On the Attainable Order of Runge-Kutta Methods

By J. C. Butcher
A Runge-Kutta method with » stages for solving the equation

¥ =f=,9), y@) =1y

(where y and f are vectors), gives a result

y(@o+ h) =yo+ h Zlbigj:
2 ] =

where g1, g2, - - , 9 satisfy the equatiogs
9i=f<xo+c;~h,yo+hga¢,~g,~>, i=1,2 -,
Gy ,Q, ,0w,b1,bs, - -+, b, are aset of constants which characterize the process
and ¢;, ¢z, -+ - , ¢ are defined by
C-’=jz:laij, i=1,2 -+ ,»

If the elements of f are differentiable arbitrarily often with respect to z and the
elements of y, the true solution and the numerical solution can be expanded in
powers of k. It has been shown [1] that these two expansions agree up to terms in
h® (that is, the process is of order p) if

(1) ®=1/y whenever r £ p.

In this formula, ® is a typical elementary weight,  is its order, and v is a certain
integral constant associated with it. @ itself is a polynomial of degree 1 in

by, by, --,band degreer — linan, az, * -+ , @y .
To find the values of v for the different ®, one may use a result proved in [1]. If
®,,®,, -, P, have values v1, vz, - - - , ¥, corresponding to them and if
(2) ® = [®P; - D),
then

Y =TV1Y2 0 Ve,

where r is the order of ®. The notation (2) is used where & is related to
&, P, -+, ®, by the formulae

‘I’k'—‘zlbfxw’ k=12 ---,s
g
& =2 b:[1 2 ainus,
1=1 k=1 j=1
and xxj (k=1,2,---,87j=1,2,---,») isa function of ay; , azz, - - - , a,, but not
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ORDER OF RUNGE-KUTTA METHODS 409

of by, by, - -+, b,. The only elementary weight of order 1is Y_j= b, and this willbe
denoted by ¢. For ¢ the value of yis 1.

To illustrate the structure of the various elementary weights consider ®,, &,
&; , ® defined as follows:

& = [¢4)],

o = [pod),

& = [®4],

b = [B:D:PrPs].

These can be simply expressed in terms of the parameters of a process. All sum-
mations are from 1 to ».

& = ‘Zﬂ‘b‘a;,aek = Z bic?,

d, = Z bics’,

b3 = ; biaijcs,

Z bi( Z’: asie;’)( Z, asse;")’( Z,,; @i00").

The orders (r1, 72, 75 and r, say) are, respectively, 3, 4, 4, 16 and the constants
Y1, 72, vs, v are equal to

®

y=311=3
o =4-1-1-1 = 4,
vs = 4-3 = 12,

16-3-4-4-12 = 9216.

Y

It is convenient to write each elementary weight using only brackets and the symbol
¢. For the present examples we can write

@ = [®] = [[¢¢]],
P = [2:2:0:35] = [[90)lo0][00¢]([4]]].

This notation can be abbreviated by using superscripts to indicate the repetition of
blocks of symbols and subscripts to indicate repetition of brackets. With these
abbreviations we have

$ = [4’2])
&, = [4’3]:
&y = [1¢']:,

& = [[¢"][6"T26"L].

In this paper we will be concerned only with explicit (that is, classical) processes
so that
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410 J. C. BUTCHER

(3) a; =0 whenever j = 7.

With this restriction, there are at least as many parameters as, , - - - , b, to be chosen
as there are equations of the form (1), when p = » < 4. It is not surprising, there-
fore, that there exist Runge-Kutta processes of order » with » stages when » = 1, 2,
3, 4. However, for p = v > 4, there are more equations (1) than there are param-
eters to choose so it would not be surprising either if there were no Runge-Kutta
process of order » with v stages when » = 5, 6,7, - - - . For the case » = 5, a proof of
this result has been given [2]. However, the proof was exceedingly complicated. In
this paper the result is proved in a much simpler way for all cases v = 5, 6, 7, - - -
and, moreover, it is shown that processes with p + 1 = v do not exist when p = 7.
If we use the notation of Antosiewicz and Gautschi [3] and write p*(») for the highest
order attainable with » stages, then, using results from [2] and this paper, one can
determine the following new information-about this function:

p*(5) = 4,
p*(6) = 5,
p*(7) = 6,
p*(8) = 6,

p*(») Sv—2,  »v=2910---.

