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Abstract. In this paper, we study an online learning algorithm in Reproducing
Kernel Hilbert Spaces (RKHSs) and general Hilbert spaces. We present a general form
of the stochastic gradient method to minimize a quadratic potential function by an
independent identically distributed (i.i.d.) sample sequence, and show a probabilistic
upper bound for its convergence.

1. Introduction

Consider learning from examples (x;, ;) € X x R (¢ € N), drawn at random
from a probability measure p on X x R. For A > 0, one wants to approximate the
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function f;* minimizing over f € J¢ the quadratic functional

/ () = )2 dp + Ml f 12
XxY

where 57 is some Hilbert space. In this paper a scheme for doing this is given by
using one example at a time ¢ to update to f; the current hypothesis f;_; which
depends only on the previous examples. The scheme chosen here is based on the
stochastic approximation of the gradient of the quadratic functional of f displayed
above, and takes an especially simple form in the setting of a “Reproducing Kernel
Hilbert Space.” Such a stochastic approximation procedure was first proposed by
Robbins and Monro [18], and also by Kiefer and Wolfowitz [14]. Its convergence
and asymptotic rates have been widely studied (e.g., see [19], [9], [1], [12], [21],
or [13] and references therein). For more background on stochastic algorithms see,
for example, [2], [10], [16]. The main goal in our development of the algorithm is
to give error estimates which characterize in probability the distance of our updated
hypothesis to f,* (and eventually the “regression function” of p). By choosing a
quadratic functional to optimize, one is able to give a deeper understanding of this
online learning phenomenon.

In contrast, in the more common setting for Learning Theory, the learner is
presented with the whole set of examples in one batch. One may call this type of
work batch learning.

The organization of this paper is as follows. Section 2 presents an online learning
algorithm in Reproducing Kernel Hilbert Spaces (RKHSs), and states Theorem A
for a probabilistic upper bound on initial error and sample error. Section 3 presents
a general form of the stochastic gradient method in Hilbert spaces and Theorem
B, together with a derivation of Theorem A from Theorem B. Section 4 gives
the proof of Theorem B and the various bounds appearing in Section 3. Section
5 compares our results with the case of “batch learning.” Section 6 discusses
the Adaline or Widrow—Hoff algorithm and related works. Appendix A collects
some estimates used throughout the paper, and Appendix B presents a generalized
Bennett’s inequality for independent sums in Hilbert spaces.

1.1 Notation. Let X be a closed subsetof R", Y =RandZ = X x Y. Let p
be a probability measure on Z, let px be the induced marginal probability measure
on X, and let py|, be the conditional probability measure on Y with respect to
x € X. Define f,: X — Y by

Jo(x) Z/ydpnx,
Y

the regression function of p. In other words, for each x € X, f,(x) is the average
of y with respect to py,. Let & IZOX (X) be the Hilbert space of square integrable

functions with respect to py, and denoted by £ f) (X) for simplicity. In the sequel,

Il I, denotes the norm in .,%f)(X) and || |lo denotes the supreme norm with
respect to px (i.e., || fllec = esssup, |f(x)]). We assume that || f,[lcc < 00 and
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freZ i (X). Finally, we use such a convention on the summation and product
sign: as the index m > n,lety ._ x; =0and [[/_, x; = I, for any summand x;.

2. An Online Learning Algorithm in RKHS

Let K: X x X — Rbe aMercer kernel, i.e., a continuous symmetric real function
which is positive semidefinite in the sense that Zf =1 Ci¢;i K (xi, x;) = O for any
| € Nand any choiceof x; € Xandc; e R(i =1, ..., D). Note K (x, x) > Oforall
x. Inthe following || - || and (, ) denote the Euclidean norm and the Euclidean inner
product in R", resp ectively. We give two typical examples of Mercer kernels. The
first is the Gaussian kernel K: R" x R" — R defined by K (x, x’) = exp(—|lx —
x'[|?/c?) (¢ > 0). The second is the linear kernel K: R” x R" — R defined by
K(x,x") = (x,x’) + 1. The restriction of these functions on X x X will induce
the corresponding kernels on subsets of R”.

Let €k be the Reproducing Kernel Hilbert Space (RKHS) associated with a
Mercer kernel K. Recall the definition as follows. Consider the vector space Vi
generated by {K,: t € X}, i.e., all the finite linear combinations of K,, where,
for each t € X, the function K;: X — R is defined by K;(x) = K(x,?). An
inner product { , )g on this vector space can be defined as the unique linear
extension of (K, K/} := K (x, x’) and its induced norm' is || f||x = ~/{f> f)x
for each f € Vg. Let €k be the completion of this inner product space Vi / Vj.
It follows that for any f € Sk, f(x) = (f, K;)x (x € X). This is often called
the reproducing property in literature. Define a linear map Lg: & ,20(X ) —> Hx
by Lg(f)(x) = fx K(x,t)f(t)dpx. The operator Lg + AI: €k — Fk is an
isomorphism if & > 0 (endomorphism if A > 0), where Lg: € — F€k is the
restriction of Lg: gf) (X) - k.

Given a sequence of examples z; = (x;,y;) € X x Y (t € N), our online
learning algorithm in RKHS is

fiv1 = fi = vi((filx) = yO Ky, + 21 1) for some f; € 5k, e.g., fi =0,
)]

where:

(1) for eacht € N, (x;, y;) is drawn identically and independently according
to p;

(2) the regularization parameter A > 0; and

(3) the step size y, > 0.

