 2

√
Cθ

δ

)
.

Remark 3.7. Consider the case that θ = 1 and α ∈ (0, 1
2 ). Then, by Lemma

A.2(3), we obtain that

E init(t) ≤ t−α‖w1 − w∗‖
and

E samp(t) ≤
√
σ 2

µmax

√
δ
ψ

1/2
1 (t, α) ≤ 4β

µmin
√
δ(1− 2α)

t−α.
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Choosing w1 = 0 and using ‖w∗‖ ≤ β/µmin, we obtain that

‖wt − w∗‖ ≤ β

µmin

(
1

t

)α (
1+ 4√

δ(1− 2α)

)
.

The proof of Theorem B and Proposition 3.4 will be given in Section 4. Here
is the proof of Theorem A from Theorem B.

Proof of Theorem A. In this case W = H K . Before applying Theorem B, we
need to rewrite equation (1) by the notations used in Theorem B.

For any f ∈H K , let the evaluation functional at x ∈ X be Ex : H K → R be
such that Ex ( f ) = f (x) (∀ x ∈ X ). Denote by E∗x : R→H K the adjoint operator
of Ex such that 〈Ex ( f ), y〉R = 〈 f, E∗x (y)〉K (y ∈ R). From this definition, we see
that E∗x (y) = yKx .

Define the linear operator Ax : H K → H K by Ax = E∗x Ex + λI , i.e.,
Ax ( f ) = f (x)Kx + λ f , whence Ax is a random variable depending on x . Taking
the expectation of Ax , we have Â = Ex [Ax ] = L K + λI .

Moreover, define Bz = E∗x (−y) = −yKx ∈H K , which is a random variable
depending on z = (x, y). Notice that the expectation of Bz , B̂ = Ez[Bz] =
Ex [Ey[−y]Kx ] = −L K fρ . For simplicity below, we denote At = Axt and Bt =
Bzt .

With these notations, equation (1) can be rewritten as

ft+1 = ft − γt (At ft + Bt ).

Clearly, f ∗λ = (L K + λI )−1L K fρ satisfies 0 = Ez[A(z) f ∗λ + B(z)] = Â f ∗λ + B̂.
Thus f ∗λ is the equilibrium of the averaged equation (4).

Notice that the positive operator L K satisfies ‖L K‖ = supx∈X K (x, x) = C2
K .

Therefore µmax = λ+ C2
K , µmin = λ, and β = CK Mρ .

Finally, by identifying wt = ft and w∗ = f ∗λ , the upper bound on the initial
error E init(t) follows from Theorem B, and the upper bound on the sample error
E samp(t) follows from Theorem B and Proposition 3.4(2).

Remark 3.8. If θ = 1 and λ < C2
K (whence α ∈ (0, 1

2 )), by Remark 3.7, we have

‖ ft − f ∗λ ‖K ≤
(

1

t

)α (
‖ f ∗λ ‖K +

√
σ 2

√
δ(λ+ C2

K )
ψ

1/2
1 (t, α)

)
.

By Lemma A.2(3), we have an upper bound for ψ1(t, α),

ψ1(t, α) ≤ 4

1− 2α
t−2α.

With this upper bound and σ 2 ≤ (2β/α)2 = 4C2
K M2

ρ(λ+C2
K )

2/λ2, we obtain that

‖ ft − f ∗λ ‖K ≤
(

1

t

)α (
‖ f ∗λ ‖K + 4CK Mρ

λ
√
δ(1− 2α)

)
,
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which holds with probability at least 1 − δ. Notice that this upper bound has a
polynomial decay O(t−α).

4. Proof of Theorem B

In this section we shall use Ez[·] to denote the expectation with respect to z. When
the underlying random variable in expectation is clear from the context, we will
simply write E[·].

Define the remainder vector at time t , rt = wt−w∗, which is a random variable
depending on (zi )

t−1
i=1 ∈ Zt−1 when t ≥ 2. The following lemma gives a formula

to compute rt+1.

Lemma 4.1.

rt+1 =
t∏

i=1

(I − γi Ai )r1 −
t∑

k=1

γk

(
t∏

i=k+1

(I − γi Ai )

)
(Akw

∗ + Bk).