The next simplest questions that one might ask are (a) is there a Runge-Kutta
process with » = 9 and p = 7; and (b) is there a Runge-Kutta process with » = 10
and p = 8. The first of these must be answered in the affirmative as the author has
found such a process; details of this process will be included in a later publication.
Thus p*(9) = 7. The answer to question (b) and, hence, the exact value of p*(10),
seems to be still a matter of conjecture.

We will refer to a given process with parameters as , as, -+, by, b2, - -+ as the
process P. Another process with parameters dx , da, - -+ , b1, bz, - - - will bereferred
toas P. So( p, v) will denote the set of Runge-Kutta processes of order p with » stages
so that P € Su(p, ») if P has v stages and the various ® formed from the numbers
Gg, -+, b1, -, b satisfy (1). More generally, we write S,(p, v) for the set of »
stage processes where, for each ® of order » < p, (1) is replaced by

r!
= —
y(n + )’

and n is a non-negative integer. Also we write S(p, v) for the union of the sets
So(p, V)? Sl(py V): S2(P, V): Tt

In terms of this notation we now state the two main results of this paper.

TaEOREM 1. The set So(p, v) ts empty if p = v = 5.

THEOREM 2. The set So(p, v) isempty if p =v — 1 = 7.

A number of lemmas now follow and Theorems 1 and 2 are corollaries to Lemmas
11 and 14.

LemMa 1. If U and V are 3 X 3 matrices with typical elements u;; and vi; and +f
U™V has only zero elements in the last row and last column but has rank 2, then either
U3 = 0or U3z = 0.
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Proof. Since U”V is singular, either U” or V is singular. If U” is singular, any
(row) null vector of U” is a null vector of U”V. Hence, such a vector has only the
last component non-zero. Hence the last column of U (and, in particular, u;;) is
zero. The other alternative follows similarly.

In applications of Lemma 1 throughout this paper, the matrices U and V will be
of the form

9:1(71) g2(1) gs(11)
0i(2) o) gs(%) |,
91(17s) g2(7s) 93(13)

where 1, 72, 73 are positive integers and g:1(7), g2(%), gs(¢) are various functions.
Such a matrix will be written in the abbreviated form

{91(2), g2(3), ga(3): ¢ = 41, %2, 74},
and the notation will be extended, where necessary, to matrices of higher order.
At this point it is convenient to introduce also the following notations for
i1=12 -,
b = Z bja;i ¢/ = Z @iiCj
J=1 j=1

b ill

14 v
/7 ” !/
> bjas, Ci 2 aici,
= =)

v v
14 " 4 ”
b = 2 b/a, ¢ = X aue,

=1 j=1

’ ” ” m m m ’ ” ” m m m
sothatb. =bv-—l=by =bv—2=by—l=by =C =C =¢ =C =¢ =c¢ =0

as a consequence of (3). ) )
Lemma 2. If P € S(p, v) for p,v = 2thenP € S(p — 1,v — 1), where P s defined
by

aij = Qij, i,j=1)2""7"_1;
b; = b, i=1,2 - ,»—1

Proof. In fact, we will show that, if P € S,(p, »), then P € Spp1(p — 1, » — 1).
Consider ® = Z;-l bixi, an elementary weight for the process P with order
r £ p — 1. We first prove that x; does not depend on any ai; for which k or I ex-
ceeds j. This is certainly true in the case of ® = ¢, for, here, x; = 1. The result now
follows in other cases by induction on r, for, if ® is given by (2), then the orders of
&, , d,, -+, b, are all less than r and

Xi = H Z @k Xk
=1 k=1
where x« , the coefficient of by in @, , by the induction hypothesis, does not depend
on any a, for which [ or m exceeds k. However, a; vanishes for k = j so x,; does not
depend on any ai for which I or m exceeds j.
For the process P, ® takes the value D ;21 b;x; , since x; (j < » — 1) isa function
only of the ay; for which k and [ are less than » and, hence, takes the same value for
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412 J. C. BUTCHER

P and P. We have
Z bJXJ = Z biaiix;

DJ-

where we have set the upper limit for j equal to v, since a;, = 0 for all <. This last
expression, using the notation (2), is equal to [®] evaluated for P. Moreover, the
order of [#]isr 4+ 1 =< p, so that the constant corresponding to vy for this elementary
weight is (r + 1)v. Hence we have

