Theoretical Statistics. Lecture 10.
Peter Bartlett

Uniform laws of large numbers: Bounding Rademacher coniylex

1. Growth function.

2. Vapnik-Chervonenkis dimension.




Recall: Uniform laws and Rademacher Complexitﬁ

Definition: The Rademacher complexityof F' is E| R, | », where the
empirical process$t,, is defined as

n

Ro(f) = |= S ef(X2)].

n -
1=1

where theeq, ..., ¢, are Rademacher random variables: i.1.d. uniform

[+1).




Recall: Uniform laws and Rademacher complexitz'

Theorem: For F C [0,1]%,

1 log 2
SEl|Ru|lr —\/ 5= < E|P = Pulr < 2B||Ru |,

and, with probability at least — 2 exp(—2¢2n),

E|P - Pllr — € < |[P— Pollr < E|P - Pylr +e

Thus,E||R,||r — Oiff |P — P,||r = 0.




‘Controlling Rademacher complexity: Growth function I

Lemma: [Finite Class Lemma]For f € F satisfying|f(x)| < 1,

2log(|F(XT) U —F(XT)])

E||R,||r < E\/

- \/2log(2E\F(X?>|>.

n

'whereR,, is the Rademacher process:

n

%Z@f(Xz‘)-

and F'(X7) is the set of restrictions of functions fito X, ...




‘Controlling Rademacher complexity: Growth function I

Proof: ForA C R™ with R = max,c 4 ||al|2, we saw that

1 R
Esup |— Y €ai| < —+/2log(|AU —A|).
acA |1 n

Here, we havel = F(X7), soR < /n, and we get

“E \/2log<2|:<X?>|>

< | [ZEReCIF )

n

- \/2log<2E|F<X?>|>_




‘Controlling Rademacher complexity: Growth function I

e.g. For the class of distribution functiors,= {x — 1[z < o] : a € R},
we saw thatG(«7)| < n+ 1. SOE|[R,||p < /220D,

e.g. F' parameterized b¥ bits:
If ¢ maps t00, 1],
F={zw—g(z,0):0¢ {O,l}k},
[F(a7)] < 2%,

20k + 1) log 2
EHRnHFg\/< )log2

n

Notice thatE|| R, || — 0.




\ Growth function I

Definition: For a class” C {0, 1}, thegrowth function is

p(n) =max{|F(«})|: z1,...,2, € X}

E|R,||r < \/210g(2713F(n))_

Ip(n) < |F|,lim,_ o p(n) = |F|.

Ix(n) < 2". (But then this gives no useful bound 8B R,, | 7.)

Notice thatlog 1 (n) = o(n) impliesE||R,|/» — 0.




Vapnik-Chervonenkis dimension'

Definition: A classF C {0,1}* shatters{z,...,z4} C X means tha
[P (2f)| = 2¢.

The Vapnik-Chervonenkis dimension Bfis

dyc(F) = max {d: somezxy,...,xq € X IS shattered by}
= max {d : Ip(d) = Qd} :




Vapnik-Chervonenkis dimension: “Sauer’s Lemma”'

Theorem: [Vapnik-Chervonenkis{ly ¢ (F') < d implies

Hp(n) < (7;)

d
1=0

If n > d, the latter sum is no more tha(rﬁdﬂ)d.

So the VC-dimension is a single integer summary of the grdunistion:
either it is finite, andIz(n) = O(n%), orllp(n) = 2". No other growth is
possible.

If n <d,
< (e/d)"n? if n> d.




Vapnik-Chervonenkis dimension: “Sauer’s Lemma”'

Thus, fordy o (F') < d andn > d, we have

2log(211 2log2 + 2d1 d
1 < 220 [2log2 + adog(en/

n n
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‘Vapnik-Chervonenkis dimension: Examplei

eg.F={x— 1z <al:aeR}
dyvo(F) = 1.

e.g..F = {x — 1[x below and to left ofy] : y € R?}.
dyc(F) = 2. [PICTURE]

e.g..F ={x — 1|z € H| : H halfspacé.
Ford = 2, dy¢(F) = 3. [PICTURE]
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‘Vapnik-Chervonenkis dimension: Example'

Thresholded linear functions:

F={xw—1[g(z) > 0] : g € G}, whered is a linear space.

Thendyo(F) = dim(G).

Letd = dim(G). To see thatly «(F') > d, suppose thag;,...,g9q € Gisa
set of linearly independent functions. Then a fundameesult of linear
algebra (row rank=column rank) implies that there@mintsz, ..., x4
such that the vectorg (z¢), . . ., gq(z%) are linearly independent. Lét/ be
thed x d matrix of these values. Sinceis linear, any linear combination
of these functions is also I&. For coefficients, this function’s value on
thesed points is given byl v. SinceM is full rank, for anyy, we can find a
v so thatMv = y. In particular,y can have any sequence of signs, so
x1,...,xq are shattered bg.
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‘Vapnik-Chervonenkis dimension: Example'

To see thatly ¢ (F') < d, consider anytq, ..., z411. Then

{(g(z1),.--,9(xas1)) : g € G}

is a linear subspace of dimensidnSo there must be a non-zera= R*!
for which) . v;g(x;) = 0 for all g € G. Suppose thafi shatters this set of

d + 1 points. Wlog, suppose some > 0. Consider a for which
g(x;) < 0 for exactly those with v; > 0. Then

0= Zvi9<xz‘) = Z vig(2;) + Z vig(zi) <0,

7 1:v; <0 1:v; >0
o

_ _J/

<0

which is a contradiction.
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‘Vapnik-Chervonenkis Lemma: Proof'

Fix z1,...,x, and consider the table of valuesBtx7):

L1 X2 | 3 | L4 | X5

h
f2
/3

fa
f51 010

0] 1
110
1 | 1
0] 1

0
0
1
1
0

1
1
0
0
1

1)

The cardinality ofF’(x7) is the number of distinct rows.
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‘Vapnik-Chervonenkis Lemma: Proof'

Consider the following shifting transformation of the tabFor a column,
change eaclh to a0, unless it would lead to a row that is already in the
table.

Shifting the columns from left to right gives:

L1 X2 | I3 | L4 | X5

fi
f2
/3
fa
fs
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‘Vapnik-Chervonenkis Lemma: Proof'

Suppose this shifting operation is performed column-bysom until it
leads to no change of the table. Then:

The number of rows does not change.

Consider a row with anys. Every row with some of thosks changed
to 0s is in the table.
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‘Vapnik-Chervonenkis Lemma: Proof'

e The VC-dimension never increases. (Consider a set thaattesad
after shifting a column. If the set does not include the caluihwas
certainly shattered before shifting. If it does include to&umn, we

need to show that the set was shattered before. Suppose thialrg
was shifted down to a zero. The 1s that remain in the columthare
because there was a row before shifting that is identicaldo O in
that column. So the newly shifted O plays no role in the shatje

e So no row has more thahils.
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‘Vapnik-Chervonenkis Lemma: Proof'

Thus, the number of rows is no more thgf _, (™).

(1) ()

d
=0
d mn
_ (E (1 + §> (binomial thm)
d n

n)d.

Finally, forn > d,

(1= ()

1=0
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‘VC-dimension bounds for parameterized familiei

Consider a parameterized class of binary-valued functions

F={xw f(x,0):0 € R},

wheref : R™ x RP — {+£1}.

Suppose thaf can be computed using no more thtasperations of the

following kinds:
1. arithmetic ¢, —, %, /),
2. comparisons¥, =, <),

3. outputEl.

Theorem: dyc(F) < 4p(t + 2).
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