Proof. Since wt+1 = wt + γt (Atwt + Bt ), then

rt+1 = wt+1 − w∗

= wt − γt (Atwt + Bt )− (I − γt At )w
∗ − γt Atw

∗

= (I − γt At )rt − γt (Atw
∗ + Bt ).

The result then follows from induction on t ∈ N.

For simplicity we introduce the following notations, a symmetric linear operator
Xt

k+1: W → W which depends on zk+1, . . . , zt ,

Xt
k+1(zk+1, . . . , zt ) =

t∏
i=k+1

(I − γi Ai ) (Xt
k+1 = I if k ≥ t),

and a vector Yk ∈ W which depends on zk only,

Yk(zk) = Akw
∗ + Bk .

Clearly, E[Yk] = 0 and E[‖Yk‖2] = σ 2 for every 1 ≤ k ≤ t . With this notation
Lemma 4.1 can be written as

rt+1 = Xt
1r1 −

t∑
k=1

γk X t
k+1Yk, (17)

where the first term Xt
1r1 reflects the accumulated error caused by the initial choice;

the second term
∑t−1

k=1 γk X t
k+1Yk is of zero mean and reflects the fluctuation caused

by the random sample. Based on this observation we define the initial error:

E init(t + 1) = ‖Xt
1r1‖, (18)
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and the sample error:

E samp(t + 1) =
∥∥∥∥∥

t∑
k=1

γk X t
k+1Yk

∥∥∥∥∥ . (19)

The main concern in this section is to obtain upper bounds on the initial error and
the sample error. The following estimates are crucial in the proofs of Theorem B
and Proposition 3.4.

Proposition 4.2. Let γt=1/µmaxtθ for some θ ∈( 1
2 , 1]. For all α=µmin/µmax∈

(0, 1], the following holds:

(1) Let α′ = α/(1− θ). Then

‖Xt
1r1‖ ≤

{
eα
′(1−(t+1)1−θ )‖r1‖, θ ∈ ( 1

2 , 1);
(t + 1)α‖r1‖, θ = 1.

(2) ‖Yk‖ ≤ 2β/α,

(3) E

[∥∥∥∥∥
t∑

k=1

γk X t
k+1Yk

∥∥∥∥∥
2]
≤ σ 2

µmax
2
ψθ(t + 1, α).

From this proposition and the following Markov’s inequality, we give the proof
of Theorem B.

Lemma 4.3 (Markov’s Inequality). Let X be a nonnegative random variable.
Then, for any real number ε > 0, we have

Prob{X ≥ ε} ≤ E[X ]

ε
.

Proof of Theorem B. By (18) and the estimation (1) in Proposition 4.2, where
θ ∈ ( 1

2 , 1
)
, we have

E init(t) ≤ e[α/(1−θ)](1−t1−θ )‖w1 − w∗‖.
By (19) and the estimation (3) in Proposition 4.2 and Markov’s inequality with
X = E 2

samp(t), we obtain, for t ≥ 2,

Prob{E 2
samp(t) ≤ ε2} ≤ σ 2

ε2µmax
2
ψθ(t, α).

Setting the right-hand side to be δ ∈ (0, 1), we get the probabilistic upper bound
on the sample error. It remains to check that when t = 1, E init(t) = ‖w1 − w∗‖
and E samp(t) = 0, whence the bound still holds.

Next we give the proof of Proposition 4.2.
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Proof of Proposition 4.2. (1) By µmin I ≤ A ≤ µmax I and γt = 1/µmaxtθ (θ ∈(
1
2 , 1]

)
, then

‖Xt
k+1r1‖ ≤

t∏
i=k+1

‖I − γi Ai‖‖r1‖

≤
t∏

i=k+1

(
1− α

i θ

)
‖r1‖, α = µmin/µmax. (20)

Setting k = 0 and by (1) in Lemma A.2, we obtain the result.
(2) Note that ‖w∗‖ ≤ β/µmin. Thus we have