! Note that the zero set Vo = {f € Vk: || fllx = 0} = {0}, whence || - || x is in fact a norm. To see
this, by the reproducing property and Cauchy—Schwartz inequality,

1Ak =0 = [fOIl=Kf. Kokl <IflIgIK: ) =0, VieX = [f=0,

which implies Vj = {0}.
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Note that for each f,the map X x ¥ — R given by (x,y) — f(x) —yisa
real-valued random variable and K ,: X — €% is a 7€k -valued random variable.
Thus f;4 is arandom variable with values in .7 depending on (z;)i_,. Moreover,
we see that fiy; € span{fi, K,,: 1 < i < t}, a finite-dimensional subspace of
F€k . The derivation of (1) is given in the next section from a stochastic gradient
algorithm in general Hilbert spaces.

In the sequel we assume that

Ck :=supv/K(x, x) < oo. 2)

xeX
For example, the following typical kernels have Cx = 1:

(1) Gaussian kernel: K: R” x R" — R such that K (x, x') = e~ Ix=¥I7/e,

(2) Homogeneous polynomial kernel: K: R" x R" — R such that K (x, x") =
(x, x’)¢. By the scaling property, we canrestrict K to the sphere §"~! x §"~!.

(3) Translation invariant kernels: Any K: X x X — R such that K (x, x") =
K(x —x")and K(0) = 1.

In the sequel, we decompose || f; — f, || , into several parts and give upper bounds
for each of them. Before that, we introduce several important quantities.
First consider the minimization of the regularized least squares problem in 5k,

. _ 2 A 2 A .
fré%/z(f(x) Wedp+AIfIE. A0

The existence and uniqueness of a minimizer is guaranteed by Proposition 7 in
Chapter III of Cucker and Smale [7] which exhibits it as

ff=Lx +rD)""Lef,, 3)

where f, € £ f,(X ) is the regression function. In fact, f;* defined in this way is
also the equilibrium of the averaged update equation of (1),

ELfix1] = ELfi] = v EI(f () — y) Ky, + Afi D). “4)

In other words, f;* satisfies
E[(f;(x) = K +Af1=0. (5

To see this, it is enough to notice that, by Lx (f)(x) = fx K(x,t)f(t)dpx, we
have

L (f) = Ecf (0K« ],

and

LK(fp) = Ex[[]Eylxy]Kx]v
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whence equation (5) turns out to be L g (f;¥) + Af;" = Lk (f,), which leads to the
definition of f;* in (3).

Notice that the map (x, y) = (f;*(x) — y)K, + Af;" is a Sk -valued random
variable, with zero mean. Thus the following variance

o = B [I(f(x) — K. + AfF1%], (6)

characterizes the fluctuation about the equilibrium caused by the random sample
z = (x, y). If 6> = 0, we have the deterministic gradient method (see Section 3).
If M, > Ois a constant, such that supp(p) € X x [-M,, M,], then Proposition
3.4 in the next section implies

o? <

<2C1<MP(A+C%())2
SIS

The main purpose in this paper is to obtain a probabilistic upper bound for

Ife = follp-
By the triangle inequality we may write
Ife = follo < W fi = Flllp + 1S5 = Follp @)

The second part of the right-hand side in (7), || £ — f,l,, is called the approx-
imation error. An upper bound for the approximation error will be given at the
end of this section. In the following we will give a probabilistic upper bound on
Il fi — fi¥llk, whence via || f; — f¥ll, < Ck |l fi — fiFllx we obtain an upper bound
on the sample error. Before the statement of the theorem, we define

A

o = m, (8)

whose meaning, as the inverse condition number, will be discussed in the next
section.

Theorem A. Let y, = 1/(A+ Cp)t’ (t € N) for some 0 € (1, 1). Then, for
eacht € N, we may write

i = fi Nk < Emin(t) + & samp(D), ©)
where
Eimi(1) < /==y 1oy

and with probability at least 1 — § (8 € (0, 1)) in the space Z'™',

& <0 (1)9“_8 <1)9
samp - 5(X+C%()2 o t :
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Here o2 is the variance in (6) and the positive constant Cy satisfies

2 P 0/1-0
Co=38 .
o +29—1<e(2—29)>

The proof will be deferred to later sections.

Remark 2.1. Assume A < 1 and consider the upper bound
2 2 2
0" < 2CxkM,(A+Cx)/1)".

Then the following holds with probability at least 1 — § (§ € (0, 1)),

ot Cy (1) Z 0200 /1\or
_ * < 1 -t _ * e - _ , 10
Ifi = fillk <e Ifi—f ||K+\/§<)L> <t> (10)

where

1

_ 0/2(1-0)
(1-6)(1+C%) '

C and G, =2CxM,\/Cy (1 + Cg)

Remark 2.2. In decomposition (9) in Theorem A, &,;:(t) has a deterministic
bound and characterizes the accumulated effect from the initial choice, which is
called the initial error. & samp(t) depends on the random sample and thus has a
probabilistic bound, which is called the sample error. We can also give upper
bounds on the approximation error, || f; — foll,.

