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PROBABIUTY INEQUALITIES FOR SUMS OF BOUNDED RANDOM VARIABLES1

Wassily Hoeffding
University of North Carolina

Upper bounds are derived for the probability that the sum S of n

independent random variables exceeds its mean ES by a positive number nt. It is

assumed that the range of each summand of S is bounded or bounded above. The

bounds for Pr
,

S - ES > nt I. depend only on the endpoints of the ranges of the
.i

summands and the mean, or the mean and the variance of S. These results are then

used to obtain analogous inequalities for certain sums of dependent random

variables such as U statistics and the sum of a random sample without replacement

from a finite population.

1. Introduction. ... , X be independent random variables
n

with finite first and second moments,

(1.1) , x = Sin ,

( 1.2) ~ = EX = ES/n , (l = n var( X ) = 6:rar E}'n

(Thus if the X. have a common mean then its value is ~ and if they have a common
1

variance then its value is ~2.) In section 2 upper bounds are given for the

probability,

Pr i. X - ~ ~ t 1 = Pr t S - ES > nt I

where t > 0, under the additional assumption that the range of each random variable

Xi is bounded (or at least bounded from above). These upper bounds depend only on

t, n, the endpoints of the ranges of the X., and on ~, or on ~ and~. We assume
1

t > 0 since for t ~ 0 no nontrivial upper bound exists under our assumptions. The

" Iproofs are given in section 3. Note that an upper bound for Pr t X - ~ ~ t f

implies in an obvious wayan upper bound for Pr { -X + ~ ~ t} and hence also for

1
This research was supported by the Air Force Office of Scientific

Research.
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Pr { Ix - ~ I~ t} = Pr lX - ~ ~ t j + Pr f. -X + ~ ~ t.1

,
Known upper bounds for these probabilities include the Bienayme-Chebyshev

inequality

Pr { IX - ~ I~ t }
2

<..2:..
- 2nt

,
2

Chebyshev's inequality

1<x- ~ ~ t }Pr(1.6) 2
1 + n~

Cl"

(which do not require the assumption of bounded summands) and the inequalities of

Bernstein and Prohorov (see formulas (2.22) and (2.23) below). Surveys of in­

equalities of this type have been given by Godwin ["4_7, Savage ["11_7 and

Bennett ["1_7. Bennett also derived new inequalities, in particular inequality

(2.21) pelow, and made instructive comparisons between diffe~ent bounds.

The method employed to derive the inequalities, which has often been

used (apparently first by S. N. Bernstein), is based on the followinp' simple

observation. The probability Pr { S - ES ~ .~·t} is the expected y:"j.u.e of the

function which takes the values 0 and 1 according as S - ES - nt is < 0 or > O.

This function does not exceed expi: h(S - ES - nt») ,where h is an arbitrary

positive constant. Hence

Pr i X - ~ ~ t} = Pr -1 S - ES > nt; < Eeh( S-ES-nt)

If, as we here assume, the summands of S are independent, then

2Inequality (1.6) has been attributed to various authors. Chebyshev r127
seems to be the first to have announced an ine~1ality which implies (1.6) as an
illustration of a general class of inequalities.
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n
= e- hnt IT

i=l

h( X. -EX.)
E e J. J.

It remains to obtain an upper bound for the expected value in (1.8) and to

minimize this bound with respect to h. The bounds (2.1) and (2.12) of Theorems 1

and 3 are the best that can be obtained by this method under the assumptions of

the theorems. They are not the best possible bounds for the probability in (1.7).

The bounds derived in this paper are better than the Chebyshev bounds (1.5) and

(1.6) except for small values of t. Typically, if t is held fixed, they tend to

zero at an exponential rate as n increases.

In section 4 the results of the preceding sections are used to obtain

probability bounds for certain sums of dependent random variables such as U

statistics and sums of m-dependent random variables. In section 5 a relation

between samples with and without replacement from a finite population is estab-

lished which :mplies probability bounds for the sum of a sample without replace-

ment.

The following facts about convex functions will be used; for proofs see

L5_7. A continuous function f(x) is convex in the interval I if and only if

f(px + (1 - p)y) ~ pf(x) + (1 - p)f(y) for 0 < P < 1 and all x and y in I. If

this is true for all real x and y, the function is simply called convex. A

continuous function is convex in I if it has a nonnegative second derivative in I.