‖Yk‖ = ‖Akw
∗ + Bk‖ ≤ ‖Ak‖‖w∗‖ + ‖Bk‖

≤ µmaxβ/µmin + β = β(α−1 + 1) ≤ 2β/α,

since α ∈ (0, 1]. This gives part (2).
(3) Note that

E



∥∥∥∥∥

t∑
k=1

γk X t
k+1Yk

∥∥∥∥∥
2

 = E

〈
t∑

k=1

γk X t
k+1Yk,

t∑
k=1

γk X t
k+1Yk

〉
,

=
t∑

k,l=1

γkγlE〈Xt
k+1Yk, Xt

l+1Yl〉,

where, if k �= l, say k < l,

γkγlEzk ,...,zt 〈Xt
k+1Yk, Xt

l+1Yl〉=γkγlEzk+1,...,zt [Ezk |zk+1,...,zt [Yk]T Xt
k+1 Xt

l+1Yl]=0,

by E[Yk] = 0. Thus we have

t∑
k,l=1

γkγlE〈Xt
k+1Yk, Xt

l+1Yl〉 =
t∑

k=1

γ 2
k E〈Xt

k+1Yk, Xt
k+1Yk〉

≤
t∑

k=1

γ 2
k E[‖Xt

k+1‖2‖Yk‖2]

≤ σ 2

µmax
2
ψθ(t + 1, α),

where the last inequality is due to E‖Yk‖2 = σ 2 for all k and

t∑
k=1

γ 2
k ‖Xt

k+1‖2 ≤
t∑

k=1

1

µmax
2k2θ

t∏
i=k+1

(
1− α

i θ

)2
= 1

µmax
2
ψθ(t + 1, α).
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Finally, we derive the upper bounds for σ 2 and ψ(t, α) as in Proposition 3.4.

Proof of Proposition 3.4. The first upper bound follows from estimation (2) in
Proposition 4.2,

σ 2 ≤ (‖Yk‖)2 ≤
(

2β

α

)2

for all 1 ≤ k ≤ t .
For t ≥ 2, the second upper bound is an immediate result from Lemma A.1;

for t = 1, note that ψθ(t, α) = 0 whence the upper bound still holds.

5. Comparison with “Batch Learning” Results

The name “batch learning” is coined for the purpose of emphasizing the case
when the sample of size t ∈ N is exposed to the learner in one batch, instead of
one-by-one as in “online learning” in this paper. In the context of RKHS, given
a sample z = {zi : i = 1, . . . , t}, “batch learning” means solving the regularized
least squares problem [11], [7]

fλ,z = arg min
f ∈HK

1

t

t∑
i=1

( f (xi )− yi )
2 + λ〈 f, f 〉K , λ > 0.

The existence and uniqueness of fλ,z given as in Section 6 of [7] says

fλ,z(x) =
t∑

i=1

ai K (x, xi )

where a = (a1, . . . , at ) is the unique solution of the well-posed linear system in
R

t ,

(λt I + Kz)a = y,

with (t × t)-identity matrix I , (t × t)-matrix Kz whose (i, j) entry is K (xi , xj )

and y = (y1, . . . , yt ) ∈ Rt .
A probabilistic upper bound for ‖ fλ,z− f ∗λ ‖ρ is given by Cucker and Smale [6],

and this has been substantially improved by De Vito, Caponnetto, and Rosasco [8],
using also some ideas from Bousquet and Elisseeff [3]. Moreover, error bounds
expressed in a different form were given by Zhang [23]. A recent result, shown in
Smale and Zhou [20], is

Theorem 5.1.

‖ fλ,z − f ∗λ ‖K ≤ Cρ,K√
δ

(
1

λ
√

t

)
,
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where Cρ,K = C2
K

√
σ 2
ρ + 3C2

K‖ fρ‖ρ and

σ 2
ρ =

∫
X×Y

(y − fρ(x))
2 dρ.

Remark 5.2. Notice that if λ ≤ 1 without loss of generality, equation (10) in
Remark 2.1 shows the following convergence rate:

‖ ft − f ∗λ ‖K ≤ O

((
1

λ

)(2−θ)/2(1−θ) (1

t

)θ/2)
,

where θ ∈ ( 1
2 , 1

)
. Since the function τ(θ) = (2− θ)/2(1− θ) = 1/2(1− θ)+ 1

2 ,
is an increasing function of θ , then τ(θ) ∈ ( 3

4 ,∞) as θ ∈ ( 1
2 , 1). For small λ,

when θ is close to 1
2 , the upper bound is close to O(λ−3/4t−1/4) which is tighter in

λ but looser in t in comparison with the theorem above; on the other hand, when
θ increases, the upper bound becomes tighter in t but much looser in λ.

