
On the Attainable Order of Runge-Kutta Methods

By J. C. Butcher

A Runge-Kutta method with v stages for solving the equation

y  = fix, y),       yixo) = yo

(where y and / are vectors), gives a result

V

yixo + h) = y0 + h £ b,g,,

where gx, 02, • • • , g, satisfy the equations

0i = / ( xo + Cih, Si + iZ aagA, i = 1, 2, • • ■ , v.

an ,a12, ■ ■ ■ ,av,,bx,bi, ■ • • ,b, are a set of constants which characterize the process

and Cx, (h, " • , c, are defined by

V

Ci = zl °«j , * = 1, 2, • • • , v.
i-i

If the elements of / are differentiable arbitrarily often with respect to x and the

elements of y, the true solution and the numerical solution can be expanded in

powers of h. It has been shown [1] that these two expansions agree up to terms in

h" (that is, the process is of order p) if

(1) f> = I/7       whenever   r ^ p.

In this formula, <ï> is a typical elementary weight, r is its order, and 7 is a certain

integral constant associated with it. $ itself is a polynomial of degree 1 in

bx,b2, ■•• ,b, and degree r — 1 in an, au, • • • , a,,.

To find the values of 7 for the different i>, one may use a result proved in [1]. If

$1, $2, • ■ • , *» have values 71, 72, • • ■ , 7« corresponding to them and if

(2) 4» = [*i*t • • • *.],

then

7 = »"7i72 • • • 7« ,

where r is the order of $. The notation (2) is used where 4> is related to

$1, f>2, • • • , *» by the formulae

V

** = 22 bjXk,, k = 1, 2, • • • , s,
j-i

v m       y

* = 13 h n 22 aijXkj,
i-\ k-1 3-1

and x*y (fc — 1, 2, • • • , s;j = 1, 2, • • • , y) is a function of an , a]2, • • • , a,v but not
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ORDER  OF  RUNGE-KUTTA  METHODS 409

oibxjbi, • • • , br. The only elementary weight of order 1 is 2y=i bj and this will be

denoted by <t>. For <¡> the value of 7 is 1.

To illustrate the structure of the various elementary weights consider $1, $2,

<£3, $ denned as follows:

$1 = [H>],

4>2 = [4mI>4,],

$3  =   [*l],

These can be simply expressed in terms of the parameters of a process. All sum-

mations are from 1 to v.

$1 = ¿_, haijanc = 2 biC2,
ijk i

$2=21 bid,i

$3 = £ biaise2,

$ = 12bi('Elaiic')(']£laijc')l(^,aijaiicCki).
i j i jk

The orders (n , r2, r3 and r, say) are, respectively, 3, 4, 4, 16 and the constants

"ft , 72, 73, 7 are equal to

7! = 311 = 3,

72 = 4111 = 4,

73 = 4-3 = 12,

7 = 16-3-4-412 = 9216.

It is convenient to write each elementary weight using only brackets and the symbol

</>. For the present examples we can write

*3 = [«J = [[<t>4>]],

$ =  [f-^Svía] =  [[<txt>][<Hxt>]ÍHxt>][[<t>4>])]-

This notation can be abbreviated by using superscripts to indicate the repetition of

blocks of symbols and subscripts to indicate repetition of brackets. With these

abbreviations we have

*i = I*2],

*i = [A
<h = y>%,

In this paper we will be concerned only with explicit (that is, classical) processes

so that
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410 J.   C.   BUTCHER

(3) o<y = 0       whenever   j ^ i.

With this restriction, there are at least as many parameters 021, • • • , b, to be chosen

as there are equations of the form (1), when p = v g 4. It is not surprising, there-

fore, that there exist Runge-Kutta processes of order v with v stages when v = 1,2,

3, 4. However, for p = v > 4, there are more equations ( 1 ) than there are param-

eters to choose so it would not be surprising either if there were no Runge-Kutta

process of order v with v stages when v — 5, 6, 7, • • • . For the case v = 5, a proof of

this result has been given [2]. However, the proof was exceedingly complicated. In

this paper the result is proved in a much simpler way for all cases v =» 5, 6, 7, • • •

and, moreover, it is shown that processes with p + 1 = v do not exist when p è 7.

If we use the notation of Antosiewicz and Gautschi [3] and write p*(») for the highest

order attainable with v stages, then, using results from [2] and this paper, one can

determine the following new information about this function :

P*(5) = 4,

P*(6) = 5,

P*(7) = 6,

p*(8) = 6,

p*iv) g v - 2,       v - 9, 10, • • • .

