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Introduction
An (explicit) Runge-Kutta process is a means of numerically solving
the differential equation
¥ == 9), y(zo) = o,
at the point & = z,4-4, where y, f may be vectors.
The equations defining a » stage Runge-Kutta process are
&1 = (%o, Yo},
8 = [(@ot+csh, Yot-has &),
8s = (o+csh, Yot h(ag, g1+ 39 £5)),

& = f(x0+cv h, y0+h(av1g1+av2g2+ e +av,v—1gv——l)):
Y = Yoth(G1&+beget - +0,8,)

where
Cy = Gy,
ity €3 = a3+,
C,, = av1+av2+ et av,v—l:
and ay, ay, a3, *, 4, ,.1, by, by, - -+ b, are a set of parameters which

characterize the process. For convenience, we will introduce additional
symbols ay;, ay,, . . ., 4,,, ¢, all equal to zero, so that the notation of [1]
may be used. In [1] it was shown that the condition that a Runge-Kutta
process be accurate to terms of order p is

@) ®=1jy, r <p,

where the @ are certain polynomial expressions in the numbers ay;,

@19, by, by, -+, b, and 7, y are certain integers depending on the form

of the particular @ to which they correspond. 7 is called the order of @.
For example, if

14
D= [ ,1¢la= > bilailiga‘i‘ia By i, G,

iy, fgt e fpg=1
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180 J. C. Butcher 2]
then y = ! and if
S =[¢=3 b
=1

then y =7,

As we are assuming a4, = 0 if 7 < 4, the only terms contributing to
[r_1¢],_, are those in which ¢, > ¢, > - -+ > 4,_, > 1 so that this expression
vanishes identically unless # < ». Hence we have the well known result that
a Runge-Kutta process of order p has at least p stages. Forp =1, 2, 3, 4
it is a simple matter to find processes of order p with exactly p stages.
For p = 5 there exists a process originally due to Kutta [2] but corrected
by Nystrom [3] with 6 stages; while for p = 6 there are processes due to
Huta [4, 5] (see also [6]) with 8 stages. If N(p) is the minimum number
of stages necessary for a process of order p then we can write

Np)=p p=4
5<N(5) <86,
8 <N(6) <S8.

The limits for N (5) and N (6) will each be improved in this paper. We shall
show firstly that N (5) > 5 (implying N(5) = 6) and secondly that N(6) < 7.
This second result is shown by actually constructing suitable processes.

Although the possibility that N(6) = 6 is still open it happens that
many details of the proof that N(5) > 5 readily generalize and might take
a future investigator some way towards deciding this question.

The non-existence of a 5 stage, 5th order process

In this section we shall suppose that a 5 stage, 5th order Runge-Kutta
process exists and show that this leads to a contradiction. Unfortunately,
a great number of different cases arise and it appears to be necessary
to consider these separately, even though the treatments of the different
cases have many similarities. However, it is possible to avoid the repetition
of many trivial details in treating some cases, by referring back to cases
already treated for which the argument is similar.

To clarify the procedure of classification and to make cross-referencing
easier, a decimal system of numbering the different cases will be used. For
example, case 1 is broken into cases 1.1 and 1.2 and the first of these is
broken into cases 1.11 and 1.12, and so on.

We now list the explicit form of the 17 equations of the form (2)
when » = p = 5. The range of each summed subscript is from 1 to 5.



(8]
@) ¢=3Zb=1,
(6) W= bci=3
() [#*1= ; bict =%,
) =3 byt = &,

(1) ¢ = ;bict =%,

13) [[¢1*] = Zbe(EauC,)’ =

(15) [[$l$] = Etb CeByg@pnty =2,

(17) LWL = 3 bitucsancs = s,

(19) [dls Ei g 'b‘“uauaucz = %-

»

1
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(4) Bl=Z =1,
©) =3 biaue, = 3,
® [#1]= 3 binei =1,
(1) Ggla= 3 bisyanes = .
02) (1= 3 belages = 4,
09 [971 = 3 oo = s,

(16) [f*la= Z b 846} ﬁ,
(18) [36%]s —”zkbi“ﬁafkcb = m,

We note that (19) can be written in the form

. |
bs@54243332¢3 = 137,

so that none of the factors on the left can vanish.