6. Adaline

Example 6.1 (Adaline or Widrow–Hoff Algorithm). The Adaline or Widrow–
Hoff algorithm [5, p. 23] is a special case of the online learning algorithm (1)
where the step size γt is a constant η, the regularization parameter λ = 0, and the
reproducing kernel is the linear kernel such that K (x, x ′) = 〈x, x ′〉+ 1 for x, x ′ ∈
X = Rn . To see that, define two kernels by K0(x, x ′) = 〈x, x ′〉 and K1(x, x ′) = 1.
Then H K = H K0 ⊕H K1 . Notice that H K0 � R

n and H K1 � R, whence
H K � R

n+1. In fact, for w ∈ Rn and b ∈ R, a function in H K can be written
as f (x) = ∑n

i=1w
i x i + b for x ∈ X . By the use of the Euclidean inner product

in Rn+1, we can write f (x) = 〈(w, b), (x, 1)〉. Therefore, the Adaline update
formula

(wt+1, bt+1) = (wt , bt )+ η(〈w, xt 〉 + b − yt )(xt , 1), t ∈ N,
can be written as the following formula, by taking the Euclidean inner product of
both sides with the vector (x, 1) ∈ Rn+1,

ft+1 = ft + η( ft (xt )− yt )Kxt .

This is equivalent to setting γt = η and λ = 0 in the online learning algorithm (1).

The case for fixed step size and zero regularization parameter is not included
in Theorems A or B. In the case of nonstochastic samples, Cesa-Bianchi et al. [4]
have some worst-case analysis on the upper bounds for the following quantity:

T∑
t=1

(〈wt , xt 〉 − yt )
2 − min

‖w‖≤W

T∑
t=1

(〈w, xt 〉 − yt )
2.
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Adam Kalai has shown us how one might convert these results of Cesa-Bianchi
et al. to a form comparable to Theorem A. Beyond the square loss function above,
some related works include [15] which presents a general gradient descent method
in RKHS for bounded differentiable functions, and [24] which studies the gradient
method with arbitrary differentiable convex loss functions. These works suggest
different schemes on choosing the step size parameter and how these choices might
affect the convergence rate under various conditions.

Appendix A: Some Estimates

The following lemma gives an upper bound for

ψθ(t, α) =
t−1∑
k=1

1

k2θ

t−1∏
i=k+1

(
1− α

i θ

)2
.

Lemma A.1 (Main Analytic Estimate). Let α ∈ (0, 1] and θ ∈ ( 1
2 , 1

)
. Then for

t ∈ N,

ψθ(t + 1, α) ≤ Cθ

(
1

α

)θ/(1−θ) ( 1

t + 1

)θ
,

where

Cθ = 8+ 2

2θ − 1

(
θ

e(2− 2θ )

)θ/(1−θ)
.

Proof. The following fact will be used repeatedly in this section,

ln(1+ x) ≤ x, for all x > −1. (A.1)

Thus we have

t∑
i=k+1

ln
(

1− α

i θ

)2
≤ −2α

t∑
i=k+1

1

i θ
≤ −2α

∫ t+1

k+1

1

xθ
dx,

which equals

2α

1− θ ((k + 1)1−θ − (t + 1)1−θ )

if θ ∈ ( 1
2 , 1

)
.

