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Introduction 

An (explicit) Runge-Kutta process is a means of numerically solving 
the differential equation 

y' = /(*. y), yfco) = Vo, 

at the point x = xa-\-h, where y, f may be vectors. 
The equations defining a v stage Runge-Kutta process are 

Si = /fo>. yo). 

g» = f{x0+cth, y0+Ki£i)> 
= f(x0+c3h, y0+Ha3igi+^ga)), 

g, = fixo+Cyh, y0+h(ang1+ar2g2-i \-a,,,-ig»-i)), 

V = yo+Hhgi+hgi-i \-brg„) 

where 
C i ~ a 2 i > 

(!) ¿3 = «31 + a32> 

c„ — arL-\-tiy2-^- '' • ny>r—i, 

and a21, a31, a32, • • •, «„,„_!, blt b2, • • • b, are a set of parameters which 
characterize the process. For convenience, we will introduce additional 
symbols an, a12,..., a„„, Cj all equal to zero, so that the notation of [1] 
may be used. In [1] it was shown that the condition that a Runge-Kutta 
process be accurate to terms of order p is 

(2) 0 = 1/y, r ^ p, 

where the 0 are certain polynomial expressions in the numbers au, 
an- ' ' °i. b2, • • \bv and r, y are certain integers depending on the form 
of the particular 0 to which they correspond, r is called the order of 0. 

For example, if 
V 

® — [r-i«A]r-i = 2 b< a{ , a* i • • • a. .• c, 
L r l r J r 1 . . . *1 *l'2 'l'3 'r-« 'r- l 'r-l 

•i. ' » . • • . V - i - 1 

179 
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then y = r\ and if 

then y = r. 

As we are assuming atj = 0 if i ^ /, the only terms contributing to 
lr-i<l>]r-i are those in which *i > t, > • • • > > 1 so that this expression 
vanishes identically unless r g v. Hence we have the well known result that 
a Runge-Kutta process of order p has at least p stages. For p = 1, 2, 3, 4 
it is a simple matter to find processes of order p with exactly p stages. 
For p = 5 there exists a process originally due to Kutta [2] but corrected 
by Nystrom [3] with 6 stages; while for p = 6 there are processes due to 
Huta [4, 5] (see also [6]) with 8 stages. If N(p) is the minimum number 
of stages necessary for a process of order p then we can write 

N(p) = p, P 4, 

5 = 2V(5) ^ 6, 

6 ^ TV (6) ^ 8. 

The limits for 2V(5) and 2V(6) will each be improved in this paper. We shall 
show firstly that 2V(5) > 5 (implying JV(5) = 6) and secondly that TV(6) ^ 7. 
This second result is shown by actually constructing suitable processes. 

Although the possibility that TV (6) = 6 is still open it happens that 
many details of the proof that TV (5) > 5 readily generalize and might take 
a future investigator some way towards deciding this question. 

The non-existence of a 5 stage, 5th order process 

In this section we shall suppose that a 5 stage, 5th order Runge-Kutta 
process exists and show that this leads to a contradiction. Unfortunately, 
a great number of different cases arise and it appears to be necessary 
to consider these separately, even though the treatments of the different 
cases have many similarities. However, it is possible to avoid the repetition 
of many trivial details in treating some cases, by referring back to cases 
already treated for which the argument is similar. 

To clarify the procedure of classification and to make cross-referencing 
easier, a decimal system of numbering the different cases will be used. For 
example, case 1 is broken into cases 1.1 and 1.2 and the first of these is 
broken into cases 1.11 and 1.12, and so on. 

We now list the explicit form of the 17 equations of the form (2) 
when v = p = 5. The range of each summed subscript is from 1 to 5. 
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(3)^2&, = i, № M^2M( = i 
< > 

(5) = 2 bA = i, (6) fjfl, =. 2 = i, 
(7) ^ 2 = i, (8) IW] = 2 = i . 

