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1 IntroductionIn typical learning problems, the learner is presented with a �nite sample of data generated by anunknown source and has to �nd, within a given class, the model yielding best predictions on futuredata generated by the same source. In a realistic scenario, the information provided by the sampleis incomplete, and therefore the learner might settle for approximating the actual best model inthe class within some given accuracy. If the data source is probabilistic and the hypothesis classconsists of functions, a sample size su�cient for a given accuracy has been shown to be dependent ondi�erent combinatorial notions of \dimension", each measuring, in a certain sense, the complexityof the learner's hypothesis class.Whenever the learner is allowed a low degree of accuracy, the complexity of the hypothesis classmight be measured on a coarse \scale" since, in this case, we do not need the full power of the entireset of models. This position can be related to Rissanen's MDL principle [17], Vapnik's structuralminimization method [22], and Guyon et al.'s notion of e�ective dimension [11]. Intuitively, the\dimension" of a class of functions decreases as the coarseness of the scale at which it is measuredincreases. Thus, by measuring the complexity at the right \scale" (i.e., proportional to the accuracy)the sample size su�cient for �nding the best model within the given accuracy might dramaticallyshrink.As an example of this philosophy, consider the following scenario.1 Suppose a meteorologistis requested to compute a daily prediction of the next day's temperature. His forecast is basedon a set of presumably relevant data, such as the temperature, barometric pressure, and relativehumidity over the past few days. On some special events, such as the day before launching a SpaceShuttle, his prediction should have a high degree of accuracy, and therefore he analyzes a largeramount of data to �nely tune the parameters of his favorite mathematical meteorological model.On regular days, a smaller precision is tolerated, and thus he can a�ord to tune the parameters ofthe model on a coarser scale, saving data and computational resources.In this paper we demonstrate quantitatively how the accuracy parameter plays a crucial role indetermining the e�ective complexity of the learner's hypothesis class.2We work within the decision-theoretic extension of the PAC framework, introduced in [12]and also known as agnostic learning. In this model, a �nite sample of pairs (x; y) is obtainedthrough independent draws from a �xed distribution P over X � [0; 1]. The goal of the learneris to be able to estimate the conditional expectation of y given x. This quantity is de�ned by afunction f : X ! [0; 1], called the regression function in statistics. The learner is given a class Hof candidate regression functions, which may or may not include the true regression function f .This class H is called �-learnable if there is a learner with the property that for any distributionP and corresponding regression function f , given a large enough random sample from P , thislearner can �nd an �-close approximation3 to f within the class H, or if f is not in H, an �-closeapproximation to a function in H that best approximates f . (This analysis of learnability is purelyinformation-theoretic, and does not take into account computational complexity.) Throughout thepaper, we assume that H (and later F) satis�es some mild measurability conditions. A suitablesuch condition is the \image admissible Suslin" property (see [8, Section 10.3.1, page 101].)1Adapted from [14].2Our philosophy can be compared to the approach studied in [13], where the range of the functions in the hypothesisclass is discretized in a number of elements proportional to the accuracy. In this case, one is interested in boundingthe complexity of the discretized class through the dimension of the original class. Part of our results builds on thisdiscretization technique.3All notions of approximation are with respect to mean square error.2