From this estimate it follows that

ψθ(t + 1, α) ≤ e−2α′(t+1)1−θ
t∑

k=1

1

k2θ
e2α′(k+1)1−θ = S1 + S2,
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where α′ = α/(1− θ) and

S1 = e−2α′(t+1)1−θ
�(t−1)/2�∑

k=1

1

k2θ
e2α′(k+1)1−θ ,

S2 = e−2α′(t+1)1−θ
t∑

k=�(t+1)/2�

1

k2θ
e2α′(k+1)1−θ ,

where �x� denotes the largest integer no larger than x .
Next we give upper bounds on S1 and S2. First,

S1 ≤ e−2α′(1−2θ−1)(t+1)1−θ
�(t−1)/2�∑

k=1

1

k2θ
≤ e−2α′(1−2θ−1)(t+1)1−θ

∫ t/2

1/2

1

x2θ
dx

= e−2α′(1−2θ−1)(t+1)1−θ 1

1− 2θ

((
t

2

)1−2θ

−
(

1

2

)1−2θ)

≤ 2

2θ − 1
e−2α′(1−2θ−1)(t+1)1−θ

as θ ∈ ( 1
2 , 1

)
. To give a polynomial upper bound for exp{−2α′(1−2θ−1)(t+1)1−θ },

we use the fact that for any c > 0, a > 0, and x ∈ (0,∞),

e−cx ≤
(

a

ec

)a

x−a .

To see this, it is enough to observe that the function f (x) = xa/ecx is maximized
at x = a/c. Let a = (1/θ − 1)−1, c = 2α′(1 − 2θ−1), and x = (t + 1)1−θ =
(t + 1)θ(1/θ−1), then

e−2α′(1−2θ−1)(t+1)1−θ ≤
(

θ

eα(2− 2θ )

)θ/(1−θ)
(t + 1)−θ ,

Thus, for θ ∈ ( 1
2 , 1

)
, α ∈ (0, 1), and t ∈ N,

S1 ≤ 2

2θ − 1

(
θ

eα(2− 2θ )

)θ/(1−θ)
(t + 1)−θ .

Second, notice that 1/�(t + 1)/2� ≤ 2/t ≤ 4/(t + 1) (for t ∈ N), then let
p(t) = e2α′(t+1)1−θ /tθ and we have

S2 ≤ e−2α′(t+1)1−θ 4θ

(t + 1)θ

(
p(t)+

t−1∑
k=� t+1

2 �

1

kθ
e2α′(k+1)1−θ

)

≤ 22θe−2α′(t+1)1−θ (t + 1)−θ
(

p(t)+
∫ t

t/2−1

1

xθ
e2α′(x+1)1−θ dx

)
for t ≥ 4,
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where∫ t

t/2−1

1

xθ
e2α′(x+1)1−θdx

≤
∫ t

t/2−1

2θ

(x + 1)θ
e2α′(x+1)1−θ dx by

1

x
≤ 2

x + 1
for t ≥ 4

= 2θ

1− θ
∫ (t+1)1−θ

(t/2)1−θ
e2α′ y dy by y = (x + 1)1−θ

= 2θ−1

α′(1− θ)e2α′(t+1)1−θ (1− e2α′((t/2)1−θ−(t+1)1−θ )) ≤ 1

α
e2α′(t+1)1−θ ,

whence

S2 ≤ 22θ (t + 1)−θ
(

t−θ + 1

α

)
≤ 8

α
(t + 1)−θ for t ≥ 4.

It is easy to check that ψ(t + 1, α) ≤ 2 ≤ (8/α)(t + 1)−θ for 1 ≤ t ≤ 3.
Therefore, for t ∈ N,

ψθ(t + 1, α) ≤ S1 + S2 ≤
(

2

2θ − 1

(
θ

eα(2− 2θ )

)θ/(1−θ)
+ 8

α

)
(t + 1)−θ

=
(

2

2θ − 1

(
θ

e(2− 2θ )

)θ/(1−θ)
+ 8α(2θ−1)/(1−θ)

)

×
(

1

α

)θ/(1−θ)
(t + 1)−θ

≤
(

2

2θ − 1

(
θ

e(2− 2θ )

)θ/(1−θ)
+ 8

)(
1

α

)θ/(1−θ)
(t + 1)−θ ,

where the last step is due to α(2θ−1)/(1−θ) < 1 as α ∈ (0, 1).

The following lemma is also useful in the various upper bound estimations in
Proposition 4.2.

Lemma A.2. (1) For α ∈ (0, 1] and θ ∈ [0, 1],

t∏
i=k+1

(
1− α

i θ

)
≤




exp

(
2α

1− θ ((k + 1)1−θ − (t + 1)1−θ )
)
, θ ∈ [0, 1),

(
k + 1

t + 1

)α
, θ = 1.
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(2) For α ∈ (0, 1] and θ ∈ [0, 1],

t∑
k=1

1

kθ

t∏
i=k+1

(
1− α

i θ

)
≤ 3

α
.