It may happen that some of b,, d,, - -

of ¢, ¢, -

., by may vanish or that some

++, ¢; may be equal to the same number. In such cases let us

suppose that (3), (4), (5), (7), (11) can be written together in the form

R
25 =’

& are all different and &,, b,, - - -, &; do not vanish. We

where ¢, &5, -,
will now show that

# > 2, and
if =38, 8 =0,

(a)

(b)

1
k=1,23,4,5,

then ¢&,, &, are the pair of numbers (6—V 6)/10, (6+\/€_i)/10. To prove (a)
we suppose that # = 2 so that we have

0= iat(éi_él)z(éi"‘éz)z

= [N e—e)2(—2,)2dt > 0,

a contradiction.

To prove (b) we find in the same sort of way that
[ote—c)t—g)at = o,
[oee—g)—e)dt=o,
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a pair of linear equations in (¢,-+¢;) and £,¢;. The solution turns out to be
Syt 3 = 6/5, £38; = 3/10 and the result follows.

The statements (a), (b) will be referred to by these letters in a number
of places in the following.

It is convenient to define

1

(20) b= ; a,c;—%cl,
(21) s = X 8yyCi—50%
i
(22) 7, = ; bia,—b,(1—c¢,),
(23) §; = ; bic;a,—3b,(1—c}),
so that p,, ¢; both vanish while p, = —}¢; and g, = —4c3 do not vanish.
The following equations are now easily verified making use of (3)— (19),
(24) z bp, =0, (25) z biep; =0, (26) z bSips =0,
(27) 35,0 =0, (28) X b9, =0, (29) ;b‘ciqi =0,
(30) X7, =0, (31) gr,c‘ =0, (32) 276t =0,
(33) X7,c2=0, (34) Srp, =0, (35) ‘Zr‘c‘p, =0,
(36) X 7:4,p;, =0, (87) 25, =0, (38) 3 56, =0,
(39) ,E]s,cf =0, (40) ésip,. = 0. ‘

For example, to verify (36) we have

2 7Py = 121:: l(biaﬁ_bi(l_ci))adk(aklcl_%ci)
%2 1,13,

= [445,}4—‘%[3?52]3— lstlat3[o8%]a+ [Pl la] — [ S(4%1]
— 1 1,1 1 1.1 1 1.1
=130z 0 2Tz 1etso 2 15 = 0

We now distinguish two cases according as no two of ¢,, ¢3, ¢4, ¢; are
equal; or otherwise,

Case 1: No two of ¢,, ¢5, ¢4, ¢5 are equal. This case will be broken into
two subcases:

Case 1.1: Not all of byp,, byps, Dap,, bsps vanish. Regarding (24) —(27)
as a set of linear equations in these variables we see that the following
determinantal equation holds
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1 1 1 1

Cs Cs 71 Cs
g 4 4 G
P2 b3 Py Ps

Since ¢,, ¢y, ¢4, ¢y are all different it follows that
(41) by = t&ituc,+v, 1=2,8,4,5,

where ¢, #, v are certain constants.
Substituting (41) into (25), (26) and making use of (4), (5), (7), (11)
we see that

4 % v
dt3tz="
4 % v
st Ts=0

so that v does not vanish, for if it did, so would ¢, # and hence 2,.
We now distinguish two further cases,

Case 1.11: Not all of 7,, 7;, 7,, 75 vanish. Making use of (31)—(34) we

see that
pe =3+ u'E+v'c,, i=2 84,5,
so that using also (41) we see that ¢,, ¢;, ¢4, ¢5 satisfy a cubic equation.

This is possible only if the coefficients of this equation vanish. In particular
this implies » = 0 and leads to a contradiction.