(9) W2]2^2 M.-^ = ̂ , (10) M 3 e 2 » , W . = A-
(ii) r>«] ^ 2^c4 = i , (12) [ [ ^ ] = 2 bSw, = ^. 
(13) [W2] = 2M2«W = (i*) ^ 2 V,««<4 = 
(15) [ W]^] s 2 V<««ai i t C , = ^ , (16) [ # ] 2 ^ 2 = , 

(17) [,M«ts2Wi««c» = OT. (18) W T i ^ I W = m-
(19) U ]̂4= 2 ^ ^ ^ ^ w C ^ t I o -

We note that (19) can be written in the form 

so that none of the factors on the left can vanish. 
It may happen that some of b l t b 2 , • • •, 65 may vanish or that some 

of Cj, c2, • • •, c8 may be equal to the same number. In such cases let us 
suppose that (3), (4), (5), (7), (11) can be written together in the form 

2 M*"1 = t ' * = 1. 2. 3, 4, 6, t-i « 
where c x , c 2 , •••,£? are all different and 5̂  b~2, • • •, 5j do not vanish. We 
will now show that 

(a) v > 2, and 
(b) if v = 3, cx = 0, 

then c 2 , c a are the pair of numbers (6—V6)/10J (&+Vq)I10. TO prove (a) 
we suppose that v = 2 so that we have 

0 = 2^(c,-c-1)
s(c<-c2)2 

i=l 
= ¡1 ( t - c ^ i t - c ^ d t > 0, 

a contradiction. 

To prove (b) we find in the same sort of way that 

j * t ( t - c 2 ) ( t - c 3 ) d t = 0, 

H ^ ( l - c 2 ) ( t - c a ) d t = 0, 
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For example, to verify (36) we have 

2 2 (bia

ii-bA1-ci))aik(akicl-^ci) 
i,1 t,S,le,l 

= W]4-*Wt].-W],+iWl]1+^W]1]-iW[fV]] 
_ 1 1 . J 1_-J_i . JL.4- 1 —1- 1 — ft 

T2"0 '2" 60 24 T2 12 '30 2 16 — " 
We now distinguish two cases according as no two of c2, c3, c4, c5 are 
equal; or otherwise, 

Case 1: No two of c2, c3, c4, c5 are equal. This case will be broken into 
two subcases: 

Case 1.1: Not all of b2p2, b3p3, bipl, b5ps vanish. Regarding (24) —(27) 
as a set of linear equations in these variables we see that the following 
determinantal equation holds 

a pair of linear equations in (c2-\-c3) and c2c3. The solution turns out to be 
c2-\-c3 = 6/5, c2c3 = 3/10 and the result follows. 

The statements (a), (b) will be referred to by these letters in a number 
of places in the following. 

It is convenient to define 

(20) Pt = 2 
(21) ft = 2«««?-^. 

3 

(22) '^XMa-M 1 ^) . 
i 

(23) *, = 2»*M«-4*i(i-^). 
so that px, qx both vanish while p2 = — \c\ and q2 = —jc| do not vanish. 
The following equations are now easily verified making use of (3)—(19), 

(24) 2 btpt = 0, (25) 2 btctpt = 0, (26) J J(efr4 = 0, 

(27) 2 KP\ = 0, (28) J ».ft = 0, (29) 2 btctqt = 0, 

(30) 2 u = o- (31) 2 'ic< = o- (32) 2 rte\ = 0, 
I I 1 

(33) 2 r,c* = 0, (34) 2 = 0, (35) 2 rtctpt = 0, 
i t i 

(36) 2 r,.%/>, = 0, (37) 2 «. = 0, (38) 2 ^ = 0, 
t, J » t 

(39)2^ = 0, (40 )2^ = 0. 
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1 1 1 1 

= 0. 

P2 Pa Pi, Pf. 
Since c2, c8, c4, c5 are all different it follows that 

(41) Pi = tc*t+uct+v, i = 2, 3, 4, 5, 
where t, u, v are certain constants. 