(3) If θ = 1, and for α ∈ (0, 1],

ψ1(t + 1, α) =
t∑

k=1

1

k2

t∏
i=k+1

(
1− α

i

)2

≤




4

1− 2α
(t + 1)−2α, α ∈ (0, 1

2

) ;
4(t + 1)−1 ln(t + 1), α = 1

2 ;
6

2α − 1
(t + 1)−1, α ∈ ( 1

2 , 1
) ;

6(t + 1)−1, α = 1.

Proof. (1) By inequality (A.1), we have, for θ ∈ [0, 1],

ln

(
1− α

i θ

)
≤ −α

i θ
.

Thus
t∑

i=k+1

ln

(
1− α

i θ

)
≤ −α

t∑
i=k+1

1

i θ
≤ −α

∫ t+1

k+1

1

xθ
dx (A.2)

which equals
α

1− θ ((k + 1)1−θ − (t + 1)1−θ ),

if θ ∈ [0, 1), and

ln

(
k + 1

t + 1

)α
,

if θ = 1. Taking the exponential gives the inequality.
(2) If θ ∈ [0, 1), from (1) we have

1

kθ

t∏
i=k+1

(
1− α

i θ

)
≤ e−[2α/(1−θ)](t+1)1−θ 1

kθ
e[2α/(1−θ)](k+1)1−θ ,

whence
t∑

k=1

1

kθ

t∏
i=k+1

(
1− α

i θ

)

≤ e−[2α/(1−θ)](t+1)1−θ
(

t−1∑
k=1

1

kθ
e[2α/(1−θ)](k+1)1−θ + 1

tθ
e[2α/(1−θ)](t+1)1−θ

)
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where

t−1∑
k=1

1

kθ
e[2α/(1−θ)](k+1)1−θ ≤ 2θ

t−1∑
k=1

(
1

k + 1

)θ
e[2α/(1−θ)](k+1)1−θ

≤ 2
∫ t+1

2
e[2α/(1−θ)]x1−θ

x−θ dx ≤ 1

α
e[2α/(1−θ)](t+1)1−θ .

Therefore

e−[2α/(1−θ)](t+1)1−θ
(

t−1∑
k=1

1

kθ
e[2α/(1−θ)](k+1)1−θ+ 1

tθ
e[2α/(1−θ)](t+1)1−θ

)
≤ 1

α
+ t−θ

<
3

α
.

If θ = 1, from inequality (A.2),

t−1∑
k=1

1

k

t∏
i=k+1

(
1− α

i

)
≤

t−1∑
k=1

1

k

(
k + 1

t + 1

)α

≤ 2

tα

t−1∑
k=1

(k + 1)α

k + 1
= 2

tα

t−1∑
k=1

(k + 1)α−1

≤ 2

tα

∫ t

1
xα−1 dx,

where, if α = 1,

2

tα

∫ t

1
xα−1 dx = 2;

and, if 0 < α < 1,

2

tα

∫ t

1
xα−1 dx = 2

α

(
tα − 1

tα

)
≤ 2

α
.

Therefore
t∑

k=1

1

k

t∏
i=k+1

(
1− α

i

)
≤ t−θ + 2

α
≤ 3

α
,

which completes the proof of part (2).
(3) If θ = 1, using inequality (A.1), we have

t∑
i=k+1

ln

(
1− α

i

)2

≤ −2α
t∑

i=k+1

1

i
≤ −2α

∫ t+1

k+1

1

x
dx = ln

(
k + 1

t + 1

)2α

.
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Thus

ψ1(t + 1, α) ≤ t−2 +
t−1∑
k=1

1

k2

(
k + 1

t + 1

)2α

≤ 4

(t + 1)2
+ 22α

(t + 1)2α

t−1∑
k=1

k2α−2

≤ 4

(t + 1)2
+ 22α

(t + 1)2α

∫ t−1/2

1/2
x2α−2 dx,

where, if α ∈ (0, 1
2 ),

r.h.s. = 4

(t + 1)2
+ 22α

1− 2α
(t + 1)−2α(21−2α − (t − 1

2 )
2α−1)