The special case where the distribution P is taken over X�f0; 1g was studied in [14] by Kearnsand Schapire, who called this setting probabilistic concept learning. If we further demand that thefunctions in H take only values in f0; 1g, it turns out that this reduces to one of the standardPAC learning frameworks for learning deterministic concepts. In this case it is well known that thelearnability of H is completely characterized by the �niteness of a simple combinatorial quantityknown as the Vapnik-Chervonenkis (VC) dimension of H [24, 6]. An analogous combinatorialquantity for the probabilistic concept case was introduced by Kearns and Schapire. We call thisquantity the P-dimension of H, where  > 0 is a parameter that measures the \scale" to which thedimension of the class H is measured. They were only able to show that �niteness of this parameterwas necessary for probabilistic concept learning, leaving the converse open. We solve this problemshowing that this condition is also su�cient for learning in the harder agnostic model.This last result has been recently complemented by Bartlett, Long, and Williamson [4], whohave shown that the P-dimension characterizes agnostic learnability with respect to the meanabsolute error. In [20], Simon has independently proven a partial characterization of (nonagnostic)learnability using a slightly di�erent notion of dimension.As in the pioneering work of Vapnik and Chervonenkis [24], our analysis of learnability beginsby establishing appropriate uniform laws of large numbers. In our main theorem, we establish the�rst combinatorial characterization of those classes of random variables whose means uniformlyconverge to their expectations for all distributions. Such classes of random variables have beencalled Glivenko-Cantelli classes in the empirical processes literature [9]. Given the usefulness ofrelated uniform convergence results in combinatorics and randomized algorithms, we feel that thisresult may have many applications beyond those we give here. In addition, our results rely ona combinatorial result that generalizes Sauer's Lemma [18, 19]. This new lemma considerablyextends some previously known results concerning f0; 1; �g tournament codes [21, 7]. As otherrelated variants of Sauer's Lemma were proven useful in di�erent areas, such as geometry andBanach space theory (see, e.g., [15, 1]), we also have hope to apply this result further.2 Uniform Glivenko-Cantelli classesThe uniform, distribution-free convergence of empirical means to true expectations for classes ofreal-valued functions has been studied by Dudley, Gin�e, Pollard, Talagrand, Vapnik, Zinn, andothers in the area of empirical processes. These results go under the general name of uniform lawsof large numbers. We give a new combinatorial characterization of this phenomenon using methodsrelated to those pioneered by Vapnik and Chervonenkis.Let F be a class of functions from a set X into [0; 1]. (All the results presented in this sectioncan be generalized to classes of functions taking values in any bounded real range.) Let P denotea probability distribution over X such that f is P -measurable for all f 2 F . By P (f) we denotethe P -mean of f , i.e., its integral w.r.t. P . By P n(f) we denote the random variable 1n�ni=1f(xi),where x1; x2; : : : ; xn are drawn independently at random according to P .Following Dudley, Gin�e and Zinn [9], we say that F is an �-uniform Glivenko-Cantelli class iflimn!1 supP Pr(supm�n supf2F jPm(f)� P (f)j > �) = 0: (1)Here Pr denotes the probability with respect to the points x1; x2; : : : ; drawn independently atrandom according to P .4 The supremum is understood with respect to all distributions P over X4Actually Dudley et al. use outer measure here, to avoid some measurability problems in certain cases.3



(with respect to some suitable �-algebra of subsets of X ; see [9]).We say that F satis�es a distribution-free uniform strong law of large numbers, or more briey,that F is a uniform Glivenko-Cantelli class, if F is an �-uniform Glivenko-Cantelli class for all� > 0.We now recall the notion of VC-dimension, which characterizes uniform Glivenko-Cantelli classesof f0; 1g-valued functions.Let F be a class of f0; 1g-valued functions on some domain set, X . We say F VC-shatters a setA � X if, for every E � A, there exists some fE 2 F satisfying: For every x 2 A nE, fE(x) = 0,and, for every x 2 E, fE(x) = 1. Let the VC-dimension of F , denoted V C-dim(F), be the maximalcardinality of a set A � X that is VC-shattered by F . (If F V C-shatters sets of unbounded �nitesizes, then let VC-dim(F) =1).The following was established by Vapnik and Chervonenkis [24] for the \if" part and (in astronger version) by Assouad and Dudley [2] (see [9, proposition 11, page 504].)Theorem 2.1 Let F be a class of functions from X into f0; 1g. Then F is a uniform Glivenko-Cantelli class if and only if VC-dim(F) is �nite.Several generalizations of the V C-dimension to classes of real-valued functions have been previouslyproposed: Let F be a class of [0; 1]-valued functions on some domain set X .