The next simplest questions that one might ask are (a) is there a Runge-Kutta

process with v = 9 and p = 7; and (b) is there a Runge-Kutta process with v = 10

and p = 8. The first of these must be answered in the affirmative as the author has

found such a process; details of this process will be included in a later publication.

Thus p*(9) = 7. The answer to question (b) and, hence, the exact value of p*(10),

seems to be still a matter of conjecture.

We will refer to a given process with parameters a2i, a3l, • • ■ , bx, b2, ■ ■ • as the

process P. Another process with parameters ä2l ,d31, ■ ■ ■ ,bx ,b2, • ■ ■ will be referred

to as P. Soip, v) will denote the set of Runge-Kutta processes of order p with v stages

so that P £ Soip, v) iî P has v stages and the various $ formed from the numbers

a»,, • • • , 61, • • • , b, satisfy (1). More generally, we write Sn(p, v) for the set of v

stage processes where, for each $ of order r g p, ( 1 ) is replaced by

$ =        rl

yin + r)!'

and n is a non-negative integer. Also we write Sip, v) for the union of the sets

Soip, v), Sxip, v), S2ip, v), ■ ■ ■ .

In terms of this notation we now state the two main results of this paper.

Theorem 1. The set Soip, ") is empty ifp¿n¿5,

Theorem 2. The set Soip, ") is empty if p »• u — 1 è 7.

A number of lemmas now follow and Theorems 1 and 2 are corollaries to Lemmas

11 and 14.
Lemma I. If U and V are 3X3 matrices with typical elements uy and va and if

UTV has only zero elements in the last row and last column but has rank 2, then either

u13 = 0 or v33 = 0.
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Proof. Since UTV is singular, either UT or V is singular. If UT is singular, any

(row) null vector of UT is a null vector of UTV. Hence, such a vector has only the

last component non-zero. Hence the last column of U (and, in particular, ul3) is

zero. The other alternative follows similarly.

In applications of Lemma 1 throughout this paper, the matrices U and V will be

of the form

giiii) gtiii) g»iii)

Qiik) gtiit) gsiii)

.giiu)      Éfc(îs)      g»iú)_

where ix, i2, i3 are positive integers and gxii), g2ii), g3ii) are various functions.

Such a matrix will be written in the abbreviated form

igiii), g»(i), gi(i): i - n, h , it),

and the notation will be extended, where necessary, to matrices of higher order.

At this point it is convenient to introduce also the following notations for

i = 1, 2, • • • , v.

Iß V

bi  = H bjdji, c/ = 2Z Oifii,
>-i j=i

V V

Oi / . Oj Oji,        d    —  / . a%jCj,
i-i i-i

V V

Oi   = 2w bj an ,       Ci   = 2-1 a*ici i
J'-1 3=1

so that o, = b„-x = b, = o,-2 = o„-i = b, = c2 = c2 = c3 = c2 = c3 = d =0

as a consequence of (3).

Lemma 2. If P £ Sip, v) for p, v ^ 2 thenP £ Sip — 1, v — 1), whereP is defined

by

da = an , i, j = 1, 2, • • • , v — 1,

bj = b¡, j = 1, 2, ••• , v - 1.

Proof. In fact, we will show that, if P 6 <S„(p, v), then P Ç. Sn+xip — 1, v — 1).

Consider 4> = ¿Ji-i bjXi, an elementary weight for the process P with order

r i£ p — 1. We first prove that x> does not depend on any aki for which k or Z ex-

ceeds j. This is certainly true in the case of i> = <b, for, here, xi = 1- The result now

follows in other cases by induction on r, for, if 4> is given by (2), then the orders of

*i, $2, • ■ • , *» are all less than r and

8 V

Xi = IIS a3*X*
¿-1 t-1

where x«*, the coefficient of bk in #<, by the induction hypothesis, does not depend

on any a¡m for which i or m exceeds k. However, a¡k vanishes for k S; j so x; does not

depend on any a¡m for which I or m exceeds j.

For the process P, 3> takes the value 2^J-i 63X3, since x¡ (j' = " — 1 ) isa function

only of the a« for which k and Z are less than v and, hence, takes the same value for
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412 J.   C.   BUTCHER

P and P. We have
v— 1 V

H biXi =   12 biOaXi,
j-l i,3-l

where we have set the upper limit for j equal to v, since air = 0 for all i. This last

expression, using the notation (2), is equal to [<3>] evaluated for P. Moreover, the

order of [$] is r + 1 ^ p, so that the constant corresponding to 7 for this elementary

weight is (r + 1 )7. Hence we have

(r + l)y(r + n + 1)!      7(r + n + l)!'

so that P € <SB+i(p - 1, v - 1).