If f(x) is continuous and convex in I then for any positive numbers Pl' ••• , PN

•

such that Pl + + PN = 1 and any numbers xl' ••• , xN in I

N N
f( ~ PixJ.') < ~ p.f(x.)

i=l i=l J. J.

This is known as Jensen's inequality.
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2. Sums of independent random variables. In this section probability

bounds for sums of independent random variables are stated and discussed. The

proofs are given in section 3.
2

Let Xl' X2 , "" Xn be independent random variables and let S, X, ~ and u

2
be defined by (1.1) and (1.2). First we consider bounds which do not depend on u .

... ,
Theorem 1. If Xl' X2, "" X are independent and 0 < X. < 1 for i =: 1,

n ~-

n, then for 0 < t < 1 - ~

(2.1)

(2.2)

where

Pr LX -

2
-2nt<e

(2.4) () 1 1/ 1- ~
g~ =--,I;.n-

1-2~ ~

1
for 0 < ~ < '2 '

1 1
= 2~(1-~) for'2:S ~ < 1

The assumption 0 < X. < 1 has been made to give the bounds a simple form.- ~-

If instead we assume a < X. < b, the values ~ and t in the three upper bounds of- ~-

the theorem are to be replaced by (~- a)/(b - a) and t/(b - a), respectively.

If t > 1 - ~, then under the assumptions of Theorem 1 the probability in

(2.1) is zero. Inequality (2.1) remains true for t = 1 - ~ if the right hand

side is replaced by its limit as t tends to 1 - ~, which is ~n. In this special

case the sign of equality in (2.1) can be attained. Indeed, if t = 1 _ ~, then
/'

Pr t X - ~ ~ t } =: Pr 1. X =: 1} = Pr [ S = n ,1 , and Pr l S = n } n 'f= ~ ~

Pr l Xi = 0 J = 1 - ~ , 5 'J
Pr l Xi =: 1 j = ~ , i = 1, .•• ,n ,
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that is, if S has the binomial distribution with parameters n and ~.

The bound in (2.1) is the best that can be obtained from inequality (1.7)

under the assumptions of the theorem. Indeed, it is the minimum with respect to

h of the right hand side of (1. 7)

Denote the bounds in (2.1)

when the X. have the distribution (2.5).
~

and (2.2) by Al and A2 , respectively. Then

Al~ A2 and the first bound is appreciably better than the second if the ratio

Al /A2 is not close to 1. We can write

(2.6)

where

(2.7)

2
A -nt G(t,~)

1 :::: e

If t is small, we can approximate G(t,~) by the first terms of its expansion in

powers of t,

(2.8) () 1 2~ - 1 1 - 3~( 1 - ~)
G t,~ :::: 2 (1 II) + 2 2 t + z ~

~ - r- 6~ (1 - ~) 12~.I(1 - ~).I

2
t + •••

1If ~ >2' then all coefficients in the expansion (2.8) are positive and we have

In this case the bounds in (2.2) and (2.3)

A ,.

A
l

< exp J
2 >

1 4
If ~ :::: 2' then AI /A2 < exp(-4t n/3).

21J. - I
2 2

6~ (I - Il)

than Af") unless
c

•

are equal.

If Il <~, then g(~) < -=2-~""(l"...;l;;..__~...) and for t small Al is appreciably better

- g(~t) ] t
2

n is small. We have Al :::: A2 if ~ < ~ and

t :::: I - 2~.

For the special (biuvroial) case (2.5) the inequalities of Theorem 1 (except

for (2.2) with ~ <~) have been derived by Okamoto ~9_7.
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The following theorem gives an extension of bound (2.3) to the case where

the ranges of the summands need not be the same.

... ,
Theorem 2. If Xl' X2 , ••• , X are independent and a. < X. < b. (i =1, 2,n 1- 1- 1

n), then for t > 0

2n2t
2

( 2.10) < e
zr: I( b . - a. )

2
1= 1 1

As an application of Theorem 2 we obtain the following bound for the dis-

tribution function of the difference of two sample means.

Corollary. If Yl , "', Ym, Zl' "', Zn are independent random variables

with values in the interval [a,b ], and ifY = (Yl + ••• + Ym)/m, Z =

(Zl + .•• + Zn)/n, then for t > 0

(2.11)
'\

Prl Y - Z - (EY - EZ) > t }
- J

< e

The ine~ualities of the next theorem depend also on the variance ~2/n of X.
We now assume that the Xi have a common mean. For simplicity the mean is taken to

be zero.