� (Pollard [16], see also [12]): We say F P -shatters a set A � X if there exists a functions : A ! R such that, for every E � A, there exists some fE 2 F satisfying: For everyx 2 A nE, fE(x) < s(x) and, for every x 2 E, fE(x) � s(x).Let the P -dimension (denoted by P -dim) be the maximal cardinality of a set A � X that isP -shattered by F . (If F P -shatters sets of unbounded �nite sizes, then let P -dim(F) =1.)� (Vapnik [23]): We say F V -shatters a set A � X if there exists a constant � 2 R such that,for every E � A, there exists some fE 2 F satisfying: For every x 2 A nE, fE(x) < � and,for every x 2 E, fE(x) � �.Let the V -dimension (denoted by V -dim) be the maximal cardinality of a set A � X that isV -shattered by F . (If F V -shatters sets of unbounded �nite sizes, then let V -dim(F) =1.)It is easily veri�ed (see below) that the �niteness of neither of these combinatorial quantitiesprovides a characterization of uniform Glivenko-Cantelli classes (more precisely, they both provideonly a su�cient condition.)Kearns and Schapire [14] introduced the following parametrized variant of the P -dimension. LetF be a class of [0; 1]-valued functions on some domain set X and let  be a positive real number.We say F P-shatters a set A � X if there exists a function s : A ! [0; 1] such that for everyE � A there exists some fE 2 F satisfying: For every x 2 A nE, fE(x) � s(x)�  and, for everyx 2 E, fE(x) � s(x) + .Let the P-dimension of F , denoted P -dim(F), be the maximal cardinality of a set A � X thatis P-shattered by F . (If F P-shatters sets of unbounded �nite sizes, then let P -dim(F) =1).A parametrized version of the V -dimension, which we'll call V-dimension, can be de�ned inthe same way we de�ned the P-dimension from the P -dimension. The �rst lemma below followsdirectly from the de�nitions. The second lemma is proven through the pigeonhole principle.Lemma 2.1 For any F and any  > 0, P -dim(F) � P -dim(F) and V-dim(F) � V -dim(F).4



Lemma 2.2 For any class F of [0; 1]-valued functions and for all  > 0,V-dim(F) � P-dim(F) � �2 � 12�� 1�V 2 -dim(F):The P and the V dimensions have the advantage of being sensitive to the scale at which di�erencesin function values are considered signi�cant.Our main result of this section is the following new characterization of uniform Glivenko-Cantelliclasses, which exploits the scale-sensitive quality of the P and the V dimensions.Theorem 2.2 Let F be a class of functions from X into [0; 1].1. There exist constants a; b > 0 (independent of F) such that for any  > 0(a) If P -dim(F) is �nite, then F is an (a)-uniform Glivenko-Cantelli class.(b) If V-dim(F) is �nite, then F is a (b)-uniform Glivenko-Cantelli class.(c) If P-dim(F) is in�nite, then F is not a (��)-uniform Glivenko-Cantelli class for any� > 0.(d) If V-dim(F) is in�nite, then F is not a (2 � �)-uniform Glivenko-Cantelli class forany � > 0.2. The following are equivalent:(a) F is a uniform Glivenko-Cantelli class.(b) P-dim(F) is �nite for all  > 0.(c) V-dim(F) is �nite for all  > 0.(In the proof we actually show that a � 24 and b � 48, however these values are likely to beimproved through a more careful analysis.)The proof of this theorem is deferred to the next section. Note however that part 1 triviallyimplies part 2.The following simple example (a special case of [9, Example 4, page 508], adapted to our pur-poses) shows that the �niteness of neither P -dim nor V -dim yields a characterization of Glivenko-Cantelli classes. (Throughout the paper we use ln to denote the natural logarithm and log to denotethe logarithm in base 2.)Example 2.1 Let F be the class of all [0; 1]-valued functions f de�ned on the positive integersand such that f(x) � e�x for all x 2 N and all f 2 F . Observe that, for all  > 0, P -dim(F) =V-dim(F) = jln 12 k. Therefore, F is a uniform Glivenko-Cantelli class by Theorem 2.2. On theother hand, it is not hard to show that the P -dimension and the V -dimension of F are both in�nite.Theorem 2.2 provides the �rst characterization of Glivenko-Cantelli classes in terms of a simplecombinatorial quantity generalizing the Vapnik-Chervonenkis dimension to real-valued functions.Our results extend previous work by Dudley, Gin�e, and Zinn, where an equivalent characterizationis shown to depend on the asymptotic properties of the metric entropy. Before stating the metric-entropy characterization of Glivenko-Cantelli classes we recall some basic notions from the theoryof metric spaces.Let (X; d) be a (pseudo) metric space, let A be a subset of X and � > 0.5