The approximation error can be bounded if we put some regularity assump-
tions on the regression function f,. For example, the following result appears in
Theorem 4 of Smale and Zhou [20].

Theorem 2.3.

(1) Suppose Ly f, € L%(X)for somer € (0, 1]. Then

15 = follp S ATILE follo-

(2) Suppose Ly f, € L%(X)for somer € (%, 1]. Then
I = follk < X7 2ULYE foll -

Notice that since L;l/ isan isomorphism, € — L%(X ), the second condition
implies f, € k.
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3. A Stochastic Gradient Algorithm in Hilbert Spaces

In this section, we extend the setting in the first section to general Hilbert spaces.
Let W be a Hilbert space with inner product ( , ).Consider the quadratic potential
map V: W — R given by

V(w) = 3(Aw, w) + (B, w) + C, (11)

where A: W — W is a positive definite bounded linear operator whose inverse is
bounded, i.e., |A™!|| < 0o, B € W, and C € R. Then the gradient grad V: W —
W is given by

grad V(w) = Aw + B,

V has a unique minimal point w* € W such that grad V(w*) = Aw* + B = 0,
ie.,

w*=—A"'B.

Our concern is to find an approximation of this point, when A, B, and C are random
variables on a space Z. We give a sample complexity analysis (i.e., the sample
size sufficient to achieve an approximate minimizer with high probability) of the
so-called stochastic gradient method given by the update formula

Wip1 = w; — y; grad V(w,), for t=1,2,3,..., (12)

with y; a positive step size. For each example z, the stochastic gradient of V,
gradV,: W — W, is given by the affine map grad V,(w) = A(@)w + B(z),
with A(z), B(z) denoting the values of random variables A, B at z € Z. Our
analysis will benefit from this affine structure and independent sampling. Thus
(12) becomes:

Fort =1,2,3, ..., let z, be a sample sequence and define an update by
w1 = wy — Y (Ayw; + By) for some w; e W, (13)
where:

(1) z; € Z (t € N) are drawn independently and identically according to p;

(2) the step size y; > 0; and

(3) themap A: Z — SL(W) is arandom variable depending on z with values
in SL(W), the vector space of symmetric bounded linear operators on W,
and B: Z — W is a W-valued random variable depending on z. For each
teN,let A, = A(z,) and B; = B(z;).

From the stochastic gradient method in equation (12), we derive equation (1)
for our online algorithm in RKHSs. Consider the Hilbert space W = 5€k. For
fixed z = (x, y) € Z, take the following quadratic potential map V: € — R
defined by

Vo(f) = H(F) — >+ Al flIE)-
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Recall that the gradient of V, is a map grad V,: €k — €k such that, for all
g € Hk,

(grad Vo(f), &)k = DV:(f)(g),

where the Freéchet derivative at f, DV,(f): €k — R, is the linear functional
such that, for g € F,

fim U +8) = Ve(f) = DV _
1m =

llgll—0 llgll

0.

Hence

DV (f)(g) = (f(x) = »)gx) + A(f. gk = ((f (¥) = Y)K: + Af. &)k

where the last step is due to the reproducing property g(x) = (g, K, ). This gives
the following proposition:

Proposition 3.1. grad V,(f) = (f(x) — y) K, + Af.

Taking f = f; and (x, y) = (x;, y,), by fi+1 = fi — y: grad V,,(f;), we have
fi+1 = fr = e ((fr () — )’z)Kx, +Af),

which establishes equation (1).
In the sequel we assume that

Finiteness Condition.

(1) Foralmostall z € Z, ptminl < A(2) < maxd (0 < Umin < Umax < 00);
and
(2) |B(2)]| < B < oo foralmost all z € Z.

Consider the following averaging of equation (13), by taking the expectation
over the truncated history (z;)i_,,

Ezl,...,z,[wl+l] = Ezl,...,z,,l[wt] - Vr(Ez, [AJw, + Ez,[Bt])’ (14)

where w; depends on the truncated sample up to time ¢t — 1, (zi)f;}. Then the
equilibrium for this averaged equation (14) will satisfy

]Ez,[At]wt + Ez,[Bt] =0 = w= _Ez, [At]_lEz,[Br]o (15)
This motivates the following definitions:

Definition A.
(1) The equilibrium w* = —A~!B where A = E,[A(z)] and B = E.[B(z)].
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(2) The inverse condition number for the family {A(z): z € Z},
O = fmin/MUmax € (0, 1].

For each w € W, the stochastic gradient at w as a map grad V,(w): Z - W
such that z — A(z)w + B(2), is a W-valued random variable depending on z. In
particular, grad V_(w*) has zero mean, with variance defined by

o? = E[|| grad V,(w*") |*] = E.[|A,w* + B.|*],

which reflects the fluctuations of grad V,(w*) caused by the randomness of sam-
ple z. Observe that when o> = 0, we have the following deterministic gradient
algorithm to minimize V,

W1 = w; — ¥, grad V(wy)

where grad V (w) = Aw + B.

Now we are ready to state the general version of the main theorem for Hilbert
spaces. Here we consider the product probability measure on Z’~!, which makes
sense since z; (1 <i <t —1)arei.i.d. random variables. As in the first section, we
will decompose and give a deterministic bound on & i, and a probabilistic bound
on & gamp, respectively.