Theorem 3. ... , X are independent, EX
1
, =0, X. < b (i =1, 2,n 1-

••• J n), then for 0 < t < b

(2.12)

2 b2 n

- (1 +.E!) ~ -(1- i) '{J 2 b2 2 b2 2
~ +~ +~

jPr X 2' t J < ( (1 + bt) (1 - ~)2 b
(J

nt I ~2 bt
]-;;- [(1 + bt)fn(l + 2) - 1

~

<'e

Here the summands are assumed to be bounded only from above. However, to

obtain from this theorem an upper bound for Pr 'l) I X I > t ~ , we must assume that- "
the summands are bounded on both sides.
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e,..L.1Inequality (2.12) is the best that can be obtained from (1.7) under the

present assumptions. It is the minimum with respect to h of the right hand side

of (1.7) when the X. have the distribution
1.

(2.14)
! (J2 I

Pr t Xi =- b J = 2 2
b + (J

, 1 clx. = b ," = 2 2
1. J b + 0-

i = 1, .•. , n

,

Inequality (2.12) is true also for t = b if the right hand side is replaced by

its limit as t tends to b, which is [ (J2/(b2 + (J2) In. In this case the sign of

equality in (2.12) is attained when the distribution is (2.14).

The bound (2.13) is due to Bennett (~1_7, inequality (8b». (Bennett's

notation is different from mine. His first proof assumes Ix. I < b (= lilis M),
l -

a second proof (pp. 42-43) uses only X. < b.)
l-

Let the upper bounds in (2.12) and (2.13) be denoted by B1 and B2 , re-

spectively. The ratio B1/B2 can be written in the form

where

B1 _ e-n¢(v,w)
B -

2
,

(2.16) 1v = -----:::
2

0­
1 + cJM

, ,

(2.18)

¢(v,w) = w p~~) + ~iW)
V +i-1 =1

p(x) = £2 [(1 - x)Kn(l - x) + x - i x2 J

,

+ •••

4It Since 0 < t < b, both v and ware between 0 and 1. The function ¢(v,w) is an

increasing function of both v and w. Hence 0 < ¢(v,w) < 1. If band 0-
2 are both

fixed and t approaches 0, then



t 3
¢(v,w) "....' -

6ber2

Hence Bl is appreciably smaller than B2 if n t 3/(6ber2) is not small.

If we let

(2.20) "A. _ bt
- 2

er
,

Bennett's inequality (bound (2.13» can be viri tten

(2.21) ,

Bennett has shown that (2.21) is better than Bernstein's

(2.22) pr{x~tI

Inequality (2.21) is also better than Prohorov' s L 10_7

Indeed, it can be shown that the bound in (2.21) is the best bound of the form

exp ( -T h("A.)} that can be obtained from (2.12) and hence from (1. 7). If "A. is

small, Bernstein's bound (2.22) does not differ much from Bennett's (2.21).

Under certain conditions Xis approximately normally distributed when n is

large, so that, for y ~ vn tier fixed,

(2.24)
~ "pr l

l
, X-IJ.>t~

- J

cof e-
x2

/
2

dx =l(-y)

y

as n -> 00 • (Sufficient conditions are ner2 -> co and.EE Ix. -EX. 131(er {n) 3
~ ~

-> 0.) It is instructive to compare the present bounds with the upper bound for
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_.
~(-y) which results from inequality (1.7) when X is normally distributed. In

this case the right hand side of (1.7) is exp(~hnt + h2n~2/2). If we minimize

with respect to h we obtain

PI' fl X ~ J.L > t ~- )

nt2

v;. t - 2l·
= VJ (- ...:.-~- ) < e

- 2/or rp (-y) ~ exp(-y 2), i-lhere y > O. This bound for ~ (~y) is rather crude,

especially when y is large, in which case 2:
In contrast, the bounds (2.1) and (2.12) are

(_y) is approximated by 1 exp(_y2/2).
y \f2;.

attainable at the largest nontrivial

values of t. It is interesting to note that the bound (2.2) with J.L ~ 1/2 is equal

to the right hand side of (2.25) in the binomial case (2.5). The bound (2.10) of

Theorem 2 is equal to the right hand side of (2.25) in the case where Pr f X. =: a.}
- 1 l}

= PI' {X. = b '; =: ~ for all 10 Bernstein's bound (2.22) is close to the right
<,J. il C

I 2band side of (2.25) when A. I;; bt, ~ is small. The same is true of the bounds of
Theorem 3.