Case 1.12: r, =74 =7, = r; = 0. Since r; = —bs(1—c¢;) and b; # 0
(19) it follows that ¢; = 1. Hence s; = —34;(1—¢}) = 0. We now distinguish
two further cases,

Case 1.121: Not all of s,, s, s, vanish. Using (38)—(40) we see that
P = t"A+u''c,, i=2,3,4,

so that using (41) (compare case 1.11) we have a contradiction.
Case 1.122: s, = s = 5, = 0. Since r, = byaz,—b,(1—¢,), 54 = b5C5a54
—4b,(1—c2) and since ¢y = 1 we see that b,(1—c,) = 3b,(1—c}). Hence,

since b,(1—c,) = bza;, # 0 it follows that ¢, = 1, a contradiction. We
now return to

Case 1.2: byp, = bypy = bypy = byps = 0. Since P, #0, b, = 0.
However, b; # 0 and (a) not both of &5, b, are zero. We distinguish 3 cases,

Case 1.21: by = 0, b, # 0. In this case p, = p, = ps = 0 so that (34),
(40) take the forms
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b4 (as3D3+ 4o P3) +b5(a53 3+ a5202) = O,
byCe(@gz Pt agada) +b5¢5(a53Pat+a52p2) = 0.
Since ¢; # ¢5, it follows that agps+ Py = GgaPs+as:Pp; = 0 so that
(36) reduces to
73Bag Py = 0
implying 73 = 0. Hence from (31), (32), (33) it follows that 7, = 7, = 7; = 0
which is impossible (compare case 1.12) as ¢; # 1 (b).

Case 1.22: by # 0, b, = 0. In this case p, = p; = p5 = 0 and (using
(34), (40); compare case 1.21) byaz,p, = 0 which is impossible.

Case 1.23: by % 0, by # 0. p; = P, = p, = ps = 0 so that from (34),
7, = 0. Hence (compare case 1.21), 7, =7, = r; = 0. We now deduce
(40) that s, = 0 and (compare case 1.12) that s; = 0. Using (38), (39)
we see that s; = s; = 0 leading (compare case 1.122) to a contradiction.
This concludes the treatment of case 1. We now consider

Case 2: Two of ¢,, -, ¢; are equal. First we distinguish the cases
where c¢g is or is not different from the other ¢,.

Case 2.1: ¢y does not equal another ¢,; but suppose ¢; = ¢;. Using
(30)—(33) we see that »; = 0 (hence, compare case 1.12, ¢; = 1, s5 = 0)
and by (a), (b) no two ¢; can be equal other than ¢; = c;. Hence, using
(30)— (32), (37)— (39) we see that »;+4r, = s;-+5, = 0. We now distinguish
two further cases:

Case 2.11: yy =7, = s; = s; = 0. In this case it would follow (com-
pare case 1.122) that ¢, = 1 = ¢;, a contradiction.

Case 2.12; r; £ 0 or s; # 0. However, r,=s, =0 if ¢ 41, 1 % ]
so that either (34) of (40) implies p; = p,. If

Case 2.121: p; = p, = 0; it follows (making use of (24)— (26), (b))
that $, = 0, a contradiction. On the other hand, if

Case 2.122: p; = p; # 0; we see that neither of I, J is 1. It follows
from (24)—(26) that b,+&; =0 which by (b) is impossible. We now
return to

Case 2.2: ¢y = ¢;(I < B). We distinguish 3 cases (by (a) there are no
more).

Case 2.21: No other equality exists between ¢, ¢,, -, ¢5. In this
case we may assume 7 =1 so that we find, using (24)—(27) that
brpr+bsps = bypi+bspt = 0. Hence, either p; — p; and b;+bs =0 or
bipr = bsps = 0.

Case 2.211: p; = p5, b;+b; = 0. Either
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Case 2.2111: I # 2; in which case b, = 0 and by (a) we have a con-
tradiction or

Case 2.2112: I = 2; from (24)— (26), p; = p, = 0. Thus from (34),
(40) 7y + 75 = s3-+s5 = 0 and from (31), (32), (38), (39) it follows that
73 =17y = §3 = 5, = 0. Hence, (36) reduces to

7585202 = 0.
Since p, # 0 and 75 7= 0 (comapare case 1.122) it follows that a;, = 0. The
equations 7,475 = s,+s; = 0 reduce to the forms
h3@gs+b1agp = O,
byCyae+b,Cia45 = 0,
so that d3a3, = 0; a contradiction by (a) and (19). We now return to

Case 2.212: brp; = bsps = 0. Hence pg = 0. From (30)- (33) we see
that »;+47, = 0. We now consider the cases r; = 0, »; # 0 separately.