Substituting (41) into (25), (26) and making use of (4), (5), (7), (11) 
we see that 

t u v 
1 h — = 0, 

4 3 2 

t u v 
1 f- — = 0, 

5 4 3 

so that v does not vanish, for if it did, so would t, u and hence p2. 
We now distinguish two further cases, 

Case 1.11: Not all of r2, r3, r4, r6 vanish. Making use of (31) —(34) we 

so that using also (41) we see that c2, c3, c4, cs satisfy a cubic equation. 
This is possible only if the coefficients of this equation vanish. In particular 
this implies v = 0 and leads to a contradiction. 

Case 1.12: r2 = r3 = rt = r5 = 0. Since r5 = —65(1—cB) and ô6 0 
( 19) it follows that cs = 1.Hence s5 = —J*5(l—c|) = O.Wenow distinguish 
two further cases, 

Case 1.121: Not all of s2> s3, s4 vanish. Using (38) —(40) we see that 

so that using (41) (compare case 1.11) we have a contradiction. 

Case 1.122: s2 = sa = s4 = 0. Since r4 = 68aS4—64(1— c4), s4 = ô5c6a54  

—$t(l— cj) and since c5 = 1 we see that è4(l—c4) = |64(1— 4). Hence, 
since 64(1— c4) == ôsa54 0 it follows that c4 = 1, a contradiction. We 
now return to 

Case 1.2: b2p2 = 63£3 = 64/>4 = 68/>5 = 0. Since p2 ̂  0, b2= 0. 
However, bs ^ 0 and (a) not both of b3, bt are zero. We distinguish 3 cases, 

Case 1.21: b3 = 0, 64 ^ 0. In this case ̂  = pt = />5 = 0 so that (34), 
(40) take the forms 

see that 
p{ = t'c3

{+u'4+v'cit i = 2, 3, 4, 5, 

/>,• = t"c\+u"ct, i = 2, 3, 4, 
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biCiiHsPa+aiM+bsC^anPz+atoPt) = 0. 

Since c4 ^ cs, it follows that at3p3+ai2p2 = aMp3+aS2p2 = 0 so that 
(36) reduces to 

HH%Pz = 0 

implying r3 = 0. Hence from ( 3 1 ) , ( 3 2 ) , ( 3 3 ) it follows that r2 = rt = rs = 0 
which is impossible (compare case 1.12) as cs ^ 1 (b). 

Case 1.22: b3 0, 6 4 = 0. In this case px = p3 = p$ — 0 and (using 
( 3 4 ) , ( 4 0 ) ; compare case 1.21) b3a32p2 = 0 which is impossible. 

Case 1.23: b3 # 0, fi4 ̂  0. px = p3 = px = p6 = 0 so that from ( 3 4 ) , 
r2 = 0. Hence (compare case 1.21) , r3 = r4 = rs = 0. We now deduce 
( 4 0 ) that s2 = 0 and (compare case 1.12) that ss = 0. Using ( 3 8 ) , ( 39 ) 
we see that s3 = s4 = 0 leading (compare case 1.122) to a contradiction. 

This concludes the treatment of case 1. We now consider 
Case 2: Two of c2, • • •, c5 are equal. First we distinguish the cases 

where c5 is or is not different from the other ct. 
Case 2 .1 : cs does not equal another cf; but suppose cj = Cj. Using 

( 3 0 ) — ( 3 3 ) we see that r5 = 0 (hence, compare case 1.12, c5 = 1, s5 = 0 ) 

and by (a), (b) no two ci can be equal other than ct = Cj. Hence, using 
(30) — ( 3 2 ) , ( 3 7 ) — ( 3 9 ) we see that rj+rj = S j + s , = 0. We now distinguish 
two further cases: 

Case 2 .11: rr = tj = s7 = Sj = 0. In this case it would follow (com­
pare case 1.122) that c4 = 1 = c5, a contradiction. 