The inequalities of this section can be strengthened in the following way.

Let 8 = Xl + ••• + X for m = 1, 2, ••• , n. It follows from a theorem of Doob
ill m

(2.26) PI' { ., max
. l<m<n

(8 - ES ) > nt ~m m - )

h( S ~ES -nt)
< E e n Xl

for h > O. The rj,ght hand side is the same as that of inequality (1. 7) (where

S = S). Since the inequalities of Theorems 1, 2 and 3 have been obtained from
n

(1.7), the right hand sides of those inequalities are upper bounds for the prob-

ability in (2.26) under the stated assumptions. This stronger result is analogous

to an inequality of Kolmogorov (see, e.g., Feller ~3_7, p. 220).

Furthermore, the inequalities of Theorems 1 and 2 remain true if the as-

sumption that Xl' X2 , "', Xn are independent is replaced by the weaker assumption

that the sequence S' = S - ES , m =: 1, 2, "', n, is a martingale, that is,m m m
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E( S' I 81', "', 8 ~) = 8 '.
ill J J

, ,

with probability one. Indeed, Doobls inequality (2.26) is true under this as-

sumption. On the other hand, (2.27) implies that the conditional mean of X for
m

S' 1 fixed is equal to its unconditional mean. A slight modification of them-

proofs of Theorems 1 and 2 yields the stated result.

3. Proofs of the theorems of section 2. Let X be a random varia~le such

that a < X < b. Since the exponential function exp(hX) is convex, its graph is

bounded above on the interval a:S X:S b by the straight line 'Hhien connects its

ordinates at X = a and X ::: b. Thus

(3.1) hX b - X ha X - a hb
e -<b e +--e- a b - a

a<X<b

Hence v1e obtain

Lemma 1. If X is a random variable such that a:S X:S b, then for any real

number h

(3.2) hX b - EX ha EX':'. a hb
Ee :Sb-a e +b-a e

We now prove Theorem 1. By (1.7) and (1.8) we have for h > 0

Pr /. x- l-1~t}
r. t h n hX.< e- .m - nl-1 -n- E e J.

- i=l

By assumption 0 :s \ :s 1. Let l-1i = EXi : Then nlJ. = 1-11 + 1-12 + ••• + I-1n ' By

Lemma 1 v1ith X :::; X., a = 0, b = 1 vTe have
J.

n
-n-
i=l

n
1T
i=l

Since the geometric mean does not exceed the arithmetic mean,
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1
In)i tr h) ( n

t il (l-lJ..+lJ..e f
. 1 ~ ~ .
~:::

1 n h h
< - L, (1 - lJ. . + lJ.. e ) :: 1 - lJ. + lJ.e
- n . 1 ~ ~

~=

It follows from (3.3), (3. 4) and (3.5) that

( 3.6)
n

- '/ ( -ht-hlJ.( h) (Pr ) X - lJ. > t < f. e 1 - lJ. + lJ.e j'- - j

The right hand side of (3.6) attains its minimum at h ::: h , whereo

(3.7) h - in (1 - \l)(ll + t)
o - (1 - lJ. - t) lJ.

Since 0 < t < 1 - lJ., h is positive. Inserting h ::: h in (3.6) we obtain in-o 0

equality (2.1) of Theorem 1.

To prove inequality (2.2) we write the right hand side of (2.1) in the

form exp(-nt
2

G(t,lJ.» (as in (2.6», where

(3.c;) u. u + t . 1 - u ~ t u 1 - u - txU':---- + '"" - xn '.
II t 2 1 - lJ.

,

Inequality (2.2) will be proved by showing that g(lJ.) as defined in (2.4) is the

minimum of G(t,lJ.) with respect to t, where 0 ~ t < 1 - ll. The derivative

CG(t,lJ.)/ot can be written in the form

t
2 ~ G(t,lJ.) =(1 - 2 1 ~ lJ.)fn(l - 1:lJ.)-(1 - 2 lJ.~t)fn(l - lJ.~t)

t ) t )
::: H(l_lJ. - H(lJ.+t

where H(x) = (1 - 2£1)fn(1 - x). By assumption 0 ~ t/(lJ. + t) < 1 and

o :5 t/(1 - lJ.) < 1. For Ix I < 1 we have the expansion

(3.10 ) ) 2 1 2 2 1) 3 2 1) 4H( x = 2 + (- - -) x + (To - - X + (- - 1\ x +3 2 '+ 3 5 l
,

where the coefficients are positive. Thus H(x) increases for 0 < x < 1. It
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follows from (3.9) that dG/dt > ° if and only if tiel - IJ.) > t/(IJ. + 1), that is,

t > 1 - 21J.. Hence if 1 - 21J. > 0, G(t,lJ.) has its minimum at t = 1 - 21J. and the

value of the minimum is (in 1~1J.)/(1 - 21J.) = g(IJ.). If 1 - 21J.~ 0, then G(t,lJ.) has

its minimum at t =° and the value of the minimum is 1/ [21J.( 1 - IJ.) ] :: g( IJ.) (see

(2.8». This proves inequality (2.2).