Case 2.2121: 7y = 0. It follows (compare case 1.12) that ¢y = 1, s; = 0.
We consider the cases I = 2, I 3+ 2 separately.

Case 2.21211: I =2; in which case, by (24)—(26) and (b),
P1 = Py = P4 = ps = 0; so that using (40), followed by (37)—(39) we can
deduce that s; = s, = 53 = 5, = 5; = 0, leading (compare case 1.122) to
a contradiction.

Case 2.21212: I # 2. By (24)—(26) it follows that byp, = 0 and
hence b, = 0. This is impossible (b). We now return to

Case 2.2122: 75 # 0. Sincer, = 0 (¢ 5 I, ¢ # 5) follows from (30)— (33);
(34) simplifies to the form p; = $; so that ; = 0 (thus excluding the pos-
sibility I = 2). It now follows from (40) that s, = 0 so that (37)—(39)
imply s;+ss = 0. We now consider two alternatives:

Case 2.21221: I # 4. In this case 7, = s, = 0 so that ¢z = }(1+¢,).
However, by (b) ¢, ¢5 are two of the numbers 0, (6—V/6)/10, (6-+ V6)/10
so we have a contradiction.

Case 2.21222: I = 4. We have 7,-+7; = s;+5; = Oleading to ¢, = ¢ = 1,
a contradiction as 7; = 0. We now return to the second subcase of case 2.2,

Casc 2.22: ¢y = ¢, c; = cg where I, J, K, 5 are all different. It is
clear that one of I, J, K must be 2, for otherwise we get the same contra-
diction as in case 2.2111. Let us suppose that ¢, = ¢;, (L > 2). We have
{(compare case 2.21) that either

Case 2.221: by,-+b;, = 0, which is impossible (a), or

Case 2.222: byp, = byp, = 0. We have b, = 0 and (a) by % 0 so
that p, = 0. We distinguish three further cases:
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Case 2.2221: L = 8. ¢, = ¢; and in addition ¢5 = ¢; or ¢; = ¢;. We
treat these cases separately:

Case 2.22211: ¢; = ¢, = 0. In this case we deduce from (30)— (32),
(87)—(39) that 7,=s,=0; hence by(l—c,) = bsas # 0, 3b,(1—c})
= byczazy = 0. It follows that ¢, == —1 which is impossible (b).

Case 2.22212: ¢; = ¢,. Using (28), (29) we deduce g3 = 0. Since also
ps = 0, we have ag,¢, = ¢}, agyck = 3¢5 which is impossible as ¢, = ¢; 7 0.
We now consider the second subcase of case 2.222.

Case 2.2222: L = 4. ¢, = ¢, and in addition ¢5 = ¢; or ¢z = c;.

Case 2.22221: ¢y =1¢; = 0. From (24)—(27) and (a) we deduce
by = p3 = py = p5 = 0. From (34), (40) we deduce 7, = s, = 0 and hence,
from (30)—(32), (37)—(89) we deduce 7, =s, = 0 leading (compare
case 2.22211) to a contradiction.

Case 2.22222: ¢y = c;. We proceed as in case 2.21 (the possibilities
corresponding to cases 2.211, 2.2121 are immediately rejected by (a) and
(b)) until we reach the situation corresponding to case 2.2122. We now have
byps =5 =0, 73-+75=0,7; 5 0. From (34), (35) we now deduce py = p; = 0.
Using (30)— (34), (87)—(40) we can now deduce that », = s, = 0 giving
(compare case 2.21221) a contradiction. We now return to the third and last
sub-case of case 2.222.

Case 2.2223: L = 5. Making use of {30)— (32) we see that 7,=7;=10
(which (b) is impossible) or, using also (34), (35) that p, = p; and using
also (24)—(26) that b,+b; = 0 which is impossible by (a). We now return
to the final subcase of case 2.2.

Case 2.23: ¢c5 = ¢y = ¢;. Clearly one of I, J (say I) equals 2, for otherwise
we could deduce from (24) — (26) that b, = 0. We consider the three possible
values of J separately.

Case 2.231: J = 1. This implies ¢, = 0 which is impossible.