� A set B � A is an �-cover for A if, for every a 2 A, there exists some b 2 B such thatd(a; b)< �. The �-covering number of A, Nd(�; A), is the minimal cardinality of an �-cover forA (if there is no such �nite cover then it is de�ned to be 1).� A set A � X is �-separated if, for any distinct a; b 2 A, d(a; b) � �. The �-packing number ofA, Md(�; A), is the maximal size of an �-separated subset of A.The following is a simple, well-known fact.Lemma 2.3 For every (pseudo) metric space (X; d), every A � X, and � > 0Md(2�; A) � Nd(�; A) �Md(�; A):For a sequence of n points xn = (x1; x2; : : : ; xn) and a class F of real-valued functions de�ned onX , let l1xn(f; g) denote the l1 distance between f; g 2 F on the points xn, that isl1xn(f; g) def= max1�i�n jf(xi)� g(xi)j:As we will often use the l1xn distance, let us introduce the notation N (�;F ;xn) and M(�;F ;xn)to stand for, respectively, the �-covering and the �-packing number of F with respect to l1xn .A notion of metric entropy Hn, de�ned byHn(�;F) def= supxn2Xn log N (�;F ;xn);has been used by Dudley, Gin�e and Zinn to prove the following.Theorem 2.3 ([9, Theorem 6, page 500]) Let F be a class of functions from X into [0; 1].Then1. F is a uniform Glivenko-Cantelli class if and only if limn!1Hn(�;F)=n = 0 for all � > 0.2. For all � > 0, if limn!1Hn(�;F)=n= 0 then F is an (8�)-uniform Glivenko-Cantelli class.The results by Dudley et al. also give similar characterizations using lp norms in place of the l1norm.Related results were proved earlier by Vapnik and Chervonenkis [24, 25]. In particular, theyproved an analogue of Theorem 2.3, where the convergence of means to expectations is characterizedfor a single distribution P . Their characterization is based on Hn(�;F) averaged with respect tosamples drawn from P .3 Proof of the main theoremWe wish to obtain a characterization of uniform Glivenko-Cantelli classes in terms of their P -dimension. By using standard techniques, we just need to bound the -packing numbers of sets ofreal-valued functions by an appropriate function of their Pc-dimension, for some positive constantc. Our line of attack is to reduce the problem to an analogous problem in the realm of �nite-valued functions. Classes of functions into a discrete and �nite range can then be analyzed usingcombinatorial tools.We shall �rst introduce the discrete counterparts of the de�nitions above. Our next step willbe to show how the real-valued problem can be reduced to a combinatorial problem. The �nal, and6



most technical part of our proof, will be the analysis of the combinatorial problem through a newgeneralization of Sauer's Lemma.Let X be any set and let B = f1; : : : ; bg. We consider classes F of functions f from X to B.Two such functions f and g are separated if they are 2-separated in the l1 metric, i.e., if thereexists some x 2 X such that jf(x) � g(x)j � 2. The class F is pairwise separated if f and g areseparated for all f 6= g in F .F strongly shatters a set A � X if A is nonempty and there exists a function s : A ! B suchthat, for every E � A, there exists some fE 2 F satisfying: For every x 2 A nE, fE(x) � s(x)� 1and, for every x 2 E, fE(x) � s(x)+1. If s is any function witnessing the shattering of A by F , weshall also say that F strongly shatters A according to s. Let the strong dimension of F , S-dim(F),be the maximal cardinality of a set A � X that is strongly shattered by F . (If F strongly shatterssets of unbounded �nite size, then let S-dim(F) =1).For a function f : X ! R, f � 0, and a real number � > 0, the �-discretization of f , denotedby f�, is the function f�(x) def= b f(x)� c, i.e. f�(x) = maxfi 2 N : i� � f(x)g. For a class F ofnonnegative real-valued functions let F� def= ff� : f 2 Fg.We need the following lemma.Lemma 3.1 For any class F of [0; 1]-valued functions on a set X and for any � > 0,1. for every  � �=2, S-dim(F�) � P-dim(F);2. for every � � 2� and every xn 2 Xn, M(�;F ;xn) �M(2;F�;xn).Proof. To prove part 1 we show that any set strongly shattered by F� is also P�=2-shattered byF . If A � X is strongly shattered by F�, then there exists a function s such that for every E � Athere exists some f(E) 2 F satisfying: for every x 2 A nE, f�(E)(x) + 1 � s(x) and for every x 2 E,f�(E)(x) � s(x) + 1.Assume �rst f�(E)(x) + 1 � s(x). Then � � f�(E)(x) + � � � � s(x) holds and, by de�nition of f�(E),we have f(E)(x) < � � f�(E)(x) + �, which implies f(E)(x) < � � s(x). Now assume f�(E)(x) � s(x) + 1.Then � � f�(E)(x) � � � s(x) + � and, by de�nition of f�(E), we have f(E)(x) � �f�(E)(x), which impliesf(E)(x) � ��s(x)+�. Thus A is P�=2-shattered by F , as can be seen using the function s0 : A! [0; 1]de�ned by s0(x) def= � � s(x) + �=2 for all x 2 X .To prove part 2 of the lemma it is enough to observe that, by the de�nition of F�, for allf; g 2 F and all x 2 X , jf(x)� g(x)j � 2� implies jf�(x)� g�(x)j � 2. 