Lemma 3. // P € <S„(p, p) for p, v ^ 2 and c, = 1, iAen P G <S„+i(p — 1, v — 1),
wftere P ¿s defined by

da = an , i,j=l,2,---,v — l,

bj = 6,(1 - Ci)/(n + 1), j = 1, 2, •••,„- 1.

Proo/. Defining $, xj as ui the proof of Lemma 2, we have

^ ^'X> = », _i_ 1 ( 23 byxv - 2~1 bjCjXi ) .
3-1 n + 1 v-i 3-1 /

The first sum on the right-hand side is equal to $ evaluated for P. If we write

* = [$i$s • • • 3>.] and consider the elementary weight $' = [4$i$g • • • $,], we see

that the coefficient of ¿>, in $ differs from the coefficient of 6,- in <3? by the factor

2~1 o<3-l = ci,
3-1

since 1 is the coefficient of bi in <b. Hence,

$' = 2Z biCiXi,
i-l

so that

3-1 n + 1

with the right-hand side evaluated for P. Since P € <S„(p, v), we have

7(r + n) !

However, the order of f> is r + 1 g p and, corresponding to 7, it has associated

with it the constant 7   = (r + 1) • 1 -7172 • • • 7, = (r + l)7/r, so that

*'- ^+1)!

((r + l)y/r)(r + » + 1)!'

Subtracting this from the value of $ and dividing by n + 1 we find

»—1

2D Sjx, =
r!

£í  3AJ      yir + n + 1)!'

so that P € S„+i(p - 1, » - 1).
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Lemma 4. If P £ Sip, p)and b, = 0,then P Ç. Sip, p — 1),where P isdefinedby

an = an , i, j = 1, 2, • • • , p — 1,

bj = bj, j = 1, 2, ••• , v — 1.

Lemma 5. If P (z Sip, v) and c2 = 0, then P £ Sip, p — 1), where P is defined by

âa = Oi+1,1 + 0^-1,2, i = 1, 2, • • • , p — 1,

äij = ßi+1,3+1, i, j ■» 2, 3, • • • , v — 1,

£3 = &3+1, i = 2, 3, • • • , v — 1,

61 = bx + 62 •

Proofs. These lemmas follow since, for P and P, any $ has the same value. For

Lemma 4 this is trivial; for Lemma 5 we consider an elementary weight $ which

takes the value 2Z<-i &»X* for P and 2Z<-1 &,x< for P. We will prove by induction on

r, the order of 3>, that

Xi = X2 = Xi,

X< = x<-i, * = 3, 4, • • • , v,

so that Lemma 5 will follow.
For <ï> = <f> the result is clear. We now suppose r > 1 and that $ = [3>i4»2 •• • $,].

Since $1, $2, •••,$» have orders less than r we may further suppose that

X.i = Xi2 = Xíi,

Xu = x.\3-i, 3 = 3, 4, • • • , k,

where we have written, for ¿ = 1, 2, • • • , s,

<*>< = E bjXi:       (for P),
j-i

*< = E 6/X<i        (for P).
3-1

Since 021 = C2 = 0, we now have

X2 = n 2] ««x« = 0.
»-13-1

Also, since ou = O12 =  ■ • • = 4n * an "  • • • = 0, we have xi = Xi = 0. Hence,

Xi = x* = Xi • We also have, for i = 3, 4, ■ ■ ■ , p,

1      r-l

X.-1 = II 21 8i-i*Xik
3=1 fc=i

II ( 0,1X31 + ŒaXjï + 23 a.-,*+iX3,t+i I
3-1 \ k—i /

=  IT 23 OaXik
3=1   *=1

= Xi-
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Lemma 6. // c,_i = c, =■ 1 and P G Sip, p), where p ä 2, v ¿ 3, then there is a

P6 Sip- 1, p- 2).
Lemma 7. // c„ = 1, 6„_i = 0 and P € »S(p, p), where p ^ 2, p ^ 3, ¿Aen ¿Aere ¿s a

íesíp-i,»- 2).
Proofs. To prove Lemmas 6 and 7 we apply Lemma 3 and notice that, in either

case, the P formed is such that 6„_i = 0. We now apply Lemma 4 to P and the results

follow.