Theorem B. Assume (13) and the finiteness condition. Let v, = 1/pumaxt® (t €
N) for some 0 € (%, 1). Then, for each t € N, we have

”wt - w*” = éainit(l‘) + gsamp(t) (16)
where
Emin(1) < /=N

and with probability at least 1 — § (§ € (0, 1)),

o2

/‘LmaxzfS

Yo (t, ).

& (1) =

Here

t—1 1 t—1 2
ww,a):;k@ I1(-%)

i=k+1

Remark 3.2. As in the first section, &, (¢) has a deterministic upper bound
and characterizes the accumulated effect from the initial choice, which is called
the initial error, and & gmp(¢) depends on the random sample and thus has a
probabilistic bound, which is called the sample error.
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Remark 3.3. In summary, w, in equation (13) satisfies that for arbitrary integer
t € N, the following holds with probability at least 1 — & in the space of all samples
of lengtht — 1,i.e., Z'~!,

N

_ o

lw, — w*|| < e/ ) 4+ == — w11, ).
Mmax\/g

When o2 = 0, we have the following convergence rate for the deterministic
gradient algorithm

1-6
lwy — w*|| < el =0y — w¥|

which is faster than any polynomial rate.
Proposition3.4. Let o € (0,1] and 6 € (%, 1). The following upper bounds
hold for all t € N:

(1) 0% < 2B/a)*; and
(2) Yo(t, @) < Co (1/)? =D (1/1)?, where

2 0 0/(1-0)
Co =8 .
¢ +29—1<dz—2®>

Remark 3.5. In the setting of equation (1) in RKHS, we have

s
o0=—"0,
A+ Ci

B=CkM, and

whence

ol <

(2CKMp(k+C,2{)>2
)

ReAmai:k 3.6. Choose the initialization w; = 0 for simplicity. Notice that ||w*| =
|A'B|| < B/ttmin- Then we have the following bound, with probability at least

1-56,
0/2
||wr—UJ*||§ B (%) (ta/ze[a/(l—e)](l—t'f’)+2 &)

min 8

Remark 3.77. Consider the case that & = 1 and @ € (0, %). Then, by Lemma
A.2(3), we obtain that

Einit(t) <t Jw; — w*||

and
Jo? 4
gsamp(t) = 7 11/2(t, a) < —,Bt_a
,umax\/g Mmina/0(1 — 2a)
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Choosing w; = 0 and using ||w*|| < B/tmin, We obtain that

<P (N (1 4
=t =2 (3) (14 s )

The proof of Theorem B and Proposition 3.4 will be given in Section 4. Here
is the proof of Theorem A from Theorem B.

Proof of Theorem A. 1In this case W = 5€k. Before applying Theorem B, we
need to rewrite equation (1) by the notations used in Theorem B.

For any f € J¢%, let the evaluation functional at x € X be E,: € — Rbe
suchthat E,(f) = f(x) (Vx € X).Denoteby E}: R — ¢ the adjoint operator
of E, such that (E,(f), y)gr = (f, E{()))x (¥ € R). From this definition, we see
that E5(y) = yK,.

Define the linear operator A,: J€x — Jx by A, = EYE, + A, ie,
A, (f) = f(x)K, + Af, whence A, is a random variable depending on x. Taking
the expectation of A,, we have A= E.[A;]=Lg +Al.

Moreover, define B, = E}(—y) = —yK, € €k, which is a random variable
depending on z = (x, y). Notice that the expectation of B, B = E,[B;] =
E.[E,[-y]Kx] = —Lg f,. For simplicity below, we denote A, = A, and B, =
B..

With these notations, equation (1) can be rewritten as

Jiv1 = fi = vi(Ai fi + BY).

Clearly, f = (Lg 4+ AI)"'Lg f, satisfies 0 = E.[A(z) £ + B(z)] = A f* + B.
Thus f;* is the equilibrium of the averaged equation (4).

Notice that the positive operator L satisfies ||[Lg| = sup,.x K(x,x) = C %(
Therefore fmax = A + C%, fhmin = A, and B = Cx M,,.

Finally, by identifying w, = f; and w* = f¥, the upper bound on the initial
error & it (¢) follows from Theorem B, and the upper bound on the sample error
& samp (1) follows from Theorem B and Proposition 3.4(2). O

Remark3.8. If6 =1land X < Ci (whence o € (0, %)), by Remark 3.7, we have

* 1 “ * m
Ifi = il = (;) (IIfA ||K+m l1/2(t,oz)>.

By Lemma A.2(3), we have an upper bound for ¥ (¢, ),

—2u
t, < 1t .
Y (t, @) —

With this upper bound and 0> < (28/a)* = 4Cx M (A + Cg)*/A?, we obtain that

_fk l ¢ * 4CKMP
1= 2= (1) (10t s ).
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which holds with probability at least 1 — §. Notice that this upper bound has a
polynomial decay O(¢%).

4. Proof of Theorem B

In this section we shall use [, [-] to denote the expectation with respect to z. When
the underlying random variable in expectation is clear from the context, we will
simply write E[-].

Define the remainder vector at time ¢, r; = w, — w*, which is a random variable
depending on (z,-)f-;i € Z'~! when t > 2. The following lemma gives a formula
to compute ry.