2We now prove our main combinatorial result which gives a new generalization of Sauer's Lemma.Our result extends some previous work concerning f0; 1; �g tournament codes, proven in a com-pletely di�erent way (see [21, 7]).The lemma concerns the l1 packing numbers of classes of functions into a �nite range. Itshows that, if such a class has a �nite strong dimension, then its 2-packing number is boundedby a subexponential function of the cardinality of its domain. For simplicity, we arbitrarily �x asequence xn of n points in X and consider only the restriction of F to this domain, dropping thesubscript xn from our notation.Lemma 3.2 If F is a class of functions from a �nite domain X of cardinality n to a �nite range,B = f1; 2; : : : ; bg, and S-dim(F) = d, then Ml1(2;F)< 2(nb2)dlog ye, where y =Pdi=1 �ni�bi.Note that for �xed d the bound in Lemma 3.2 is nO(logn) even if b is not a constant but a polynomialin n. 7



Proof of Lemma 3.2. Fix b � 3 (the case b < 3 is trivial.) Let us say that a class F asabove strongly shatters a pair (A; s) (for a nonempty subset A of X and a function s : A ! B)if F strongly shatters A according to s. For all integers h � 2 and n � 1, let t(h; n) denote themaximum number t such that for every set F of h pairwise separated functions f from X to B, Fstrongly shatters at least t pairs (A; s) where A � X , A 6= ;, and s : A ! B. If no such F exists,then t(h; n) is in�nite.Note that the number of possible pairs (A; s) for which the cardinality of A does not exceedd � 1 is less than y =Pdi=1 �ni�bi (as for A of size i > 0 there are strictly less than bi possibilities tochoose s.) It follows that, if t(h; n) � y for some h, then Ml1(2;F)< h for all sets F of functionsfrom X to B and such that S-dim(F) � d. Therefore, to �nish the proof, it su�ces to show thatt(2(nb2)dlogye; n) � y for all d � 1 and n � 1.We claim that t(2; n) = 1 for all n � 1, and t(2mnb2; n) � 2t(2m;n � 1) for all m � 1 andn � 2. The �rst part of the claim is readily veri�ed. For the second part, �rst note that if noset of 2mnb2 pairwise separated functions from X to B exists, then t(2mnb2; n) = 1 and hencethe claim holds. Assume then that there is a set F of 2mnb2 pairwise separated functions fromX to B. Split it arbitrarily into mnb2 pairs. For each pair (f; g) �nd a coordinate x 2 X wherejf(x) � g(x)j > 1. By the pigeonhole principle, the same coordinate x is picked for at least mb2pairs. Again by the pigeonhole principle, there are at least mb2=�b2� > 2m of these pairs (f; g) forwhich the (unordered) set ff(x); g(x)g is the same. This means that there are two sub-classes ofF , call them F 1 and F 2, and there are x 2 X and i; j 2 B, with j > i + 1, so that for eachf 2 F 1, f(x) = i and for each g 2 F 2 g(x) = j, and jF 1j = jF 2j = 2m. Obviously, the members ofF 1 are pairwise separated on X n fxg and the same holds for the members of F 2. Hence, by thede�nition of the function t, F 1 strongly shatters at least t(2m;n�1) pairs (A; s) with A � X nfxg,and the same holds for F 2. Clearly F strongly shatters all pairs strongly shattered by F 1 or F 2.Moreover, if the same pair (A; s) is strongly shattered both by F 1 and by F 2, then F also stronglyshatters the pair (A [ fxg; s0), where s0(y) = s(y) for y 2 A and s0(x) = b i+j2 c. It follows thatt(2mnb2; n) � 2t(2m;n� 1), establishing the claim.Now suppose n > r � 1. Let h = 2(nb2)((n� 1)b2) � � �((n� r + 1)b2). By repeated applicationof the above claim, it follows that t(h; n) � 2r. Since t is clearly monotone in its �rst argument,and 2(nb2)r � h, this implies t(2(nb2)r; n) � 2r for all n > r � 1. Now set r = dlog2 ye, wherey = Pdi=1 �ni�bi. If n � r, then 2(nb2)r > bn. However, since the total number of functions fromX to B is bn, there are no sets of pairwise separated functions of size larger than this, and hencet(2(nb2)r; n) = t(2(nb2)dlog2 ye; n) =1 > y in this case. On the other hand, when n > r, the resultabove yields t(2(nb2)dlog2 ye; n) � 2dlog2 ye � y. Thus in either case t(2(nb2)dlog2 ye; n) � y, completingthe proof. 2Before proving Theorem 2.2, we need two more lemmas. The �rst one is a straightforward adapta-tion of [22, Section A.6, p. 223].Lemma 3.3 Let F be a class of functions from X into [0; 1] and let P be a distribution over X.Then, for all � > 0 and all n � 2=�2,Pr(supf2F jP n(f)� P (f)j > �) � 12n �E [N (�=6;F ;x02n)] e��2n=36 (2)where Pr denotes the probability w.r.t. the sample x1; : : : ; xn drawn independently at random accord-ing to P , and E the expectation w.r.t. a second sample x02n = x01; : : : ; x02n also drawn independentlyat random according to P . 8



