
Theoretical Statistics. Lecture 10.
Peter Bartlett

Uniform laws of large numbers: Bounding Rademacher complexity.

1. Growth function.

2. Vapnik-Chervonenkis dimension.
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Recall: Uniform laws and Rademacher complexity

Definition: The Rademacher complexityof F is E‖Rn‖F , where the

empirical processRn is defined as

Rn(f) =

∣
∣
∣
∣
∣

1

n

n∑

i=1

ǫif(Xi)

∣
∣
∣
∣
∣
,

where theǫ1, . . . , ǫn are Rademacher random variables: i.i.d. uniform on

{±1}.
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Recall: Uniform laws and Rademacher complexity

Theorem: ForF ⊂ [0, 1]X ,

1

2
E‖Rn‖F −

√

log 2

2n
≤ E‖P − Pn‖F ≤ 2E‖Rn‖F ,

and, with probability at least1− 2 exp(−2ǫ2n),

E‖P − Pn‖F − ǫ ≤ ‖P − Pn‖F ≤ E‖P − Pn‖F + ǫ.

Thus,E‖Rn‖F → 0 iff ‖P − Pn‖F as→ 0.
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Controlling Rademacher complexity: Growth function

Lemma: [Finite Class Lemma]Forf ∈ F satisfying|f(x)| ≤ 1,

E‖Rn‖F ≤ E

√

2 log(|F (Xn
1 ) ∪ −F (Xn

1 )|)
n

≤
√

2 log(2E|F (Xn
1 )|)

n
.

[whereRn is the Rademacher process:

Rn(f) =
1

n

n∑

i=1

ǫif(Xi).

andF (Xn
1 ) is the set of restrictions of functions inF toX1, . . . , Xn.]
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Controlling Rademacher complexity: Growth function

Proof: ForA ⊆ R
n with R = maxa∈A ‖a‖2, we saw that

E sup
a∈A

∣
∣
∣
∣
∣

1

n

n∑

i=1

ǫiai

∣
∣
∣
∣
∣
≤ R

n

√

2 log(|A ∪ −A|).

Here, we haveA = F (Xn
1 ), soR ≤ √

n, and we get

E‖Rn‖F = EE
[
‖Rn‖F (Xn

1
)|X1, . . . , Xn

]

≤ E

√

2 log(2|F (Xn
1 )|)

n

≤
√

2E log(2|F (Xn
1 )|)

n

≤
√

2 log(2E|F (Xn
1 )|)

n
.
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Controlling Rademacher complexity: Growth function

e.g. For the class of distribution functions,G = {x 7→ 1[x ≤ α] : α ∈ R},

we saw that|G(xn
1 )| ≤ n+ 1. SoE‖Rn‖F ≤

√
2 log 2(n+1)

n
.

e.g.F parameterized byk bits:

If g maps to[0, 1],

F =
{
x 7→ g(x, θ) : θ ∈ {0, 1}k

}
,

|F (xn
1 )| ≤ 2k,

E‖Rn‖F ≤
√

2(k + 1) log 2

n
.

Notice thatE‖Rn‖F → 0.

6



Growth function

Definition: For a classF ⊆ {0, 1}X , thegrowth function is

ΠF (n) = max{|F (xn
1 )| : x1, . . . , xn ∈ X}.

• E‖Rn‖F ≤
√

2 log(2ΠF (n))
n

.

• ΠF (n) ≤ |F |, limn→∞ ΠF (n) = |F |.

• ΠF (n) ≤ 2n. (But then this gives no useful bound onE‖Rn‖F .)

• Notice thatlog ΠF (n) = o(n) impliesE‖Rn‖F → 0.
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Vapnik-Chervonenkis dimension

Definition: A classF ⊆ {0, 1}X shatters{x1, . . . , xd} ⊆ X means that

|F (xd
1)| = 2d.

The Vapnik-Chervonenkis dimension ofF is

dV C(F ) = max {d : somex1, . . . , xd ∈ X is shattered byF}
= max

{
d : ΠF (d) = 2d

}
.
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Vapnik-Chervonenkis dimension: “Sauer’s Lemma”

Theorem: [Vapnik-Chervonenkis]dV C(F ) ≤ d implies

ΠF (n) ≤
d∑

i=0

(
n

i

)

.

If n ≥ d, the latter sum is no more than
(
en
d

)d
.

So the VC-dimension is a single integer summary of the growthfunction:
either it is finite, andΠF (n) = O(nd), orΠF (n) = 2n. No other growth is
possible.