(r+ 1)! _ rl
r+Dy(r+n+1)! y(r+n+DH
s0 that P € Spa(p — 1,» — 1). ' ]
Lemma 3. If P € Sa(p, v) for p,v = 2andc, = 1, then P € Spa(p— 1,v — 1),
where P is defined by

(8] =

d;; = aij, i1j=112""7"—1’

bi=bi(1_cj)/(n+l); j=1)2y""”—1'
Proof. Defining &, x; as in the proof of Lemma 2, we have

v—1 _ l (r v )
Z; bix; = e | jgbix:‘ - ’Z;bjcjx:' .

The first sum on the right-hand side is equal to ® evaluated for P. If we write
& = [®, - - - &,] and consider the elementary weight ¢ = [¢pD1D; - - - B,], we see
that the coefficient of b; in & differs from the coefficient of b; in & by the factor

»
Zag-l = (¢,

J=1

since 1 is the coefficient of b; in ¢. Hence,

= Zy: bicixs ,
so that -
,Z_; bixi = —+—1 (@ — &),
with the right-hand side evaluated for P. Since P € S.(p, »), we have
rl
A F ol

However, the order of  is r + 1 < p and, corresponding to v, it has associated
with it the constant v' = (r + 1) 1-yrye -+ 7o = (r + 1)/, so that

’r_ (T+ 1)'
T+ D/ +n+ D

Subtracting this from the value of ® and dividing by » + 1 we find

- rl
E“”‘vu+n+nv

so that P € Sppa(p — 1, v — 1).

[+
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Lemma 4. If P € S(p, v)and b, = 0,then P € S(p, v — 1), where P is defined by

di; = ag, ,j=1,2+-,v—1,
b; = b; j=1,2--,»—1.
LemMa 5. If P € S(p, v) and c; = O, then P € S(p, v — 1), where P is defined by
Gq = Qi1 + Giage, 1=1,2 ---,»—1,
Gij = Giy141, 4,7 =23, -,v—1,
b; = bjy, =23 -,v—1,

By = by + bs. '

Proofs. These lemmas follow since, for P and P, any & has the same value. For
Lemma 4 this is trivial; for Lemma 5 we consider an elementary weight ® which
takes the value /=1 bix: for P and Y2} b:x; for P. We will prove by induction on
r, the order of ®, that

X1 = X2 = X1,
Xi = Xi-1, ":=374r"'7”)

s0 that Lemma 5 will follow.
For & = ¢ the result is clear. We now suppose r > 1 and that ® = [$®; - - - ®,].
Since &;, ®;, - -+, ®, have orders less than r we may further suppose that

X1t = Xiz = Xa,
Xii = Xij-1, j=34 -,
where we have written, forz = 1,2, - -, s,
&, = Zv: bixii (for P),
-
®; = jzglz;jii,- (for P).

Since az; = ¢z = 0, we now have

xe = I1 2 asxii = 0.

im=] je=l
Also, since ayg = aip = -+ = Gy = Gz = -+ = 0, we have x1 = x1 = 0. Hence,
x1 = X2 = X1. We also have, forz = 3,4, ---, »,
s v—1
Xi1 = H Z Qi1 kX 5k
j=1 k=1

8 r—1
= H (aﬂle + aoxe + k;z ai.k+1Xi,k+l)

=1

8 v

H Z Qix X jk

J=1 k=1

= Xi-
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414 J. C. BUTCHER

LeEmMMA 6. If ¢,_1 = ¢, = 1 and P € S(p, v), where p = 2, v = 3, then there is a
PcS(p—1,v—2).

LemMa 7. If ¢, = 1,b,.1 = 0 and P € S(p, v), where p = 2, v = 3, then there is a
PcS(p—1,v—2).

Proofs. To prove Lemmas 6 and 7 we apply Lemma 3 and notice that, in either
case, the P formed is such that b,_; = 0. We now apply Lemma 4 to P and the results
follow.

LemMma 8. If p > v > 0, then S(p, v) is empty. In particular, So(p, v) 18 empty.