Case 2.232: | = 3. A contradiction results (compare case 2.21221).

Case 2.233: J = 4. From (24), (25), (28), (29) and (a) it follows that
Ps = g5 = 0. Thus ag.c, = 3, a3y63 = icd implying 3¢, = 2¢,. However,
by (b) ¢,, 5 are each one of the numbers (6—V E) /10, (64-7/6)/10, a contra-
diction.

This completes the treatment of the different cases. Each case leads
to a contradiction, so the result is proved that there is no 5 stage, 5th order
Runge-Kutta process.

We remark finally that case 1.1 in this proof generalizes almost im-
mediately to the corresponding case of a proof that N(p) > p for p > 5.
Unfortunately, cases 1.2 and 2 as they are handled here do not generalize
in the same sort of way, s» the more general question remains open.
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7 stage, 6th order processes

In searching for such processes we are guided by the analysis of the
previous section to make the following assumptions:

7
(42) zlbi“w = b;(1—¢,), f=12---1,
7
(43) > ayc, = 3, 1=23,4,---1,
=1
(44) b, = 0.

Assuming (42) has the effect of ensuring that all first degree (in the
sense of [1]) elementary weights have the correct values if the same is
true for other elementary weights. This result is proved in [6]. Similarly,
we need not concern ourselves with elementary weights of the form
& = [[¢]P,D, - - - D,] as the corresponding y is given by y = 2ry,y, - - y,
®Y@Ud[maMbrW [P Py~ PL Y =iy v =1,
where 7 is the order of @ and &' and y,, y,, -+, ¥, correspond to
Dy, Dy, -, D, If D, = 7_ b,y,, where g, is independent of b,, b,, - - -, by
we have (if (43) and (44) are assumed)

P = 2 b.'“;;cjau, X1k, @in Lok, * ° * Bix, Xk,
' 1

7

— 2 ‘e

=% 3 bictatkl X1k, Birgy X2k, Rix, Xsk,
1

iky, k=
= 1o’
1
=3
1
= —, the correct value.
7’

The equations that still remain to be solved will now be listed. The
range of each summed subscript is from 1 to 7.

5) $=230b=1, (46) [¢]= zbc_g
@) =384 =1, ) @1 =30t =1,
(49) [p]=Zb,cl =3, (50) [#°]=Z bict =%,
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51 [L1b] = 3 besaancs = 3
(52) [[¢*16] = z bic,a,65 = 1.

3) [[41416] = 3, besaeyancs = 2.
(54) [414] = z'éicfauc? —

(55) [l lb) = 3 et anes = .

(56) [4714%] = >:'b Bayd = &,

1) [ihb] =, z byecOuannts = ghp,
(58) [E1eb) = 3 besoonch = .

Making use of (43) and observing also that 37, a,c, = 3¢} in the
case ¢ = 1 but not in the case ¢ = 2 (we assume, of course, that ¢, % 0
for otherwise we would in effect be searching for a process with only 6 stages;
for the same reason we shall assume that &, # 0 so that, by (42), ¢, = 1)
it follows that (51), (53), (55), (57) are equivalent respectively to (52},
(54), (56), (58) if (and only if) the following equations are satisfied:

(59) 2 bicia,3 =0,
(60) 2 bicla, =0,
i
(61) 3 b;c,aa, = 0.
i3

Before attempting to solve (42)— (50), (52), (54), (56), (58)—(61) we
might consider what appears to be gained by making the assumptions (42),
(43), (44). For a 7 stage process there are 28 parameters ay, dg,
@39, * * *, Gg, by, by, + * +, by to be chosen and there are 37 conditions for them
to satisfy if the process is to be of order 6. On the other hand, there are 6
conditions to be satisfied from equations (43), (44) and 13 more in the
equations which follow. (42) contains only 5 independent conditions since
(making use of (43)—(47))

; (; b,a,—b,(1 "‘Ci)) = 2 bict_jz b, + ; b;c,

=0,
and -~

; ¢4 (; bia;;—b,(1—c;)) = %; bc'c?_; bie,+ 2, bycs

= 0.
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Hence, we now have only 24 conditions to satisfy in the 28 parameters so
that, far from suspecting that no solution exists, we may hope for some
flexibility in the choice of a solution.