ΠF (n)







= 2n if n ≤ d,

≤ (e/d)
d
nd if n > d.
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Vapnik-Chervonenkis dimension: “Sauer’s Lemma”

Thus, fordV C(F ) ≤ d andn ≥ d, we have

E‖Rn‖F ≤
√

2 log(2ΠF (n))

n
≤

√

2 log 2 + 2d log(en/d)

n
.
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Vapnik-Chervonenkis dimension: Examples

e.g.:F = {x 7→ 1[x ≤ α] : α ∈ R}.

dV C(F ) = 1.

e.g.:F = {x 7→ 1[x below and to left ofy] : y ∈ R
2}.

dV C(F ) = 2. [PICTURE]

e.g.:F = {x 7→ 1[x ∈ H] : H halfspace}.

Ford = 2, dV C(F ) = 3. [PICTURE]
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Vapnik-Chervonenkis dimension: Example

Thresholded linear functions:

F = {x 7→ 1[g(x) ≥ 0] : g ∈ G}, whereG is a linear space.

ThendV C(F ) = dim(G).

Let d = dim(G). To see thatdV C(F ) ≥ d, suppose thatg1, . . . , gd ∈ G is a
set of linearly independent functions. Then a fundamental result of linear
algebra (row rank=column rank) implies that there ared pointsx1, . . . , xd

such that the vectorsg1(xd
1), . . . , gd(x

d
1) are linearly independent. LetM be

thed× d matrix of these values. SinceG is linear, any linear combination
of these functions is also inG. For coefficientsv, this function’s value on
thesed points is given byMv. SinceM is full rank, for anyy, we can find a
v so thatMv = y. In particular,y can have any sequence of signs, so
x1, . . . , xd are shattered byG.
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Vapnik-Chervonenkis dimension: Example

To see thatdV C(F ) ≤ d, consider anyx1, . . . , xd+1. Then

{(g(x1), . . . , g(xd+1)) : g ∈ G}

is a linear subspace of dimensiond. So there must be a non-zerov ∈ R
d+1

for which
∑

i vig(xi) = 0 for all g ∈ G. Suppose thatG shatters this set of

d+ 1 points. Wlog, suppose somevi > 0. Consider ag for which

g(xi) < 0 for exactly thosei with vi > 0. Then

0 =
∑

i

vig(xi) =
∑

i:vi≤0

vig(xi)

︸ ︷︷ ︸

≤0

+
∑

i:vi>0

vig(xi)

︸ ︷︷ ︸

<0

< 0,

which is a contradiction.
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Vapnik-Chervonenkis Lemma: Proof

Fix x1, . . . , xn and consider the table of values ofF (xn
1 ):

x1 x2 x3 x4 x5

f1 0 1 0 1 1

f2 1 0 0 1 1

f3 1 1 1 0 1

f4 0 1 1 0 0

f5 0 0 0 1 0

The cardinality ofF (xn
1 ) is the number of distinct rows.
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Vapnik-Chervonenkis Lemma: Proof

Consider the following shifting transformation of the table: For a columni,

change each1 to a0, unless it would lead to a row that is already in the

table.

Shifting the columns from left to right gives:

x1 x2 x3 x4 x5

f1 0 1 0 0 0

f2 0 0 0 0 1

f3 0 0 1 0 1

f4 0 0 1 0 0

f5 0 0 0 0 0
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Vapnik-Chervonenkis Lemma: Proof

Suppose this shifting operation is performed column-by-column until it

leads to no change of the table. Then:

• The number of rows does not change.

• Consider a row with any1s. Every row with some of those1s changed

to 0s is in the table.
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Vapnik-Chervonenkis Lemma: Proof

• The VC-dimension never increases. (Consider a set that is shattered

after shifting a column. If the set does not include the column, it was

certainly shattered before shifting. If it does include thecolumn, we

need to show that the set was shattered before. Suppose that an entry

was shifted down to a zero. The 1s that remain in the column arethere

because there was a row before shifting that is identical butfor a 0 in

that column. So the newly shifted 0 plays no role in the shattering.)

• So no row has more thand 1s.
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Vapnik-Chervonenkis Lemma: Proof

Thus, the number of rows is no more than
∑d

i=0

(
n
i

)
.

Finally, forn ≥ d,

d∑

i=0

(
n

i

)

≤
(n

d

)d
d∑

i=0

(
n

i

)(
d

n

)i

=
(n

d

)d
(

1 +
d

n

)n

(binomial thm)

≤
(en

d

)d

.
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VC-dimension bounds for parameterized families

Consider a parameterized class of binary-valued functions,

F = {x 7→ f(x, θ) : θ ∈ R
p} ,

wheref : Rm × R
p → {±1}.

Suppose thatf can be computed using no more thant operations of the
following kinds:

1. arithmetic (+, −, ×, /),

2. comparisons (>, =, <),

3. output±1.

Theorem: dV C(F ) ≤ 4p(t+ 2).
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