Case 2 .12: r; ^ 0 or s; ^ 0. However, r{ = st = 0 if t'• ^ I, i / 
so that either (34 ) of ( 4 0 ) implies pr = pj. If 

Case 2 .121: pT = PJ = 0; it follows (making use of ( 2 4 ) - ( 2 6 ) , (b)) 
that p2 = 0, a contradiction. On the other hand, if 

Case 2 .122: pt = pj # 0; we see that neither of / , J is 1. It follows 
from ( 2 4 ) — ( 2 6 ) that bj+bj = 0 which by (b) is impossible. We now 
return to 

Case 2 .2: c6 = cT(I < 5 ) . We distinguish 3 cases (by (a) there are no 
more). 

Case 2 .21: No other equality exists between clt c2, • • •, c5. In this 
case we may assume / ^ 1 so that we find, using (24) — ( 2 7 ) that 
biPi+hpa = bjp^+bspl = 0. Hence, either PJ = pB and *j-Hs = 0 or 

= bspi = 0. 

Case 2 .211: pr = p&, 6 7 +6 5 = 0. Either 
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Case 2.2111: 7 ^ 2; in which case b2 = 0 and by (a) we have a con­
tradiction or 

Case 2.2112: 7 = 2; from (24)-(26), p3 = p4 = 0. Thus from (34), 
(40) r2 + rh = s2+s6 = 0 and from (31), (32), (38), (39) it follows that 
r3 — r4 = s3 = s4 = 0. Hence, (36) reduces to 

WtoPl = 0-

Since p2¥=0 and rs ^ 0 (compare case 1.122) it follows that « 5 2 = 0. The 
equations r2+r6 = s2+s5 = 0 reduce to the forms 

*3a32 + &4a42 = ° . 

&3CS«32 + & 4 C 4«42 = ° » 

so that ô 3 « 3 2 = 0; a contradiction by (a) and (19). We now return to 

Case 2.212: b t p x = b5p6 = 0. Hence p6 = 0. From (30)-(33) we see 
that rj+r& = 0. We now consider the cases rg = 0, r5 ^ 0 separately. 

Case 2.2121: rB = 0. It follows (compare case 1.12) that c5 = 1, ss = 0. 
We consider the cases 7 = 2, 7^2 separately. 

Case 2.21211: 7 = 2; in which case, by (24)-(26) and (b), 
Pi — Pa ~ Pi ~ Pi ~ 0." s o that using (40), followed by (37) —(39) we can 
deduce that s x = s 2 = s 3 = s 4 = s 5 = 0, leading (compare case 1.122) to 
a contradiction. 

Case 2.21212: 7^2. By (24)-(26) it follows that b2p2 = 0 and 
hence b2 = 0. This is impossible (b). We now return to 

Case 2.2122: rs ^ 0. Since r< = 0 (i 5) follows from (30) — (33) ; 
(34) simplifies to the form pr = ph so that pj = 0 (thus excluding the pos­
sibility 7 = 2). It now follows from (40) that s 2 = 0 so that (37)-(39) 
imply Sj+s 5 = 0. We now consider two alternatives: 

Case 2.21221: 7 ^ 4. In this case rt = s4 = 0 so that c5 = | ( l+c 4 ) . 
However, by (b) c4, cs are two of the numbers 0, (6—VoJ/lO, (6+V6)/10 
so we have a contradiction. 

Case 2.21222: 7 = 4. We have ri+rb = s4+ss = 0 leading to c4 = cs = 1, 
a contradiction as r5 ^ 0. We now return to the second subcase of case 2.2. 

Case 2.22: c5 = c7, c, = cK where 7, / , if, 5 are all different. It is 
clear that one of 7, / , K must be 2, for otherwise we get the same contra­
diction as in case 2.2111. Let us suppose that c2 = c L (L > 2). We have 
(compare case 2.21) that either 

Case 2.221: b2+bL = 0, which is impossible (a), or 
Case 2.222: b2p2 = bLpL = 0. We have b2 = 0 and (a) bL ^ 0 so 

that pL — 0. We distinguish three further cases: 
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Case 2.2221: L — 3. c2 = c3 and in addition c5 = cx or c6 = c4. We 

treat these cases separately: 
Case 2.22211: cs = cx = 0. In this case we deduce from (30) —(32), 

(37)-(39) that r4 = s4 = 0; hence 64(l-c4) = b5au # 0, i&4(l-cj) 
= hcsas4 ' °- It follows that c4 = — 1 which is impossible (b). 