Lemma 4.1.

rn =[] —viAdrn =) n ( []u- mA») (Aw* + By).
i k=1

i=1 i=k+1
Proof. Since w;y 1 = w; + y,(A;w, + B;), then
Fiel = Wiy — wF
= w; — y(Ayw, + B)) — (I — y A)w* — y, A, w*
= (I —yA)r, — v (A, w* + B)).

The result then follows from induction on ¢t € N. O

For simplicity we introduce the following notations, a symmetric linear operator

X} .11 W — W which depends on zi41, ..., 2,
1
X Gtz = [[U=nAd (X, =Tifk =),
i=k+1

and a vector Y; € W which depends on z; only,
Yi(zx) = Ayw™ + By.

Clearly, E[Y;] = 0 and E[||Y;|?] = o2 for every 1 < k < t. With this notation
Lemma 4.1 can be written as
t
revr = Xir = ) vieXi Yoo (17)
k=1
where the first term X r; reflects the accumulated error caused by the initial choice;
the second term Y} v X} +1 Y« 1s of zero mean and reflects the fluctuation caused
by the random sample. Based on this observation we define the initial error:

Emie(t + 1) = |1 Xir, (18)
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and the sample error:

t

Zykxltcﬂyk
k=1

gsamp(t +1)= . (19)

The main concern in this section is to obtain upper bounds on the initial error and
the sample error. The following estimates are crucial in the proofs of Theorem B
and Proposition 3.4.

Proposition 4.2. Let y, =1/ jipmaxt? for some 6 € (%, 1]. For all o = pmin/ Umax €
(0, 1], the following holds:
(1) Leta = a/(1 — 6). Then
o (1= (t+1)'%) 0ct1):
@+ D%rlls 0 =1.

@) 1Yl = 28/a,

3) IE)|:

> nXia¥
k=1

From this proposition and the following Markov’s inequality, we give the proof
of Theorem B.

max

2 02
} < Y+ 1,a).

Lemma 4.3 (Markov’s Inequality). Let X be a nonnegative random variable.
Then, for any real number ¢ > 0, we have

E[X]
Prob{X > ¢} < ——.
£

Proof of Theorem B. By (18) and the estimation (1) in Proposition 4.2, where
0 e (%, 1), we have

_ _ 10
Einit(1) < I 1 — w.

By (19) and the estimation (3) in Proposition 4.2 and Markov’s inequality with
X = &2 (1), we obtain, for t > 2,

samp
o2
Prob{&7,,,, (1) < &’} < Yolt, @).
e &% [lmax?
Setting the right-hand side to be § € (0, 1), we get the probabilistic upper bound
on the sample error. It remains to check that when ¢ = 1, &ipic(t) = ||lw; — w*||
and & gmp () = 0, whence the bound still holds. O

Next we give the proof of Proposition 4.2.
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Proof of Proposition4.2. (1) By ptmin] < A < pmax! and y; = 1/ptmaxt’ (8 €
(3. 11), then

1

IXgorll < T 1= wiAillinll
i=k+1
! o
< 1_[ (1 — l_) 7ol o = Mmin/ Mmax- (20)
i=k+1

Setting k = 0 and by (1) in Lemma A.2, we obtain the result.
(2) Note that |w*|| < B/imin. Thus we have

1Yl = lAcw™ + Bell < [[Akllw™ll + [l Bell

< MmaxB/Mmin + B = IB(O‘_] +1) <28/a,

since @ € (0, 1]. This gives part (2).
(3) Note that

t
ZVkXItc+lYk

k=1 k=1

2
= E<Z Vka_H Y, Z Vka.H Yk>,

t
= Vi viE( Xk+1Yk,X[+1Yl>
k,l=1

where, if k # [, say k < [,

VleEzk ..... e (Xltprl Y, X[t+1 Y)= VleEzH],....z, []Ezklzk+1,...,z, [Yk]TX/t(+1X;+1 Y,1=0,

by E[Y;] = 0. Thus we have

13

t
DB Y X V) = ) v EG L Y X V)
k=1 k=1

IA

t
> VRENIX 1P 1Yl]
k=1

2

IA

SVt + 1, ),

max

where the last inequality is due to E||Y;||?> = o2 for all k and

Zyk X} 117 < Z 2k20 l_[ ( )

Mmax i=k+1 Mmax

Yot + 1), O
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Finally, we derive the upper bounds for o> and v (¢, ) as in Proposition 3.4.

Proof of Proposition 3.4. The first upper bound follows from estimation (2) in

Proposition 4.2,
28\*
o’ < (I%l)* < (7)

foralll <k <t.
For t > 2, the second upper bound is an immediate result from Lemma A.1;
for ¢t = 1, note that vy (¢, «) = 0 whence the upper bound still holds.

5. Comparison with “Batch Learning” Results

The name “batch learning” is coined for the purpose of emphasizing the case
when the sample of size ¢ € N is exposed to the learner in one batch, instead of
one-by-one as in “online learning” in this paper. In the context of RKHS, given
asamplez = {z;: i = 1,...,t}, “batch learning” means solving the regularized
least squares problem [11], [7]

1< )
= arg min — D) — Vi M, , A > 0.
frx=arg min 53 (G =y + 1. N >
The existence and uniqueness of f; , given as in Section 6 of [7] says

Fra(¥) =" aiK (x, x;)
i=1

where a = (ay, ..., a,) is the unique solution of the well-posed linear system in
RY,

Al + Ky)a =y,

with (¢ x t)-identity matrix /, (¢ x t)-matrix K, whose (i, j) entry is K (x;, x;)
andy = (y,...,y) € R.