It is easily seen that g(lJ.) ? g(~) :: 2. This implies inequality (2.3).

The proof of Theorem 1 is complete.

We next prove Theorem 2. The proof will also indicate a short direct

derivation of the simple bound (2.3).

In Theorem 2 we assume a. < X. < b .• Let again IJ.. =EX.• By (1.7) and
~- ~- ~ 1. ~

(l.8),

(3.11) -hnt< e
n

IT
i=l

h(X.-IJ.. )
E e ~ 1.

By Lemma 1,

,

where

h.
L(h.) = -h.p. + in(l _ p~ + p~e 1.)

:L 1. ~ ......
,

h. = h(b. - a.)
~ ~ 1.

,

The first two derivatives of L(h.) are
1.

,
+ p.

1.
(1 -

Pi
LI(hi ) ::: -Pi + ------:"h-.--

Pi)e 1.



- 13 -

The last ratio is of the form u( 1 - u) where 0 < u < 1.

Therefore by Taylor's formula

Hence L"(h.) < 1/4.
~ -

Hence by (3.12)

hex. - Il
i

) 1 h2(b. 2
- a.)

( 3.16) E e ~ < e"8 J. J.

and by (3.11)

1 h2 n 2
-hnt +"8 r: (b. - a.)

Il > t"1
. 1 J. J.

(3.17) Pr t X- < e ~=- )

of (3.17) has its minimrnn at h = 4nt/r:(b. -
2

The right hand side a.) • Inserting
J. 1.

this value in (3.17) we obtain inequality (2.10) of Theorem 2.

To prove Theorem 3 we need two lemmas.

Lemma 2. If X is a random variable such that EX = 0, E~ := (l and X :s b,

then for any positive number h

2
-..'!...h

b
2

E hX < be _ 2 2 e
b + (J

2
(J

+ 2 2
b + (J

bh
e

A proof of this inequality can be found in Bennett ~~7 .
Lemma 3. If c > 0, the function

( ) () 1/ (1 - cu u c)3·19 f u = 'f.. n 1 + u e + l+U e

has a negative second derivative for u > O.

To prove this we write feu) = c + in f 1(Y) , where y = 1 + U and

-1
Y + 1
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Now

() ( - 2 -1) - cy - 2f I' Y :::: - Y - cy e + y

- 3 - cy( cy 1 2 2)
== - 2y e e = 1 - cy - "2 c y ,

which is negative for cy > O. Since fl(y) > 0 for y > 1, it follows that

fll(u) < 0 for u > O.

By assumption, EX. == 0 and X. < b. Let
1 1 -

2
+ rr By (1.7), (1.8) and Lemma 2,

n
2

rri 2

-hnt Trn ( b2 - -b- h rri bh)
< e -"""2"-';"-~2 e + b2 2 e

i=l b + rr
i

+ rri

We now can prove Theorem 3.

2 2 222
rri == EXi ' so that nrr = rrl + rr2 + •••

= e

n
-hnt + ~ f(rr. 2/b2

)
i=l 1 ,

where f is the fUnction defined by (3.19), with c = bh. Since, by Lemma 3, feu)

has a negative second derivative, -feu) is convex for u > O. Therefore by

Jensen's inequality (1.9)

1
n

2
b2 - .2:... h

= in( 2 2 e b + 2
b + rr b

It follows from (3.20) and (3.21) that
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2
-(t + 2-)h

b
e

(I2 (b-t)h n
+ 2 2 e )

b + (J

The right hand side of (3.22) attains its minimum at h = hI' where

1 +~
J

Inserting this value in (3.22), we obtain inequality (2.12) of Theorem 3.

Inequality (2.13) follows from equations (2.15) to (2.18). The proof of

Theorem 3 is complete.