We now replace the equations (52), (54), (56), (58), (59), (60), (61)
by a more convenient set such that the 24 equations we have to satisfy
are replaced by an equivalent set. The modified versions of the 7 equations
are

C.
(62) 2 b1 —c)aye,(c;—c5) = -630—— —2—2,
[ %}

c3+¢ cqC,

(63) z b (l_c{)aijcj(cj_CS) (C’ 04) 120 360 4 ;44
C3C
(64) ‘z’ b,(l—c,) (Co—ct)a“c’(c,—cs) [ 90 + + ;43
[

65 Shi-clasan—t) = gk~ 155
(66) ; b‘(l -——c‘)aiz = O,
(67) ; bi(l_cf) (cﬂ_c()asz =0
(68) z’bi(l—c‘)a”a,z = (.

These equations are easily verified. For example, the left hand side
of (64) is

[$2[621] — (1+-cq) [$[$21] +-colad®1e—cs[ B2 (S]] +cs(1+co) [$B]] —Cacoo ]2
= ‘i%g— (1+Gs)1!5+0r!§—03110+°3(1+Cs)%"ca°‘e%

C4Cq

=%+ 40 + 60 24

Furthermore, it can be seen that the original equations can be deduced
from these ones. The advantage of these transformed equations is that the
numbers of terms actually occurring on the left hand sides are reduced.
Bearing in mind (66), (67), (68) we can write (62), (63), (64), (65) in the
forms

(69) bg(1—cq) [@g5C5(C5—Cs) +BpaCal(Ca—s) ]+ b5 (1—C5) 544 (ca—C3) = gg— o »

c3+c C4C
(70) bg(1—ce)agscs(c5—C3) (c5—ca) = l_é'ﬁ'— 360 : ;_44 ’
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(71) b5(X—cg)(Ce—C5)@5464(Ca—C3) = —a5 + 26 + _66 - o
c
(72) Bo(1—ce)augasacaleu—ee) = by — o

We shall use (72) with (70), (71) to obtain a condition on the numbers
C3, C3,° *°, € and then solve for ag;, a;, from (70), (71), (72). After this
aqs can be found from (69) and then the remaining parameters from the
remaining equations.
We write
0 = bg(cs—1) (cs—¢s) (cs—¢4) (cs—Ca)cs

so that the product of the left hand sides of (70), (71) is the product of 8
with the left hand side of (72). We have therefore,

+c C3C C4C
(73) (ﬁT‘ 120)0_(T%“_88604+;_;)(_ + ot % +“)

To evaluate 8 we solve the system (45)—(50) to obtain

C3CeCe C3Ca+CaCe+CaCs | C3tCi+Ce 1

6 = .
6 12 20 30

We substitute this into (73) and simplify to obtain
(74) (1—cg)[26,— (1+10c,)c5+15¢c,c3] = 0.

The possibility ¢, = 1 must be rejected as it leads, by (72) to the value
¢3 = %, so that (69), (71) take the forms

bs(l‘*cs)“a";(";—%) = g%‘o"
b5(1———cs)2a5404(c4—%) =0,

and clearly, these cannot be satisfied.

Since ¢, occurs linearly in the other factor, it is convenient to select
a value for ¢, and then to solve for ¢,. On grounds of simplicity, the most
acceptable value of ¢, is ¢; = % leading to the value ¢, = 4. However, we
shall also consider the values ¢; = (54-4/5)/10, ¢, = (5F1/5)/10 as these
are capable of yielding processes of interest.

With ¢, = %, ¢, = 1, there is very little restriction on the values of
€y, C5, Cg. 1f we assume ¢, = cg then from (71) we see that ¢; = }. We shall
examine this case in some detail.