Proof. A well-known result (see e.g. [8, Lemma 11.1.5] or [10, Lemma 2.5]) shows that, for alln � 2=�2, Pr(supf2F jP n(f)� P (f)j > �) � 2Pr(supf2F jP n0(f)� P n00(f)j > �2) ;where P n0(f) = 1n�ni=1f(x0i), P n00(f) = 1n�2ni=n+1f(x0i).We combine this with a result by Vapnik [22, pp. 225-228] showing that for all � > 0Pr(supf2F jPn0(f)� P n00(f)j > �) � 6n �E [N (�=3;F ;x02n)] e��2n=9:This concludes the proof. 2The next result applies Lemma 3.2 to bound the expected covering number of a class F in termsof P-dim(F).Lemma 3.4 Let F be a class of functions from X into [0; 1] and P a distribution over X. Choose0 < � < 1 and let d = P�=4-dim(F). ThenE [N (�;F ;xn)] � 2�4n�2 �d log(2en=(d�))where the expectationE is taken w.r.t. a sample x1; : : : ; xn drawn independently at random accordingto P .Proof. By Lemma 2.3, Lemmas 3.1 and 3.2, and Stirling's approximation,E [N (�;F ;xn)] � supxn N (�;F ;xn) (3)� supxn M(�;F ;xn)� supxn M(2;F �=2;xn)� 2�4n�2 �d log(2en=(d�)) 2We are now ready to prove our characterization of uniform Glivenko-Cantelli classes.Proof of Theorem 2.2. We begin with part 1.d: If V-dim(F) =1 for some  > 0, then we willshow that F is not a (2 � �)-uniform Glivenko-Cantelli class for any � > 0. To see this, assumeV-dim(F) = 1. For any sample size n and any d > n, �nd in X a set S of d points that areV-shattered by F . Then there exists � > 0 such that for every E � S there exists some fE 2 Fsatisfying: For every x 2 A n E, fE(x) � � �  and, for every x 2 E, fE(x) � � + . Let P bethe uniform distribution on S. For any sample xn = (x1; : : : ; xn) from S there is a function f 2 Fsuch that f(xi) � � � , 1 � i � n, and f(x) � � +  for all x 2 S n fx1; : : : ; xng. Thus, for any� > 0, if d = jSj is large enough we can �nd some f 2 F such that jP (f)�P n(f)j � 2 � � . Thisproves part 1.d. Part 1.c follows from Lemma 2.2.To prove part 1.a we use inequality (2) from Lemma 3.3. Then, to bound the expected coveringnumber we apply Lemma 3.4. This shows thatlimn!1 supP Pr(supf2F jP n(f)� P (f)j > a) = 0 (4)9



for some a > 0 whenever P-dim(F) is �nite.Equation (4) shows that P n(f) ! P (f) in probability for all f 2 F and all distributions P .Furthermore, as Lemma 3.3 and Lemma 3.4 imply thatP1n=1 Prfsupf2F jPn(f)�P (f)j > ag <1,one may apply the Borel-Cantelli lemma and strengthen (4) to almost sure convergence, i.e.limn!1 supP Pr(supm�n supf2F jPm(f)� P (f)j > a) = 0:This completes the proof of part 1.a. The proof of part 1.b follows immediately from Lemma 2.2.2The proof of Theorem 2.2, in addition to being simpler than the proof in [9] (see Theorem 2.3in this paper), also provides new insights into the behaviour of the metric entropy used in thatcharacterization. It shows that there is a large gap in the growth rate of the metric entropyHn(�;F):either F is a uniform Glivenko-Cantelli class, and hence, by (3) and by de�nition of Hn, for all� > 0, Hn(�;F) = O(log2 n); or F is not a uniform Glivenko-Cantelli class, and hence there exists� > 0 such that P�-dim(F) =1, which is easily seen to imply that Hn(�;F) = 
(n). It is unknownif log2 n can be replaced by log� n where 1 � � < 2.From the proof of Theorem 2.2 we can obtain bounds on the sample size su�cient to guaranteethat, with high probability, in a class of [0; 1]-valued random variables each mean is close to itsexpectation.Theorem 3.1 Let F be a class of functions from X into [0; 1]. Then for all distributions P overX and all �; � > 0 Pr(supf2F jP n(f)� P (f)j > �) � � (5)for n = O� 1�2 �d ln2 d� + ln 1���where d is the P�=24-dimension of F .Theorem 3.1 is proven by applying Lemma 3.3 and Lemma 3.4 along with standard approximations.We omit the proof of this theorem and mention instead that an improved sample size bound hasbeen shown by Bartlett and Long [3, Equation (5), Theorem 9]. In particular, they show that ifthe P(1=4��)�-dimension d0 of F is �nite for some � > 0, then a sample size of orderO� 1�2 �d0 ln2 1� + ln 1��� (6)is su�cient for (5) to hold.4 Applications to LearningIn this section we de�ne the notion of learnability up to accuracy �, or �-learnability, of statisticalregression functions. In this model, originally introduced in [12] and also known as \agnosticlearning", the learning task is to approximate the regression function of an unknown distribution.The probabilistic concept learning of Kearns and Schapire [14] and the real-valued function learningwith noise investigated by Bartlett, Long, and Williamson [4] are special cases of this framework.10