As noted above, the upper bound (2.13) for Pr {x ~ t} has been derived

by Bennett ~1_7. An alternative direct proof goes as follows. By Lemma 3, if

u > 0, then fll(u) <: 0 and hence feu) :s f(O) + f'(O)u = (e
C

- 1 - c)u. Applying

this inequality to the right side of (3.20) (where c = bh) and minimizing with

respect to h we obtain the bound (2.13).

4. Sums of dependent random variables. The inequalities of sectiOnf,l 2

and 3 can be used to obtaj.n probability bounds for certain sums of dependent

random variables. Suppose that T is a random variable which can be written in the

form

( 4.1)

where each of Tl , T2, "', TN is a su~ of independent random variables and PI' P2'

..• , PN are nonnegative numbers, Pl+!IJl2+ ... + P
N

:: 1. The random variables

Tl , T2 , •.. , TN need not be mutually independent. For h > 0

,. j < e- ht E ehT
Pr ~T~t)

Since the exponential function is convex, we have by Jensen's inequality (1.9)



- 16 -

N N
exp( hT) ::;; exp( h L; p, T.) < L; p. exp( h T.)

'Ill-'ll 11= 1=

Therefore

( 4.2)

Since each T. is a sum of independent random variables, the expectations on the
1

right can be bounded as in section 3. If the random variables T, are identically
1

distribu.ted or if the upper bound for E exp(h(T. - t» is independent of i, then
1

the upper bound "Te obtain for Pr { T ~ t} is also an upper bound for

, 'Pr j T. > t : The bounds obtained in this way will be rather crude but may be
l 1 - j

useful.

We now consider several types of random variables T which can be repre-

sented in the form (4.1).

4a. One-sample U statistics. X2 , "', X be independent random
n

variables (real or vector valued). For n > 1" consider a random variable of the

form

1
U ::;; -=rrJ

n
L; g( X. , ... , X; )
n,r 1 1 ~r

,There nCr) ::;; n(n-l) ••• (n - 1" + 1) and the sum L; is taken over all r-tuplesn,r

i l , "', i r of distinct positive integers not exceeding n. Random variables of

the form (4.3) have been called (one-sample) U statistics. For example, if X. =
1

(Y"Z.), i = 1, "', n, are independent random vectors with two components which
1 1

have continuous distributions, then Kendall's rank correlation coefficient is of

the form (4.3) ,nth 1" ::;; 2 and g(xi,xj ) e~ual to the sign of (Yi - Yj)(Zi - Zj)'

Other examples of U statistics can be found in ~6_7.

Let



(4.4)
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v(X, ••• , X ) =1 j g(xl , ••• , xr ) + g(xr +l , ••• , x2r) +1 n k.

,

where k = [n/rJ, the largest integer contained in n/r. Then

U = ~ l: V( X. , ••• , X. )
n. n,n 1 1 ln

where (in accordance with the notation in (4.3» the sum l: is taken over alln,n

permutations i l , i 2 , "', in of the integers 1, 2, ••• , n. Each term in the sum

on the right is a sum of k independent random variables. Thus (4.5) gives a re­

presentation of U in the form (4.1) with N = nl and p. = l/n~ •
1

I f the function g is bounded,

( 4.6) ... , x ) < b
r -

,

it follows from (4.2) and the proof of Theorem 2 that

(4.7)

where k = [n/r J. This is an extension of the bound (2.3). To obtain simple

extensions of the other inequalities of theorems 1 and 3 we assume that the ran-

dom variables Xl' X2 ' ••• , Xn are identically distributed. In this case, if

o ~ g(Xl , ••• , Xr ) ~ 1, then the bounds of Theorem 1 with n replaced by [n/r J
and J..L = Eg(Xl , "', X) are upper bounds for Pr r. U - EU ~ t} , where EU = J..L.

If g(Xl , "', X ) < EU + b, then the right hand sides of (2.12) and (2.13) with
r -

n replaced by [n/r J and G
2 = var g(Xl , ••• , Xr ) aee upper bounds for

: 1
Pr i U - EU ~ t J •

4b. Two-sample U statistics. Let Xl' X2 ' "', Xm, Yl , Y2 ' "" Yn be

m + n independent random variables. For m > rand n > @ consider a random vari­

tit able of the form



( 4.8) u = () ( ) L ES( X. , "', Xir s m,r;n,s ~lm n r
Y. , "', Y. )