Case 2.22212: c6 = c4. Using (28), (29) we deduce q3 = 0. Since also 
p3 = 0, we have a32c2 = £c3, a32c2 = ĉf which is impossible as c2 = c3 ^ 0. 
We now consider the second subcase of case 2.222. 

Case 2.2222: Z, = 4. c2 = c4 and in addition cs = cx or c6 = c3. 
Case 2.22221: c5 = cx = 0. From (24) —(27) and (a) we deduce 

*a = Pa — Pi — i>b — 0- From (34), (40) we deduce r2 = s2 = .0 and hence, 
from (30)—(32), (37) —(39) we deduce r4 = s4 = 0 leading (compare 
case 2.22211) to a contradiction. 

Case 2.22222: c5 = c3. We proceed as in case 2.21 (the possibilities 
corresponding to cases 2.211, 2.2121 are immediately rejected by (a) and 
(b)) until we reach the situation corresponding to case 2.2122. We now have 
b3p3 = pi=0, r3+rs — 0, r5 =é 0. From (34), (35) we now deduce p3 = p& — 0. 
Using (30) —(34), (37) —(40) we can now deduce that rt = s4 = 0 giving 
(compare case 2.21221) a contradiction. We now return to the third and last 
sub-case of case 2.222. 

Case 2.2223: L = 5. Making use of (30) — (32) we see that r2 = rs = 0 
(which (b) is impossible) or, using also (34), (35) that p2 = p6 and using 
also (24) —(26) that b2-\-bs = 0 which is impossible by (a). We now return 
to the final subcase of case 2.2. 

Case 2.23 : c5 = cI = cJ. Clearly one of I, J (say / ) equals 2, for otherwise 
we could deduce from (24) — (26) that b2 = 0. We consider the three possible 
values of / separately. 

Case 2.231: J = 1. This implies c2 = 0 which is impossible. 

Case 2.232: / = 3. A contradiction results (compare case 2.21221). 
Case 2.233: / = 4. From (24), (25), (28), (29) and (a) it follows that 

Pz = 1z = °- Th u s
 a 32 c 2 = £4. ^32^ = ic3 implying 3c2 = 2c3. However, 

by (b) c2, c3 are each one of the numbers (6—Vfy/lO, (6+A/6)/10, a contra­
diction. 

This completes the treatment of the different cases. Each case leads 
to a contradiction, so the result is proved that there is no 5 stage, 5th order 
Runge-Kutta process. 

We remark finally that case 1.1 in this proof generalizes almost im­
mediately to the corresponding case of a proof that N(p) > p for p > 5. 
Unfortunately, cases 1.2 and 2 as they are handled here do not generalize 
in the same sort of way, so the more general question remains open. 
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7 stage, 6th order processes 

In searching for such processes we are guided by the analysis of the 
previous section to make the following assumptions: 

(42) 2M« = ^( l - t ( ) , /=1 ,2 , •••,7, 

(43) i>«c, = $«5, ¿=3,4, •••,7, 

(44) b2 = 0. 

Assuming (42) has the effect of ensuring that all first degree (in the 
sense of [1]) elementary weights have the correct values if the same is 
true for other elementary weights. This result is proved in [6]. Similarly, 
we need not concern ourselves with elementary weights of the form 
<P = [!#]̂ î 2 *'' a s the corresponding y is given by y = 2ry1y2 • • • y, 
(by (31) of [1]) and for * '=№# 1 <P i - - -#J ,y ' = fy1y1---y. = iy. 
where r is the order of <P and <P' and y1,y2,---, y, correspond to 
0 J ( 0 2 , .-.,0,. If <p. = bjXu where %it is independent of 6,, b2, • • •, b? 
we have (if (43) and (44) are assumed) 

7 

* = 2 bi<*tiCj<*ik.Xik.<*ikiXik1 • • • aik,X.k. 
7 

= w 
_ 1 
~ V 
= —, the correct value. 

v 
The equations that still remain to be solved will now be listed. The 

range of each summed subscript is from 1 to 7. 