We show that a class of functions is �-learnable whenever its Pa�-dimension is �nite for someconstant a > 0. Moreover, combining this result with those of Kearns and Schapire, who showthat a similar condition is necessary for the weaker probabilistic concept learning, we can concludethat the �niteness of the P-dimension for all  > 0 characterizes learnability in the probabilisticconcept framework. This solves an open problem from [14].Let us begin by briey introducing our learning model. The model examines learning problemsinvolving statistical regression on [0; 1]-valued data. Assume X is an arbitrary set (as above), andY = [0; 1]. Let Z = X � Y , and let P be an unknown distribution on Z. Let X and Y be randomvariables respectively distributed according to the marginal of P on X and Y . The regressionfunction f for distribution P is de�ned, for all x 2 X , byf(x) = P (Y jX = x):The general goal of regression is to approximate f in the mean square sense (i.e. in L2-norm) whenthe distribution P is unknown, but we are given zn = (z1; z2; : : : ; zn), where each zi = (xi; yi) isindependently generated from the distribution P .In general we cannot hope to approximate the regression function f for an arbitrary distributionP . Therefore we choose a hypothesis space H, which is a family of mappings h : X ! [0; 1], andsettle for a function in H that is close to the best approximation to f in the hypothesis spaceH. To this end, for each hypothesis h 2 H, let the function `h : Z ! [0; 1] be de�ned by:`h(x; y) = (h(x)� y)2, for all x 2 X and y 2 [0; 1]. Thus P (`h) is the mean square loss of h. Thegoal of learning in the present context is to �nd a function bh 2 H such thatP (`bh) � infh2HP (`h) + �for some given accuracy � > 0. It is easily veri�ed that if infh2H P (`h) is achieved by some h 2 H,then h is the function in H closest to the true regression function f in the L2 norm.A learning procedure is a mapping A from �nite sequences in Z to H. A learning procedureproduces a hypothesis bh = A(zn) for any training sample zn. For given accuracy parameter �, wesay that H is �-learnable if there exists a learning procedure A such thatlimn!1 supP Pr�P (`A(zn)) > infH P (`h) + �� = 0: (7)Here Pr denotes the probability with respect to the random sample zn 2 Zn, each zi drawnindependently according to P , and the supremum is over all distributions P de�ned on a suitable�-algebra of subsets of Z. Thus H is �-learnable if, given a large enough training sample, we canreliably �nd a hypothesis bh 2 H with mean square error close to that of the best hypothesis in H.Finally, we say H is learnable if and only if it is �-learnable for all � > 0.If Z = X � f0; 1g the above de�nitions of learnability yield the probabilistic concept learningmodel. In this case, if (7) holds for some � > 0 and some class H, we say that H is �-learnable inthe p-concept model.We now state and prove the main results of this section. We start by establishing su�cientconditions for �-learnability and learnability in terms of the P-dimension.Theorem 4.1 There exist constants a; b > 0 such that for any  > 0:1. If P -dim(H) is �nite, then H is (a)-learnable.2. If V-dim(H) is �nite, then H is (b)-learnable.11



3. If P -dim(H) is �nite for all  > 0 or V-dim(H) is �nite for all  > 0, then H is learnable.We then prove the following, which characterizes p-concept learnability.Theorem 4.21. If P -dim(H) is in�nite, then H is not (2=8 � �)-learnable in the p-concept model for any� > 0.2. If V-dim(H) is in�nite, then H is not (2=2 � �)-learnable in the p-concept model for any� > 0.3. The following are equivalent:(a) H is learnable in the p-concept model.(b) P-dim(H) is �nite for all  > 0.(c) V-dim(H) is �nite for all  > 0.(d) H is a uniform Glivenko-Cantelli class.Proof of Theorem 4.1. It is clear that part 3 follows from part 1 using Theorem 2.2. Also,by Lemma 2.2, part 1 is equivalent to part 2. Thus, to prove Theorem 4.1 it su�ces to establishpart 1. We do so via the next two lemmas.Let `H = f`h : h 2 Hg.Lemma 4.1 If `H is an �-uniform Glivenko-Cantelli class, then H is (3�)-learnable.Proof. The proof uses the method of empirical risk minimization, analyzed by Vapnik [22]. Asabove, let P n(`h) denote the empirical loss on the given sample zn = (z1; z2; : : : ; zn), that isP n(`h) = 1n nXi=1 `h(zi) = 1n nXi=1(h(xi)� yi)2:A learning procedure, A�� , �-minimizes the empirical risk if A��(zn) is any bh 2 H such that P n(`bh) �infh2H P n(`h) + �. Let us show that any such procedure is guaranteed to 3�-learn H.Fix any n 2 N. If jP n(`h)� P (`h)j � �for all h 2 H, then P (`A�� (zn)) � P n(`A�� (zn)) + �� P n(`h) + 2� 8h 2 H� P (`h) + 3� 8h 2 H;and thus P (`A��(zn)) � infh2H P (`h) + 3�. Hence, since we chose n and � arbitrarily,limn!1 supP Pr(supm�n suph2H jPm(`h)� P (`h)j > �) = 0implies limn!1 supP Pr�P (`A�� (zn)) > infh2HP (`h) + 3�� = 0:12