Jl Js

where the sum L is taken over all r-tuples iI' ••. , i r of distinct positivem,r;n,s

integers ~ m and all s-tuples (jl' "', js) of distinct positive integers 5 n. A

random variable of the form (4.8) has been called a two-sample U statistic. For

example, let X. and Y.
1 J

that Y. < X.• (This is
J ~

£8_7.) Then Ulimn is

be real and let U'denote the number of pairs (X.,Y.) such
~ J

one form of the Wilcoxon-Mann-Whitney statistic ["13_7,

of the form (4.8) with r = s = 1 and g(x,y) = 1 or 0 ac-

cording as y < x or y ~ x. Other examples of two-sample U statistics can be

found in L 7_7 .
ret

+ g(xkr- r +l , "', Xkr ' Yks- s+l' "', Yks)

where

,

( 4.10) k = mine [m/r J, [n/s J)

Then U as defined in (4.8) can be written as

( 4.11) 1
U = m.' n .' L V( X. , "', X. , }Y

J
. ,m,m;n,n 1 1 ~m 1

... ,

Each term on the right is a sum of k independent random variables. Thus (4.11)

represents U in the form (4.1).

If a5 g~ b, then for U as defined by(4.8) we have inequality (4.7) where

k is now given by (4.10). If we assume that Xl' "', X have a common distributionm
and Y

l
, ••• , Y

n
have a common distribution
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(not necessarily the same as that of X.), then the terms in (4.11) are identically
].

distributed and we obtain extensions of the inequalities of Theorems 1 and 3

analogous to those discussed at the end of section 4a, where now n is replaced by

k as defined by (4.10).

4c. Sums related to U statistics. Let again Xl' X2 , "', Xn be indepen~

dent and consider the random variable

( 4.12) 1
W =-r

n

n
2: g(X.,

i =1 1 1
r

... ,

2w :::

For example, the Cram~r-von Mises goodness of fit statistic w
2

is defined by

co
~

)'
-00

where G(x) is a given cumulative distribution function and n F (x) denotes the
n

nu~ber of those Xl' ••• , X which are < x. IfG(x) is continuous, we can write w
2

n -

in the form (4.12) with r ::: 2 and

( 4.14)

A random variable W of the form (t~.12) can be written as a U statistic,

( 4.15)

*where g (Xl' ... , x ) is a weighted arithmetic mean of certain values of g.
r

For

example, for r ::: 2 and r = 3 we have, respectively,

( 4.16) ,
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*(The function g for vlhich (4.15) is satisfied is not unlquely determined. For

example, in (4.16) the value g(xl,xl ) may be replaced by ~ g(xl,xl ) +~ g(x2 ,x2).)

Thus the results of section 4a can be directly applied to obtain upper

{ *bounds for Pr ~ W- EW > t i • Note also that since g is an arithmetic mean of
'. -_/

*values of g, a:S g :5 b implies a:5 g :s b. Hence the right hand side of (11-.7)

vlith k:::: rn/rJ is also an upper bound for Pr iw - EW:: t} if (4.6) is satis-
c.

*fied. (In some cases, as in example (4.14), the range of g is smaller than the

range of g, but the difference is negligible when n is large.)

4d. Sums of m-dependent random variables. Let

( 4.18) S :::: Y
l

+ Y
2

+ ••• + Yn

where the sequence of random variables Yl , Y2, •.. , Yn is (r-l)-dependent; that

is, the random vectors (Yl , ••• , Y.) and (Y., •.• , Y ) are independent if
1. J n

j - i:: 1', where l' is a positive integer. (Example: S:::: XIXr + X2Xr +l +

+ X X ., where Xl' X2, ••• are independent.) Then the random variables Y.,n r+n~L 1.

Y +., Y2 +., ••• are independent. For i :::: 1, .•• , l' let
l' 1. l' 1.

[ n-i+r ln.:::: --
1 1'-

Then S :=: Sl + S2 + ... + Sr and 8i is a sum of ni independent random variables.

If we put p. :::: n./n then the equation
1. 1

( 4.20)
1 l' 1
-(S - ES) :::: L: p. - (S. - EG.)
n . 1 1 n. 1. 1

1.= 1.