Lemma 8. If p > p > 0, then Sip, p) is empty. In particular, Soip, v) is empty.

Proof. In view of Lemma 2 and the obvious fact that Sip + 1, p) C Sip, p),

it is sufficient to prove that S(2, 1) is empty. If PC S„(2, 1), we would have
1

[<t>] = bxCx =
(2 + n)!'

which is not true, since Ci = 0.

Lemma 9. If P G <S(4, 4), then c4 = 1.
Proof. If we write

U = {Ci,c,-2, 2c/ - ft*:*- 2,3,4},

V = {bi, bid, in + 1)5/ - (1 - d)bi : i = 2, 3, 4},

and suppose that P 6 <S„(4, 4), then the product is

1! 2!

UTV =

in + 2) !    (n + 3) !

2! 3!
(n + 3)!    (n + 4)!

0 oo.

The various components in this product are easily verified. For example,

tic'iin + 1)6/ - (1 - a)bi} = (n + 1)\*¡>*\* - [<t?] + [*']
i=2

4! 3! 4!
(n + 1)

12(n + 4)!     3(n + 3)! ' 4(n+4)!

= 0.

Thus U, V satisfy the conditions of Lemma 1 so that either 2c2' — c22 = 0 or

in + 1)6/ — (1 — d)bi = 0. But c/ = &/ = 0 so that either c2 = 0 or b4 = 0

or c4 = 1. The first two alternatives must be rejected as they lead, using Lemmas 5

and 4, to the existence of a member of 5(4, 3), which is impossible by Lemma 8.

Hence c4 = 1.

Lemma 10. >S(5, 5) is empty.

Proof. Suppose P Ç <S„(5, 5). Using the construction of Lemma 2 we can find

P € £(4, 4) with Ci = Ci. Hence c4 = 1. We now use Lemma 1 again with the

matrices

U = \ci,Ci\2ci' - c2:i =2,3,5},

V = {&,•(! - ft), bidil - d), [in + 1)6/ - (1 - c,)6,](l - a): i = 2, 3, 5}.
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It is easily verified that the product UTV is in the correct form. Note that i = 4

can be omitted from the various sums defining the elements in UTV since c4 = 1.

Hence, we deduce as for the proof of Lemma 9 that c2 = 0 or 66 = 0 or c6 = 1 and,

again, the first two alternatives must be rejected. Hence, ft = c4 = 1 so that an

application of Lemma 6 yields a member of ¿>(4, 3), contrary to Lemma 8.

Lemma 11. Sip, p) is empty if p ^ p ^ 5.
Proof. This result follows from Lemmas 2 and 10. Theorem 1 is a corollary.

Lemma 12. If P Ç S(6, 7), then c7 = 1.
Proof. We suppose P € S„(6, 7). Consider the matrices

U = ¡Ci, c2, Ci, 2c/ — o2, (2c/ — c2)id — c2), 3c" — c/ft : i = 2, 3, 4, 5, 6, 7},

V = {6,-, 6iC¿, 6,-ft2, in + 1)6/ - 6,(1 - ft), [(n + 1)6/ - 6,(1 - ft)]fa - c7),

(n + 2)6," - 6/(1 - ft): i = 2, 3, 4, 5, 6, 7}.

It is found that

™-[Wo   ^

where IF is a nonsingular 3X3 matrix and 0 denotes a zero matrix. Hence, either

U or V has rank less than 5. Suppose it is U. Since a (row) null vector of UT is

also a null vector of UTV, such a vector must have the first three components

zero. If there were a null vector with the fourth component non-zero, it would

follow that 2c2 — c2 = 0 since (2c¿ — c,- )(c, — C2) and 3ft — act both vanish

when i = 2. If there were no such null vector, it would follow that (000010) and

(000001) are each null vectors so that (2c3 — ft )ic3 — c2) = 3c3 — c3c3 = 0.

In the case when V has rank less than 5 it would follow similarly that (71+1)67 —

67(1 - ft) = Oor [in + 1)6/ - 6,(1 - c)](ft - ft) = (n + 2)6," - 6/(1 - ft) = 0.
Using the fact that c/ = ft" = 6/ = 66" = 0, the four alternatives simplify to

(4) d = 0,

(5) (2c/ - Ci)(c3 - c2) = c3'c3 = 0,

(6) Ml - cr) = 0,

(7) [in + 1)6/ - 6,(1 - Ci)]ico - ft) = 6/(1 - c,) = 0.