≤
(

2+ 2

1− 2α

)
(t + 1)−2α ≤ 4

1− 2α
(t + 1)−2α;

if α = 1
2 ,

r.h.s. = 4

(t + 1)2
+ 2

t + 1
(ln(t − 1

2 )− ln 1
2 )

≤
(

2

t + 1
+ ln 2

)
2

t + 1
ln(t + 1) ≤ 4

t + 1
ln(t + 1);

if α ∈ ( 1
2 , 1),

r.h.s. = 4

(t + 1)2
+ 22α

2α − 1
(t + 1)−2α((t − 1

2 )
2α−1 − ( 1

2 )
2α−1)

≤
(

4

t + 1
+ 4

2α − 1

)
(t + 1)−1 ≤ 6

2α − 1
(t + 1)−1;

and, if α = 1,

r.h.s. = 4

(t + 1)2
+ 4

(t + 1)2
(t − 1) ≤ 6(t + 1)−1.

This finishes the proof of the fourth part.

Appendix B: Generalized Bennett’s Inequality

In the direction of proving an exponential version of the main theorems with 1/δ
replaced by log 1/δ, it has seemed useful for us to consider Bennett’s inequality for
random variables in a Hilbert space. In the meantime, such a theorem was found
useful in other work yet to appear. Thus we include Appendix B.

The following theorem might be considered as a generalization of Bennett’s in-
equality for independent sums in Hilbert spaces, whose counterpart in real random
variables is given in Theorem 3 of Smale and Zhou [20].
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Theorem B.1 (Generalized Bennett). Let H be a Hilbert space, let ξi ∈ H
(i = 1, . . . , n) be independent random variables and let Ti : H →H be deter-
ministic linear operators. Define τi = ‖Ti‖ and τ∞ = supi τi . Suppose that for all
i almost surely ‖ξi‖ ≤ M <∞. Define σ 2

i = E‖ξi‖2 and σ 2
τ =

∑n
i=1 τiσ

2
i . Then

P

{∥∥∥∥∥
n∑

i=1

Ti (ξi − Eξi )

∥∥∥∥∥ ≥ ε
}
≤ 2 exp

{
− σ 2

τ

τ∞M2
g

(
Mε

σ 2
τ

)}

where g(t) = (1 + t) log(1 + t) − t for all t ≥ 0. Considering that g(t) ≥
(t/2) log(1+ t), then

P

{∥∥∥∥∥
n∑

i=1

Ti (ξi − Eξi )

∥∥∥∥∥ ≥ ε
}
≤ 2 exp

{
− ε

2τ∞M
log

(
1+ Mε

σ 2
τ

)}
.

The proof needs the following lemma due to Pinelis and Sakhanenko [17]. Its
current form is taken from Theorem 3.3.4(a) in Yurinsky [22].

Lemma B.2 (Pinelis and Sakhanenko, 1985). Let ξi ∈ H (i = 1, . . . , n) be a
sequence of independent random variables with values in a Hilbert space H and
E[ξi ] = 0. Then, for any t > 0,

E

[
cosh

(
t

∥∥∥∥∥
n∑

i=1

ξi

∥∥∥∥∥
)]
≤

n∏
j=1

E(et‖ξj‖ − t‖ξj‖).

Proof of Theorem B.1. Without loss of generality we assume E[ξi ] = 0. For
arbitrary s > 0, by Markov’s inequality,

P

{∥∥∥∥∥
n∑

i=1

Tiξi

∥∥∥∥∥ ≥ ε
}
= P

{
exp

(
s

∥∥∥∥∥
n∑

i=1

Tiξi

∥∥∥∥∥
)
≥ esε

}

≤ e−sε
E exp

(
s

∥∥∥∥∥
n∑

i=1

Tiξi

∥∥∥∥∥
)

≤ 2e−sε
E cosh

(
s

∥∥∥∥∥
n∑

i=1

Tiξi

∥∥∥∥∥
)
,

where the last inequality is due to ex ≤ ex+e−x = 2 cosh(x). Then, by Lemma B.1,

P

{∥∥∥∥∥
n∑

i=1

Tiξi

∥∥∥∥∥ ≥ ε
}
≤ 2e−sε

n∏
j=1

E(es‖Tj ξj‖ − s‖Tjξj‖).