Proof. In view of Lemma 2 and the obvious fact that S(p + 1, ») < S(p, »),
it is sufficient to prove that S(2, 1) is empty. If P € S8,(2, 1), we would have

¥

1

[¢] = bic =,M’

which is not true, since ¢; = 0.
LEmMMa 9. If P € S(4,4), thency = 1
Proof. If we write

U= {c;, ¢l 2 — clii =2 3,4},
V = (b, bici, (n + 1)b/ — (1 — c)bs 15 = 2, 3, 4},
and suppose that P € S,(4, 4), then the product is
1! 21

Wt @il O

UV = 2! 3! 0
(n+3)! (n+ 4)!

0 0 0

The various components in this product are easily verified. For example,

1

Z;cf{(n + Db’ — (1 = e)bi} = (n + D¢’k — (6] + [¢7]
3! 4!

4!
=+1) i

12(n + 49! 3(n + 3)!

= 0.

Thus U, V satisfy the conditions of Lemma 1 so that either 2¢c;, — ¢’ = 0 or
(n 4+ 1)b/ — (1 — c)bs = 0. But ¢’ = b = 0 so that either ¢ = O or by = 0
or ¢4 = 1. The first two alternatives must be rejected as they lead, using Lemmas 5
and 4, to the existence of a member of S(4, 3), which is impossible by Lemma 8.
Hence ¢, = 1.

Lemma 10. S(5, 5) is empty.

Proof. Suppose P € 8,(5, 5). Using the construction of Lemma 2 we can find
P ¢ 8(4, 4) with & = c¢,. Hence ¢; = 1. We now use Lemma 1 again with the
matrices

U = {ci,c? 2 —c¢t:ii =23, 5],
V = {b.(l - C,‘), b.‘C,’(l -_ Ci), [(n + l)bi' b (l o C,‘)b,‘](l — c,-): 1= 2, 3, 5}
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It is easily verified that the product UV is in the correct form. Note that ¢ = 4
can be omitted from the various sums defining the elements in U”V since ¢; = 1.
Hence, we deduce as for the proof of Lemma 9 that ¢; = 0 or bs = Q or ¢s = 1 and,
again, the first two alternatives must be rejected. Hence, ¢s = ¢s = 1 so that an
application of Lemma 6 yields a member of S(4, 3), contrary to Lemma 8.
LemMA 11. S(p, p) tsempty if p = v = 5.
Proof. This result follows from Lemmas 2 and 10. Theorem 1 is a corollary.
Lemma 12. If P € S(6, 7), then ¢; = 1.
Proof. We suppose P € S,(6, 7). Consider the matrices

U= {Ci , Ciz, Cia, 20:', - Ci2, (2Ci, - 052)(03' - 02), 3ci,' - cilci 11 = 2) 3; 4) 5) 61 7}1
V = (b, bics, bie, (n + 1)b/ — bi(1 — ), [(n 4+ 1)b — bi(1 — ¢)]{e: — er),
(n + 2)b" —b/(1 —¢:)):¢i=2,3,4,5,6, 7}.

o _[W 0
UV‘[O 0]’

where W is a nonsingular 3 X 3 matrix and O denotes a zero matrix. Hence, either
U or V has rank less than 5. Suppose it is U. Since a (row) null vector of U” is
also a null vector of UV, such a vector must have the first three components
zero. If there were a null vector with the fourth component non-zero, it would
follow that 2¢; — ¢ = 0 since (2¢;’ — ¢?)(¢ci — ¢) and 3c.” — ¢;'¢; both vanish
when ¢ = 2. If there were no such null vector, it would follow that (000010) and
(000001) are each null vectors so that (2¢5 — ¢5)(cs — ¢2) = 3¢5’ — cs'es = 0.
In the case when V has rank less than 5 it would follow similarly that (n + 1)b;/ —
bi(1 — ¢) = Oor [(n + 1)bs’ — bs(1 — ¢s)](cs — ¢1) = (n+2)bs” — b5 (1 — ¢5) = 0.
Using the fact that ¢ = ¢ = b/ = bs’ = 0, the four alternatives simplify to

It is found that

(4) c2 = 0,

(5) (2¢5 — ¢’)(es — ¢2) = ¢3¢z = 0,

(6) bi(l — ) =0,

(7) [(n + 1)bs’ — bs(1 — ¢)](cs — ¢1) = bs (1 — cs) = O.