The possibility that c2 = 0 is rejected as it would imply the existence of a member

of (S(6, 6). Assuming that c2 ^ 0, (5) implies that c3 = 0. We now use Lemma 1

with

U = {ft , Ci d , 3c,   — Ci d : i = 4, 5, 6},

V = {6/, 6/ft, in + 2)6/ - 6/(1 - ft): i = 4, 5, 6},

and deduce that cid = 0 or 6/(1 — c6) = 0. If c/ = 0, we have 0 = 2Z'-i 6,'"c/ =

l/(n + 6)!, a contradiction. If c4 = 0, we use Lemma 1 with

U = [ci Ci, d c2, 4c,    — d Ci : i = 5, 6, 7},

V = [h, bid, in + 1)6/ - 6,(1 - ft): i = 5, 6, 7},

to deduce that c6ft" = 0 or 67(1 — ft) = 0. If c6" = 0 (and also c4" = 0, since
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ft' = 0) we find 0 = 2^<=i 6/'c," = l/(n + 6) !, a contradiction. If c6 = 0, we find

0 = 2Zi=i 6,"ftc/ = 3/in + 6)!, a contradiction. The possibility 67 = 0 is im-
mediately rejected as it leads, by Lemma 4, to the existence of a member of $(6, 6).

Thus the present alternative leads to the result ft = 1.

Still assuming ft' = 0, we now consider the possibility that 6,'(1 — c«) = 0.

We must reject the possibility that 6,' = 0, since Sib, 5) is empty. Hence c, = 1.

We now apply Lemma 1 once more with

U = {ft', c/et, 3ft" — e/e,- : i =» 4, 5, 7},

V = {6,(1 - ft), 6<ft(l - ft), [in + 1)6/ - biil - ft)](l - c,): i = 4, 5, 7},

and deduce that eld = 0 (previously rejected) or 6?(1 — ft) = 0. Again this leads

to the result that ft = 1.
We now pass on to the alternatives (6) and (7). (6) implies that ft = 1. If

ft 5¿ 1, (7) implies 6,' = 0 which leads to a contradiction to Lemma 10.

Lemma 13. <S(7, 8) is empty.

Proof. We suppose there is a P € <S„(7, 8). Using the construction of Lemma 2,

we see that Lemma 12 may be used to deduce that ft = 1. We recall also, from the

proof of Lemma 12, that either ft' = ft = 0, or c, = 1 or neither of (4), (5) is

satisfied.
If ft' = ft = 0, we use Lemma 1 with

U = {d'ci, cíe?, 4c/" — c"d : i = 5, 6, 8},

V = ¡6<(1 - ft), 6<ft(l - ft), [in + 1)6/ - 6¿(1 - ft)](l - a): i =  5, 6, 8},

to deduce that ftft" = 0 (rejected as in the proof of Lemma 12) or else 6,(1 — ft)2

= 0. Hence c8 = 1 and we use Lemma 6 to find a member of £(6, 6), contrary to

Lemma 11.
If c = ft = 1 we again use Lemma 6 to find a member of 5(5, 5), which is im-

possible by Lemma 10. Hence, neither (4) nor (5) is satisfied. We now use the type

of argument used at the start of the proof of Lemma 12 with the matrices

U = [d, c2, c3, 2c/ — ft', (2c/ — c2)id — c2), 3c/' — c/c- :

i= 2,3,4,5,6,8},

V = [biil - d), hail - ft), 6tc,-2(l - ft), [in + 1)6/ - 6<(1 - C<)](1 - Ci),

8

in + 3) Z 6/(1 - Cj)aji - 6/(1 - ft)8: i = 2, 3, 4, 5, 6, 8},
3=1

to deduce, since the rank of U exceeds 4, that one of the following results holds:

[in + 1)6/ - 68(1 - c8)](l - c8) = 0,

in + 3) ¿ 6/(1 - ft)a„ - 6/(1 - c,)2 = 0,
3=1

and this implies that 6, or 6g is zero or that c, or c8 is unity. If 6, =0 we use Lemma

2 followed by Lemma 7 to obtain a member of S(5, 5), contrary to Lemma 10. The

remaining possibilities have all been previously considered and disposed of.
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Lemma 14. Sip, p) is empty for p + 1 — i< = 8.

Proof. The result follows from Lemma 2 and Lemma 13. Theorem 2 is a corollary.
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