A probabilistic upper bound for || f; , — f;*|l, is given by Cucker and Smale [6],
and this has been substantially improved by De Vito, Caponnetto, and Rosasco [8],
using also some ideas from Bousquet and Elisseeff [3]. Moreover, error bounds
expressed in a different form were given by Zhang [23]. A recent result, shown in
Smale and Zhou [20], is

Theorem 5.1.

g < Cor (1
I foiz— fillk < 5 (Aﬁ)
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where C, x = Cx /02 +3Ck | foll, and
o? = / (& = £,0) 2 dp.
XxY

Remark 5.2. Notice that if . < 1 without loss of generality, equation (10) in
Remark 2.1 shows the following convergence rate:

1\ @0/20-6) /1N 6/2
g <o) (1))

where 6 € (% l). Since the function7(6) = (2 —6)/2(1 —0) = 1/2(1 — 6) + %
is an increasing function of 6, then 7(9) € (%, 00) as 0 € (%, 1). For small A,
when 6 is close to 1, the upper bound is close to O (A~3/#t~1/4) which is tighter in
A but looser in ¢ in comparison with the theorem above; on the other hand, when
0 increases, the upper bound becomes tighter in # but much looser in A.

6. Adaline

Example 6.1 (Adaline or Widrow—Hoff Algorithm). The Adaline or Widrow—
Hoff algorithm [S, p. 23] is a special case of the online learning algorithm (1)
where the step size y, is a constant 7, the regularization parameter A = 0, and the
reproducing kernel is the linear kernel such that K (x, x") = (x, x’) + 1 forx, x’ €
X = R". To see that, define two kernels by Ko(x, x’) = (x, x’) and K (x, x’) = 1.
Then S = 5k, ® Fk,. Notice that 7, = R" and 5%, = R, whence
Hx = R™! In fact, for w € R” and b € R, a function in 7€ can be written
as f(x) = > /_;w'x' 4+ b for x € X. By the use of the Euclidean inner product
in R"*, we can write f(x) = ((w, b), (x,1)). Therefore, the Adaline update
formula

(Wig1, biy1) = (s, by) +n{w, x;) +b — y) (x4, 1), teN,

can be written as the following formula, by taking the Euclidean inner product of
both sides with the vector (x, 1) € R*+!,

Jir1 = fi +0(fi(x) — yt)Kx,'

This is equivalent to setting y; = n and A = 0 in the online learning algorithm (1).

The case for fixed step size and zero regularization parameter is not included
in Theorems A or B. In the case of nonstochastic samples, Cesa-Bianchi et al. [4]
have some worst-case analysis on the upper bounds for the following quantity:

T T

D (wp,x) = y)? = min 3 ((w, x) = y)*.
- =1

t=1
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Adam Kalai has shown us how one might convert these results of Cesa-Bianchi
et al. to a form comparable to Theorem A. Beyond the square loss function above,
some related works include [15] which presents a general gradient descent method
in RKHS for bounded differentiable functions, and [24] which studies the gradient
method with arbitrary differentiable convex loss functions. These works suggest
different schemes on choosing the step size parameter and how these choices might
affect the convergence rate under various conditions.

Appendix A: Some Estimates

The following lemma gives an upper bound for

t—1 1 t—1 2
mmm=;§%[10—%).

i=k+1

Lemma A.1 (Main Analytic Estimate). Leta € (0, 1]1and 6 € (%, 1). Then for

teN,
1\ 0/0-0) 1\
t+1, < Col— — .,
Yot + 1, ) < 9(0{) <t+1>

2 0 0/(1-0)
Co=38 .
o +29—1<e(2—29)>

where

Proof. The following fact will be used repeatedly in this section,
In(1 4 x) <x, forall x > —1. (A.1)

Thus we have

11

o \2 1 AR
Zln(l—i—e) 5—2azi—35—2afk — dx,

ikt =kt 1 +1 X

which equals

2a

1-6 1-6
(G D =)

ifo e (1,1).
From this estimate it follows that

t
, - 1 / -
Yot +1,0) < e 2 DTN 2T = g 4 g

260
k=1 k
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where o’ = /(1 — 6) and

- L(t=1)/2] 1 -
2+ v
Si=e Z x20 € ’
=1
2 ’ 1 1-6 ! 1 2 ’ k 1 1-6
S, = =20+ )
k=L(r71)/2)

where | x | denotes the largest integer no larger than x.
Next we give upper bounds on S; and S,. First,

20/ (1-20"1) (1 1)1 0 L(FXI):/M 1 20/ (1-20-1) (1 +1)1-0 21
S < e YT — <e U / —dx
Lo f2 1 X%

1-20 1-20
_ e—Za’(lfzﬁ")(tJrl)"H 1 f _ 1
1—26 2 2

< 2 o~ 20/ 1=2"D D!
- 20 —1

as® € (4, 1). To give apolynomial upper bound forexp{—2c/(1—-27~1) (¢ 4+1)' %},
we use the fact that for any ¢ > 0,a > 0, and x € (0, 00),

a a
e < —) x4
ec

To see this, it is enough to observe that the function f(x) = x“/e“* is maximized
atx = a/c. Leta = (1/0 — DY e=20'A=2"Y,andx = ¢t + DY =
(t + 1)?1/6=D "then