(45) ^ J J ( = 1 , (46) [4>] = 2 btct = l, 
(47) 3 J J ( e « = f (48) W =. J 6jC? = i, 

(49) r>«] = 2 = (so) W5J = 2 ^ = i. 
1 * 
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( 5 1 ) [ W R M ] = 2 B T C T A A A I K C K = TG> 
I.I.K 

( 5 2 ) [tW] = 2 V ^ = T T . 

( 5 3 ) [[№#]#] = 2 = ^, 
( 5 4 ) 

( 5 5 ) 
I,I,K 

( 5 6 ) 
*>* 

( 5 7 ) [Wlâ ] = 2 B I C I A A A I K A K I C I = i n 

( 5 8 ) [W8]***] = 2 = -7%-
*,I,K 

[10] 

Making use of (43) and observing also that 2 ' - i a « c / = i0? m the 
case t = 1 but not in the case I = 2 (we assume, of course, that c2 ^ 0 
for otherwise we would in effect be searching for a process with only 6 stages; 
for the same reason we shall assume that 67 ^ 0 so that, by (42), c, = 1) 
it follows that (51), (53), (55), (57) are equivalent respectively to (52), 
(54), (56), (58) if (and only if) the following equations are satisfied: 

(59) 2M,«« = 0, 
I 

(60) 1 ^ = 0, 
I 

(61) 2 B I C I A I I A M = ° -

Before attempting to solve (42) —(50), (52), (54), (56), (58) —(61) we 
might consider what appears to be gained by making the assumptions (42), 
(43), (44). For a 7 stage process there are 28 parameters A 2 1 , A3I, 
<*32." * A N > B I > B 2 , • * *, b7 to be chosen and there are 37 conditions for them 
to satisfy if the process is to be of order 6. On the other hand, there are 6 
conditions to be satisfied from equations (43), (44) and 13 more in the 
equations which follow. (42) contains only 5 independent conditions since 
(making use of (43) —(47)) 

2 (2 *<««-Wi -<*)) = 2 4<««-2 h+2 V, 
S I I i i 

= o, 
and ~ 

2 C, (2 *«««-*,(»-",)) = \ 2 bA-I V, + 2 bA 
I T I T 

= o. 
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(67) 2Ml-Ci)(«i-ei)«« = 0 
4 

(68) 2 *<(!-«<)«««« = 0. 
«.< 

These equations are easily verified. For example, the left hand side 
of (64) is 

№ ] ] - (1+c.) [*[*«]] + c 6 [ # ] 2 - c 3 [ ^ M ] +c3(l+c6) WW] W ] , 

= T8-( 1 + c «)T5-+ c «Tf- c 3TB+ c 3( 1 + c e)8- c 3C«i 

_ 1 . C8 . C 6 C 3 C 8 
OT + 40 + 60 24 " 

Furthermore, it can be seen that the original equations can be deduced 
from these ones. The advantage of these transformed equations is that the 
numbers of terms actually occurring on the left hand sides are reduced. 
Bearing in mind (66), (67), (68) we can write (62), (63), (64), (65) in the 
forms 

(69) 6 6 ( l - c 6 ) [ a 6 5 c 5 ( c 6 - c 3 )+a M c 4 ( c 4 - c 3 ) ] - | -6 5 ( l - c 5 ) a 5 4 c 4 ( c 4 - c 3 ) = - g ^ - 1 | , 

(70) ( * . - « « ) = T W - Cjw" + I f ' 

Hence, we now have only 24 conditions to satisfy in the 28 parameters so 
that, far from suspecting that no solution exists, we may hope for some 
flexibility in the choice of a solution. 