The possibility that ¢c; = 0 is rejected as it would imply the existence of a member
of S(6, 6). Assuming that c # 0, (5) implies that ¢s = 0. We now use Lemma 1
with

U= {C.',, C;,C.' y 365” - C,"C,‘ 1= 4, 5, 6},
V = {b/,bjcc, (n + 2)b" — b/(1 — ¢:): 7 = 4,5, 6},

and deduce that ci'cs = Oor bs (1 — ¢5) = 0. If ¢s = 0, wehave 0 = b =
1/(n + 6)!, a contradiction. If c, = 0, we use Lemma 1 with

U= {C."Ci , C,’IC,?, 40,'”’ bt Ci”C,' 11 = 5, 6, 7},
V = {b;, bici, (n + 1)b/ — bi(1 — ¢;):4 = 5,6, 7},

to deduce that cscs. = 0 or by(1 — ¢;) = 0. If ¢s” = 0 (and also ¢,” = 0, since
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¢ =0)wefind0 = D i= b c;” = 1/(n + 6)!, a contradiction. If ¢; = 0, we find
0= > 1ab"ce; = 3/(n + 6), a contradiction. The possibility b; = 0 is im-
mediately rejected as it leads, by Lemma 4, to the existence of a member of S(6, 6).
Thus the present alternative leads to the result ¢; = 1.

Still assuming ¢; = 0, we now consider the possibility that bs (1 — c)
We must reject the possibility that by = 0, since S(5, 5) is empty. Hence cs
We now apply Lemma 1 once more with

U= {c, ¢cci,3¢” — cileiri = 4,57,
V = (bl — ¢), bics(1 — ¢), [(n + 1)b — bi(1 — ¢)](1 — ¢:): i = 4, 5,7},

and deduce that ¢i'c = 0 (previously rejected) or b;(1 — ¢;) = 0. Again this leads
to the result that ¢; = 1.

We now pass on to the alternatives (6) and (7). (6) implies that ¢; = 1. If
¢ # 1, (7) implies by = 0 which leads to a contradiction to Lemma 10.

Lemma 13. 8(7, 8) s empty.

Proof. We suppose there is a P € S,(7, 8). Using the construction of Lemma 2,
we see that Lemma 12 may be used to deduce that ¢; = 1. We recall also, from the
proof of Lemma 12, that either e = ¢ = 0,0r ¢g = 1 or neither of (4), (5) is
satisfied.

If ¢ = ¢ = 0, we use Lemma 1 with

0.
1.

U = {C,',C,; , Ci,ct'z’ 469'”, - C.‘”Ci 1= 5’ 67 8})
V = (b1 — ¢), bics(1 — i), [(n + 1)b — bi(1 — ¢))(1 — ¢): i = 5, 6, 8},

to deduce that cscss = O (rejected as in the proof of Lemma 12) or else bs(1 — ¢s)°
= 0. Hence ¢ = 1 and we use Lemma 6 to find a member of S(6, 6), contrary to
Lemma 11.

If cs = ¢; = 1 we again use Lemma 6 to find a member of S(5, 5), which is im-
possible by Lemma 10. Hence, neither (4) nor (5) is satisfied. We now use the type
of argument used at the start of the proof of Lemma 12 with the matrices

U= {e,cl el 2 — ¢, (26 — ¢’)(ei — @), 3" — ¢/ci:
1=2,3,4,5,6, 8}’
V = {bi(1 — i), bici(1 — ¢:), bie’ (1 — ¢), [(n + 1)b — bi(1 — ¢)](1 — i),
8
(n + 3)2l b/(1 — ¢)aji — b/(1 — c)*:4 = 2,3,4,5, 6,8},
i=
to deduce, since the rank of U exceeds 4, that one of the following results holds:
[(n + 1)bs’ — bs(1 — &)1 — &) = 0,
8
(n + 3)Z;bi’(1 — ¢)ajs — by (1 — &) = 0,
=

and this implies that bs or bs is zero or that cs or ¢s is unity. If by = 0 we use Lemma
2 followed by Lemma 7 to obtain a member of S(5, 5), contrary to Lemma 10. The
remaining possibilities have all been previously considered and disposed of.
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Lemma 14. S(p, v) tsempty for p + 1 = v = 8.
Proof. The result follows from Lemma 2 and Lemma 13. Theorem 2 is a corollary.
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