20/ (1=20=1) (1 1)1 0 0/1=6) 0
=2/ (1-2"H+1!~ < t - ,
‘ = <ea<2—29)> “+h

Thus, for 0 € (,1),a € (0,1),and t € N,

> 0 6/(1-6) ,
S < t+1)7".
‘—29—1(ea(2—29)> @¢+1

Second, notice that 1/[(t +1)/2] < 2/t < 4/(t+ 1) (for t € N), then let
p(t) = 2D /1% and we have

t—1

e 40 1 .
=2/ 1) 2 (k+1)'*
$ < e TN (p(t)+ > e )

k=15

IA

t
220 =2/ (D) (4 4 1)=0 (p(t)+/ igeza’““)"”dx) for t >4,
t)2—1 X
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where
! 1 2 ’ 1 1-6
/ —e @ O+DT gy
t)2—1 X
! 20 , - 1 2
< / = D gy by — < fort > 4
i2-1 (x + 17 x T x+1
29 t+'-? ,
_ / 7 dy byy=(x+1'""
1 - 9 (,/2)[7{')
20-1 , 1-0 , 1-0_ 1-0 1 , 1-0
— Q2D () 20 (/) =Dy o 2a )
o'(1—-0) - ’
whence

1
S, < 2%t +1)7? <t‘9 + —) <—@¢+D?  for t>4.
o

Q| o0

Itis easy to check that ¥ (r + 1, ) <2 < (8/)(t + D7 %forl <t <3.
Therefore, for ¢t € N,

2 0 ora=0 g .
SI+5 < — )+ 1"
tt 2—<29—1<ea(2—29)> +a>(+ )
0/(1-6)
= 2 0 4 8 20-1)/(1-)
20— 1 \e(2—2%)

1 0/(1-6)
x <—) ¢+ D"
o

- 2 0 0/(1-6) ) 1 6/(1-6) . 170
= \260 -1 \e2-29 + o @+D

where the last step is due to a@=D/0=0) ~ 1 asa € (0, 1). O

Yot + 1, )

IA

The following lemma is also useful in the various upper bound estimations in
Proposition 4.2.

Lemma A.2. (1) Fora € (0,1]and 6 € [0, 1],

exp (%((k + D=+ 1)1“’)) , 0€l0 D),

k+1\¢
(+), o1
t+1
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(2) Fora € (0,11 and 6 € [0, 1],

R [ 3
kz,k_en<1_%>§5'

= i=k+1

B3)If6 =1, and for a € (0, 1],

1 t 2
Uit + 1) = Z% I1 (1—%)

k=1 i=k+1

t+D7, ae(0.1);

1 -2«
4c+ D'+ 1), a=1
<
-1 1 .
o UR I a€(s.1);
6+ 17", a=1.

Proof. (1) By inequality (A.1), we have, for 6 € [0, 1],

Thus

! o o1 =+
Z ln(l — 79) < —a'z = —a/ — dx (A.2)

which equals

%((H DI — (r + DI,

1—
k+ 1\
Inl—) .
t+1
if & = 1. Taking the exponential gives the inequality.
(2)If 6 € [0, 1), from (1) we have

if 6 € [0, 1), and

1
kio I1 (1 - 3) < o aa-ona+n'= 1 paa-onaen—.

i=k+1 i ke
whence
t 1 t ( (X)
Y I1(-5
=Ko i

t—1
—[2a/(1-6)](t+1)' ¢ i [2a/(1—0)](k+1)'—¢ l [2a/(1-0)](t+1)1—*¢
5 € (Z kge + tee

k=1
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where
=l 1 1-6 ol 1 0 1-6
k_ge[Za/(179)](k+1) < 2 Z <k 1) o[22/ (1=)1(k+1)
k=1 k=1 +
t+1 1-6 1 1-6
< 2/ 2/ A= =0 g L [2a/(A=0)1a D)
2 o
Therefore

t—1
e—[20¢/(1—9)](f+1)1’9 Zie[2a/(l—0)](k+1)l’“+le[2a/<1—9)](t+1)1’9 < l +t—0
= k? 19 o

If 6 = 1, from inequality (A.2),

L IL0-9) < mi()

k=1 i=k+1

IA

IA

2 k41 2
= > _ = k 10{71
k+1 ta;( +1

IA
S
_\~

=

=3
L

QU

=

where, if « =1,

and,if0 <a < 1,

Therefore
t t
Y11 <l_a7> <422
pe i) ! o o

which completes the proof of part (2).
(3) If & = 1, using inequality (A.1), we have

t 2 t t+1 20
1 1 k+1
2:1n<1—3> < 2« E:fg—za/ —dx=1n<i> .
l k t+1

i=kt1 imkt1 ! +1 X
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Thus
t—1 20 20 —1
1 (k+1 4 2
f+ 1 < 2 A frerl < K202
i+l < +k;k2<t+1) —(r+1)2+(r+1)2w;