Denote

I = 2e−sε
n∏

j=1

E(es‖Tj ξj‖ − s‖Tjξj‖).
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For each 1 ≤ j ≤ n, considering E‖ξj‖2 = σ 2
j and ‖ξj‖ ≤ M almost surely,

E(es‖Tj ξj‖ − s‖Tjξj‖) = 1+
n∑

k=2

sk
E‖Tjξj‖k

k

≤ 1+
n∑

k=2

skτ k−1
∞ Mk−2

k
τjσ

2
j

≤ exp

(
n∑

k=2

skτ k−1
∞ Mk−2

k
τjσ

2
j

)

= exp

(
esτ∞M − 1− sτ∞M

τ∞M2
τjσ

2
j

)
,

where the second last inequality is due to 1+ x ≤ ex for all x . Therefore

I ≤ exp

{
−sε + esτ∞M − 1− sτ∞M

τ∞M2

n∑
j=1

τjσ
2
j

}
,

where the right-hand side is minimized at

s0 = 1

τ∞M
log

(
1+ Mε∑n

j=1 τjσ
2
j

)
.

Notice that σ 2
τ =

∑n
j=1 τjσ

2
j , then with this choice we arrive at

I ≤ exp

{
− σ 2

τ

τ∞M2
g

(
Mε

σ 2
τ

)}
,

where the function g(t) = (1 + t) log(1 + t) − t for all t ≥ 0. This is the first
inequality.

Moreover, we can check the lower bound of g,

g(t) ≥ t

2
log(1+ t),

which leads to the second inequality.

By taking Ti = (1/n)I , the following corollary gives a form of Bennett’s
inequality for random variables in Hilbert spaces.

Corollary B.3 (Bennett). Let H be a Hilbert space and let ξi ∈ H (i =
1, . . . , n) be independent random variables such that ‖ξi‖ ≤ M and E‖ξi‖2 ≤ σ 2

for all i . Then

P

{∥∥∥∥∥1

n

n∑
i=1

[ξi − Eξi ]

∥∥∥∥∥ ≥ ε
}
≤ 2 exp

{
−nσ 2

M2
g

(
Mε

σ 2

)}
.
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Noticing that g(t) ≥ t2/2(1+ t/3), the corollary leads to the following Bernstein
inequality for independent sums in Hilbert spaces.

Corollary B.4 (Bernstein). Let H be a Hilbert space and let ξi ∈ H (i =
1, . . . , n) be independent random variables such that ‖ξi‖ ≤ M and E‖ξi‖2 ≤ σ 2

for all i . Then

P

{∥∥∥∥∥1

n

n∑
i=1

[ξi − Eξi ]

∥∥∥∥∥ ≥ ε
}
≤ 2 exp

{
− nε2

2(σ 2 + Mε/3)

}
.

Yurinsky [22] also gives Bernstein’s inequalities for independent sums in Hilbert
spaces and Banach spaces. The following result is a varied form of Theorem
3.3.4(b) in [22]. Note that it is weaker than the form above in that the constant 1

3
changes to 1.

Theorem B.5. Let ξi be independent random variables with values in a Hilbert
space H . Suppose that for all i almost surely ‖ξi‖ ≤ M < ∞ and E‖ξi‖2 ≤
σ 2 <∞. Then, for n ≥ 0,

P

{∥∥∥∥∥1

n

n∑
i=1

(ξi − E[ξi ])

∥∥∥∥∥ ≥ ε
}
≤ 2 exp

{
− nε2

2(σ 2 + Mε)

}
.
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manuscript, 1997.

[10] M. Duflo, Algorithmes Stochastiques, Springer-Verlag, Berlin, 1996.
[11] T. Evgeniou, M. Pontil, and T. Poggio, Regularization networks and support vector machines,

Adv. Comput. Math. 13(1) (1999), 1–50.
[12] L. Györfi, Stochastic approximation from ergodic sample for linear regression, Z. Wahrsch. Verw.

Gebiete 54 (1980), 47–55.
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