')
Pr j 2:( S - ES) > t >l n -)

(4.21)

represents (s - ES)/n in the form (4.1). Hence by (4.2)

l' -ht ~i (Si-ESi)
< L: p. e E e

. 1 11.=

If n is a multiple of 1', n = kr, then n. = k for all i and we can obtain in a
1.
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~ straightforward way explicit upper bounds similar to those of section 4a. In

... ,
is replaced by [n/r J. Explicitly, if

:s exp(-2 [n/r Jt
2
/(b - a)2). If Yl' Y2,

general n. > rn/r ] and it is easy to see that the bounds for the expected
~ - -

values in (4.21) remain valid if n.
~

a < Y. < b, then Pr \ S - ES > nt ~
- J- t - J

Yare identically distributed and 0 < Y. < 1, then the bounds of Theorem 1 with
n - J-

n replaced by [n/rJ and IJ. ::: EY
I

are upper bounds for Pr t S - ES' ~ nt J '
w"here ES = nlJ..

right hand sides

are upper bounds

then theIf the Y. are identically distributed and Y. - EY. < b,
J J J -

of (2.12) and (2.13) "'ith n replaced by [n/rJ and (/

for Pr LS - ES ~ nt )

5. Sampling from a finite population. In this section it will be shown

that the inequalities of section 2 yield probability bounds for the sum of a ran-

dom sample without replacement from a finite population. Let the population C con-

sist of N values cl ' c2 ' ••• , cN• Let Xl' X2, ••• , Xn denote a random sample

without replacement from C and let Yl , Y2, ••• , Y
n

denote a random sample with

replacement from C. The random variables Yl , ••• , Yn are independent and

identically distributed with mean IJ. and variance u
2 , where

1 N
IJ. = -N .E Col

i=l ...

2 1 N 2
u ::: - .E ( c. - IJ.)

N . 1 ~1=

(Note that EX = EY+ X )/n.
n

If the ci are bounded, Theorems 1, 2 and 3 give upper bounds for Pr { Y- IJ. ~ t} ,

iV"here Y = (Yl + ••• + Yn)/n. It will now be shown that the same bounds, with IJ.

and u
2

defined by (5.1), are upper bounds for Pr i X - IJ. ~ t] , where X '"

2 2
b t Var -X -_ N-n_u <_u V -Y) Th= Jl. U N-l n n:: ar. is

will be an immediate consequence of

Theorem 4. If the function f(x) is continuous and convex then

n n
Ef( .E X.) < Ef(.E Y

i
)

i=l ~ - i=l
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Applied to f(x) = exp(hx) the theorem yields the claimed result if we re­

call that the bounds of Theorems 1 to 3 have been obtained from inequality (1.7).

(Note that the inequality Var X~ Var Y is a special case of (5.2).)

To prove Theorem 4 we first observe that for an arbitrary function g of n

variables we have, in the notation of (4.3),

1 N
Eg( Yl , "', Yn) ~ - Err i =1

1

N
E g( c. ,

i =1 ~l
n

... , c. )
~n

The right hand sides are of the same form as U in (4.3) and Win (4.12), re-

spectively. It has been observed in section 4c that W can be written as U with
-:+

g replaced by an arithmetic mean g of values of g. It follows that

... , *Y ) = Eg (Xl' "', X )n n

*As mentioned after (4.17), the function g is not uniquely determined. The version
....

of g"(xl , "', Xn) which is symmetric in Xl' "', xn will be denoted by

g(x1, "', xn). Here we are concerned with the special case g(xl , "', xn) =

f(xl + .•• + Xn). In this case, if n = 2,

In general g can be written as

(5. 6) ... , ik)f(r1x. + ••• + r1rx. )
~ ~l ~ ~k

,

where the sv~ E' is taken over the positive integers k, r 1, "', r k, iI' "', i k

such that k = 1, ••• , nj + r - n'k - , and iI' ••• , i k are all different

and do not exceed n. The coefficients p are positive and do not depend on the
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function f. In accordance with (5.5) we have

(5. 7) ... , x )
n

If we let f(x) = 1, we see from (5.6) and (5.7) that

If we put f(x) = x, then g(xl , "'J Xn) is a linear symmetric function of

Xl' "', xn and hence equal to K'(Xl + •••

Since E(Yl + ••• + Yn) = E(Xl + ••• + Xn),

+ X ), where K is a constant factor.
n

it follows from (5.7) that K = 1. Thus

If f(x) is continuous and convex, it follows from (5.6), (5.8), (5.9) and Jensen's

inequality (1.9) that

g(x
l

, ... , x ) > f(x
l

+ ••• + x )
n - n

..

Hence E g(Xl , ••• , X ) > E f(Xl + ••• + X). With (5.7) this implies Theorem 4.
n - n
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