We now replace the equations (52), (54), (56), (58), (59), (60), (61) 
by a more convenient set such that the 24 equations we have to satisfy 
are replaced by an equivalent set. The modified versions of the 7 equations 
are 

(62) x *.0 = TO - | | -
(63) 2bt(l-ct)atlci{e,-c,){c,-e1) = ^ + ^\ 

(64) 2Mi-Ofo-*)*«^,--*) = - 4 + To + S ~ I I ' 

(65) 2 Ml -e« )«««»e , ( e , - c 1 ) = , 

(66) 2 Mi-«<)«« = o, 
i 
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c c 
(71) M l - C j K c . - C g J a ^ f o - C a ) = + + ^ 
(72) Ml -C i )«M««4M««- c i ) = ^ _ - L . 

We shall use (72) with (70), (71) to obtain a condition on the numbers 
c 8 , c 3 , • • •, c 6 and then solve for a8 5, a M from (70), (71), (72). After this 
a8 4 can be found from (69) and then the remaining parameters from the 
remaining equations. 

We write 
0 = M c s - l ) ( c 8 - c 6 ) ( c 6 - c 4 ) ( c s - c 3 ) c 5 

so that the product of the left hand sides of (70), (71) is the product of 0 
with the left hand side of (72). We have therefore, 

/ 1 C 3 \ / 1 C 3 + C 4 C 3 C * \ / 1 C 3 C8 C 3 C 8 \ 
( 7 3 ) \ ^ - l 2 0 r = l ^ ~ n ^ + '2TM" i n r + 40 + 60 + "24j-
To evaluate 0 we solve the system (45) —(50) to obtain 

. C

3

C 4 C 6
 cac*~^~^tc»Jt~c3ce | cs"f"c4 - l - ce i 

~ ~~6 12 1 20 so-• 

We substitute this into (73) and simplify to obtain 

(74) ( l - c 6 ) [ 2 c 4 - ( l + 10c4)c3+15c4c2] = 0. 
The possibility c„ = 1 must be rejected as it leads, by (72) to the value 
c3 = so that (69), (71) take the forms 

a 8 ( l - c 8 ) a M c 4 ( c 4 - £ ) = 

M l " C

8)*«S4C*(C4-3) = °> 

and clearly, these cannot be satisfied. 
Since c 4 occurs linearly in the other factor, it is convenient to select 

a value for c 3 and then to solve for c 4 . On grounds of simplicity, the most 
acceptable value of c 3 is c3 = \ leading to the value ci = \ . However, we 
shall also consider the values c 3 = (5±-y/5)/10, c 4 = (5=F-v/5)/10 as these 
are capable of yielding processes of interest. 

With 
c3 = 3> ci = 3> there is very little restriction on the values of 

c 2 . c5. c 6 . If we assume c 5 = c6 then from (71) we see that c6 = \ . We shall 
examine this case in some detail. 

From ( 4 5 ) - (50) we find, bx = b, b3 = bi = J$, J 5 +6 6 = 
We shall write be = —A/15 so that 6B = (A—8)/15, and c2 = ,u. In what 
fellows it will be assumed that A 0, ,u 0. We solve (70) for a6 S, (72) 
for « S 4 and (69) for a6 4 . The results are 

c3C6 
24 ' 
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2SI — 8 > AM 

Using (43) with I = 3 followed by (67) yields the values 

_ 2 _ 1 

We now write aM = u/fi, a6 2 = V/P and use (43) with I = 4, 5, 6, to find 

_ i _ 3 3 « _ ^ 3J; 3 
a 43 — ~T2 > a 5 3 — 8 2 ' a « 3 — 8 2 7J' 

to find the values of M, V we use (66), (68) to obtain the equations 

(%-X)u+KV = 3, 
(8-4A)«+4A*> = 3, 

with solution u = V = f . 
These values can now be substituted into the expressions for 