4 22a t—1/2
< + / x2a72 dx,
t+D* @+ D> Jip

where, if o € (0, 1),

4 220{
h: t 1—20{ 21—20{_ t_lZoz—l
s = Tt ="
2 4
< (2 t ]—2a<— t ]—20(;
_<+1—2a>(+) <72t
ifa:%,
4 2
hs. = — 4+ % (n(t =3 —1Inl
Lh.s (t+1)2+t+1(11( 5)—1In3)
< 2 +In2 2 In(t+1) < 4 In(z + 1)
% 4n n n :
T \r+1 t+1 41
ifa € (3.1),
4 22a
h.s. = Fo D)2 — 2ol (1y2e-1
ths. = o T U =) (>

IA

4 + 4 t+ D7 '< 6 ¢+ DY
t+1 20— 1 20 —1 ’

and, ifa =1,

4
hs. = t—1<6@+D7"
Hhs = Gr e Tarnpp o =eeth
This finishes the proof of the fourth part. O

Appendix B: Generalized Bennett’s Inequality

In the direction of proving an exponential version of the main theorems with 1/8
replaced by log 1/6, it has seemed useful for us to consider Bennett’s inequality for
random variables in a Hilbert space. In the meantime, such a theorem was found
useful in other work yet to appear. Thus we include Appendix B.

The following theorem might be considered as a generalization of Bennett’s in-
equality for independent sums in Hilbert spaces, whose counterpart in real random
variables is given in Theorem 3 of Smale and Zhou [20].
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Theorem B.1 (Generalized Bennett). Let S be a Hilbert space, let & € €
(i =1,...,n) be independent random variables and let T;: € — € be deter-
ministic linear operators. Define v; = || T;|| and 1o = sup; t;. Suppose that for all
i almost surely ||&;|| < M < oo. Define O’i2 = E||&]? and UTZ =y, Tiaiz. Then

2 M
| of 2o ()

where g(t) = (1 4+ t)log(l +t) — ¢t for all t > 0. Considering that g(t) >

(t/2)log(1 + t), then
e Me
> <2 - I 1+ — .
‘8}‘ oo {5 (107 |

|

The proof needs the following lemma due to Pinelis and Sakhanenko [17]. Its
current form is taken from Theorem 3.3.4(a) in Yurinsky [22].

Y T —EE)
i=1

D T —EE)
i=1

Lemma B.2 (Pinelis and Sakhanenko, 1985). Let & € 2 (i = 1,...,n) bea
sequence of independent random variables with values in a Hilbert space F¢€ and
E[&;]1 = 0. Then, for any t > 0,

E |:cosh (t i&
i=1

Proof of Theorem B.1.  Without loss of generality we assume E[§;] = 0. For
arbitrary s > 0, by Markov’s inequality,

([ ] <ol
)
)

e **Eexp (s
> T
i=1

where the lastinequality isdue to e* < e*+e™* = 2 cosh(x). Then, by LemmaB.1,

P { 2": T;&
i=1

)} = JTE@S! —rig1.
j=1

Y T
i=1

IA

> T
i=1

IA

2e **E cosh <s

> s} < 27 [[E@55 1 — s 731D,
j=1

Denote

] = 2e5¢ ]_[]E(ef”“f” —sIT& ).
j=1
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Foreach 1 < j < n, considering E||§;||> = o7 and ||§;|| < M almost surely,

 SFENTE |
]E(ESHES/‘” _S”T]%”) 1+Z N ” jé:J”

k=2 k

IA

n gkok le 2
1+ Z 02
k=2

n Sk‘L'k le -2 )
€Xp A
=2

M | — st M,
= exp T;0;
TooM2 J7i )

IA

where the second last inequality is due to 1 + x < e* for all x. Therefore
&M 1 — gt M & )
I <exp {—ss + . YE ; Tjoj (s

where the right-hand side is minimized at

Lojog (14 ¢
og - - |-
TOOM Zj:l Tjajz

Notice that 02 = >'_, 70 i 2, then with this choice we arrive at

]
02 MS
I <exp M2g ,

where the function g(t) = (1 + ¢)log(1 4+ ) — ¢ for all # > 0. This is the first
inequality.
Moreover, we can check the lower bound of g,

So =

t
gt) > 2 log(1 +1),

which leads to the second inequality. |

By taking 7; = (1/n)l, the following corollary gives a form of Bennett’s
inequality for random variables in Hilbert spaces.

Corollary B.3 (Bennett). Let 5% be a Hilbert space and let & € € (i =
1, ..., n) be independent random variables such that ||&| < M and E||&|* < o2

foralli. Then
no? [ Me
>e¢ < Zexp _Wg F .

1 n
P { H; ;[s,- — E&]
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Noticing that g(r) > #2/2(1 + t/3), the corollary leads to the following Bernstein
inequality for independent sums in Hilbert spaces.

Corollary B.4 (Bernstein). Let S be a Hilbert space and let & € € (i =
1, ..., n) be independent random variables such that | & | < M and E||&]]* < o
foralli. Then

1< n82

Yurinsky [22] also gives Bernstein’s inequalities for independent sums in Hilbert
spaces and Banach spaces. The following result is a varied form of Theorem
3.3.4(b) in [22]. Note that it is weaker than the form above in that the constant %
changes to 1.

Theorem B.5. Let & be independent random variables with values in a Hilbert
space F. Suppose that for all i almost surely ||&|| < M < oo and E|&|? <
0% < o0. Then, for n > 0,

Pl @ - mEn| =« <2exp{—”—82}
n ' g e 202+ Me) |~

i=l1
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