From (45)— (50) we find, b, = b; = 1 , by =by=3%, by+bg=— 15
We shall write b = —2/15 so that b; = (Z 8)/15, and ¢, = pu. In what
follows it will be assumed that 1 7= 0, u £ 0. We solve (70) for ags, (72)
for ag, and (69) for ag,. The rcsults are
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— 3
» @gg = —3%

3

2

TR
Using (43) with 7 = 3 followed by (67) yields the values

191

We now write ag, = %/u, ag, = v/u and use (43) with ¢ = 4, 5, 6, to find

1 _
Q3 = —i5, @53~

to find the values of #, v we use (66), (68) to obtain the equations

with solution 4 = v = §.
These values can now be substituted into the expressions for
A5y, Ag, g3, Bgg. Finally, we use (1) and (42) to find ay, 4y, - -, 45y,

L YRR T

3u
2

2

g3 = § —

(8—A)u-+Aiv =3,
(8—4A)u+4iv = 3,

3v 3

2 41

It is convenient to specify a Runge-Kutta process by writing the para-
meters in an array as follows

0
Ca | 85
€3 | A3 Qg
¢, A, @y av,v—l
by by - by
In the present case the array is
0
B u
2|2 2 2
3 3 9u 9u
115 1 1 _ 1
3 |12 9u [ 12
.17 3 3 3 3
2 | 16 8u 8« 16 ]
3,1 3 _3_3 _3 3 2
2 | 16 8T 4 [ 16 4 § 24 7
p | 2,3 _3 6 18 418 4
| 4 " 11u 11u 44 11 11 11
1 o 2 27 i i 1L
120 40 40 15 15 120"
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For example, if we choose 1 = 4, u = § the array is

0
1 1
3 3
2
5 0 3
1 1 1 _1
3 1z 3 1z
1l _1 8 _3 _3
2 i6 8 16 8
1 9
5 0 g -3 -3 3
1 s 9 63 18 0o _A1s
iz T 44 11 11
11 27 27 __ 4 _ 4 11
750 O 20 40 TIF TIF 120

and we have a process which seems to be suitable for practical use.

Other choices of ¢,, ¢;, ¢ lead to processes just as suitable for practical
computations and we content ourselves with writing down the arrays for
just two of them. They are

0
1 1
2 4 2
3 9 9
X1 11 1 .1
3 36 ) iz
—1 151 29 _ 1 _ ¢
3 36 9 s
4 112 _ 116 32
3 9 9 3 18 -2
5 .29 397 152 _ 1o 1
1 ry 53 276 56 69 (T
23 29 29 1 1 23

' 160 0 80 80 160 160 160’
0|
1 1
2 2
2 2 4
3 9 9
L 7 2 1
3 36 9 iz
5| _ 35 _ 55 35 1s
6 144 36 48 8
1 1 S § 1 1
6 360 36 8 2 10
1 41 22 43 118 32 80

260 13 156 39 195 39
| 13 11 11 4 4 13
| zo0 0 10 40 5 35 200"

We now consider the choice of values, ¢, = (54 Vv 3) J10, ¢, = (5F \/3) /10.
We also choose ¢5 = ¢, ¢, = ¢g = ¢, and we notice that both sides of (70)
vanish. From (45)—(50), we find b, = b, = 5, by+b5 = bytbs = 13-
Although there is some freedom in the choice of b;, bg we assume each of
these equals T‘% so that by = b, = 5, = 0. We now find a;, from (71), ag
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from (72) and the rest of the parameters as for the previous cases. The
final array is

0
5F/5 | 5F4/5
10 10
5+ 4/5 /5 5424/5
10 :FW 10
BF/5 | —15474/5 —1+44/5 15FT+/5
10 20 4 i0
5+4/5 | 6F+/5 0 1 154-74/5
10 60 6 60
5F+/5 | 5L+/5 0 9F54/5 1 --5+34/5
10 60 12 6 10
1 — 5542545 —25FT+/5 54+4/5
1 6 0 12 12 5F2v5 2
1 5 5 1
v 0 0 0 2 T i

This process is interesting in that it is an explicit counterpart of a
certain 4 stage implicit process [7, table III]. Since the classical 4th order
Runge-Kutta process

=g e O

ol O O o
W] © e
[

|

may be thought of as a counterpart of the corresponding 3 stage implicit
process, the possibility is naturally suggested that counterparts exist for
higher order implicit processes as well. Since implicit processes can be found
of arbitrarily high order [7, 8] such a relationship would be valuable in
yielding high order explicit processes.

ool
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