A&2> A»2> «63. «63- Finally, we use (1) and (42) to find a2 1 , a31, • • •, « 7 1 , 

It is convenient to specify a Runge-Kutta process by writing the para­
meters in an array as follows 

0 

a 31 fl32 

*», v-l 

In the present case the array is 

0 
1* 

2 2 2 2 
y 3 9/i 9/x 
1 5 1 1 1 
3 12 9/. 9/. 12 
l 17 3 3 3 
2 16 8/< 8/. 16 
1 17 3 . 1 3 3 
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For example, if we choose X = 4, fi = \ the array is 

0 
X X 
3 3 2. 
3 0 2 

3 
l 1 X 1 
3 12 3 
1 1 2. 3 
2 16 8 ~~ T6" — 8 
1 0 9 _ a _ a X 
2 0 8 8 4 2 
1 9 9 63 1 8 0 X6 1 44 XT 44 11 0 11 

11 0 27 37 4 4 11 
120 0 40 40 TT> T¥ T20 

and we have a process which seems to be suitable for practical use. 
Other choices of c2, c 5 , c g lead to processes just as suitable for practical 

computations and we content ourselves with writing down the arrays for 
just two of them. They are 

a 
3 

4 
9 

2 
9 

X 
3 

X I 
36 

X 
9 

1 
— T2" 

X 
3 

Z3. 
9 

7 
~ 4 

_ 6 
4 
3 

xxa 
— 9 

_ X X £ 3_a 
3 

18 — 2 

1 5 
~~ 4 

29 
— 23 

397 
276 

152 
69 

XO 
~~ 69 

1 
69" 

23 
160 0 za. 

80 

29 
80 

1 
180 

1 
TBo" 160 ' 

X 
2 
2. 
3 
.1 
3 
5. 
6 
6 
1 

X 
2 2. 
9 

4 
9 

7 
3"6" 

2 
9 

1 
12 

35 
144 

5_5. 
36 

iS„ 
48 

15 
8 

1 
360" 

X I 
36 

1 
8 

X 
2 

1 
10 41 

260 
ZZ. 
13 

43 
156 

xxa 
39 

32 
T95 

80 
39 

13 TOTS 0 XX 
40 

XX 
40 

4 
25" 

4 
25 

13 
2"0lf -

W e now consider the choice of values, c 3 = ( 5 ± V 5 ) / 1 0 , e 4 = ( S ^ V ^ / I O . 
W e also choose c s = c 3 , c 2 = c6 = c4 and we notice that both sides of (70) 

vanish. From (45) —(50) , we find bl = b1 

l 

although there is some freedom in the choice of bs, &„ we assume each of 
these equals ^ so that ba = b, — b2 = 0. W e now find « 5 4 from (71), fl65 
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from (72) and the rest of the parameters as for the previous cases. The 
final array is 

0 

5=FV5 

10 10 
5 Ì V 5 

10 
V5 

^ 10 
5±2V5 

10 
-I±V& 15T7\/5 

10 20 4 10 
5±\/5 

10 60 
0 

1 
6 60 

5TV5 
10 

5± \ ? 5 

60 
0 9=F5VS 

12 
1 
6 

~5±3V5 
10 

1 1 
6 

0 -55±25v'5 
12 

-25T7V5 
12 5̂ 2-v/5 B ± Y / 6 

2 
1 
12 

0 0 0 
5 
12 

5 1 
12 12' 

This process is interesting in that it is an explicit counterpart of a 
certain 4 stage implicit process [7, table III]. Since the classical 4th order 
Runge-Kutta process 

0 

i i 
0 \ 

1 0 0 1 

1 1 l l 
6 3 3 6 

may be thought of as a counterpart of the corresponding 3 stage implicit 
process, the possibility is naturally suggested that counterparts exist for 
higher order implicit processes as well. Since implicit processes can be found 
of arbitrarily high order [7, 8] such a relationship would be valuable in 
yielding high order explicit processes. 
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