2The following lemma shows that bounds on the covering numbers of a family of functions H can beapplied to the induced family of loss functions `H. We formulate the lemma in terms of the squareloss but it may be readily generalized to other loss functions. A similar result was independentlyproven by Bartlett, Long, and Williamson in [4] for the absolute loss L(x; y) = jx � yj (and withrespect to the l1 metric rather than the l1 metric used here).Lemma 4.2 For all � > 0, all H, and any zn = (z1; : : : ; zn), where zi = (xi; yi), i = 1; : : : ; n,N (�; `H; zn) � N (�=2;H;xn)where xn = (x1; : : : ; xn).Proof. It su�ces to show that, for any f; g 2 H and any 1 � i � n, if jf(xi) � g(xi)j � �=2then j(f(xi) � yi)2 � (g(xi) � yi)2j � �. This follows by noting that, for every s; t; w 2 [0; 1],j(s� w)2 � (t� w)2j � 2js� tj. 2We end the proof of Theorem 4.1 by proving part 1. By Lemma 4.1, it su�ces to show that `His (a)-uniform Glivenko-Cantelli for some a > 0. To do so we use (2) from Lemma 3.3. Then,to bound the expected covering number, we apply �rst Lemma 4.2 and then Lemma 3.4. Thisestablishes limn!1 supP Pr�suph2H jPn(`h)� P (`h)j > a� = 0for some a > 0 whenever P -dim(H) is �nite. An application of the Borel-Cantelli lemma to getalmost sure convergence yields the proof. 2We conclude this section by proving our characterization of p-concept learnability.Proof of Theorem 4.2. As �-learnability implies �-learnability in the p-concept model, we havethat part 3 follows from part 1, part 2, and from Theorem 4.1 using Theorem 2.2.The proof of part 2 uses arguments similar to those used to prove part 1.d of Theorem 2.2.Finally note that part 1 follows from part 2 by Lemma 2.2 (we remark that a more restrictedversion of part 1 was proven in Theorem 11 of [14].) 25 Conclusions and open problemsIn this work we have shown a characterization of uniform Glivenko-Cantelli classes based on acombinatorial notion generalizing the Vapnik-Chervonenkis dimension. This result has been appliedto show that the same notion of dimension provides the weakest combinatorial condition known toimply agnostic learnability and, furthermore, characterizes learnability in the model of probabilisticconcepts under the square loss. Our analysis demonstrates how the accuracy parameter in learningplays a central role in determining the e�ective dimension of the learner's hypothesis class.An open problem is what other notions of dimension may characterize uniform Glivenko-Cantelliclasses. In fact, for classes of functions with �nite range, the same characterization is achieved byeach member of a family of several notions of dimension (see [5]).A second open problem is the asymptotic behaviour of the metric entropy: we have alreadyshown that for all � > 0, Hn(�;F) = O(log2 n) if F is a uniform Glivenko-Cantelli class andHn(�;F) = 
(n) otherwise. We conjecture that for all � > 0, Hn(�;F) = O(logn) whenever Fis a uniform Glivenko-Cantelli class. A positive solution of this conjecture would also a�ect the13



sample complexity bound (6) of Bartlett and Long. In fact, suppose that Lemma 3.4 is improved byshowing that supxn M(�;F ;xn) � (n=�2)cd for some positive constant c and for d = P�=4-dim(F)(note that this implies our conjecture.) Then, combining this with [3, Lemma 10{11], we can easilyshow a sample complexity bound of O� 1�2 �d ln 1� + ln 1��� ;for any 0 < � < 1=8 for which d = P(1=8��)�-dim(F) is �nite. It is not clear how to bring theconstant 1=8 down to 1=4 as in (6), which was proven using l1 packing numbers.AcknowledgmentsWe would like to thank Michael Kearns, Yoav Freund, Ron Aharoni and Ron Holzman for fruitfuldiscussions, and Alon Itai for useful comments concerning the presentation of the results.Thanks also to an anonymous referee for the many valuable comments, suggestions, and refer-ences.
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