
Theoretical Statistics. Lecture 11.
Peter Bartlett

Uniform laws of large numbers: Bounding Rademacher complexity.

1. Vapnik-Chervonenkis dimension.

2. Structural results for Rademacher complexity.

3. Metric entropy.
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Recall: Uniform laws and Rademacher complexity

Theorem: ForF ⊂ [0, 1]X ,

1

2
E‖Rn‖F −

√

log 2

2n
≤ E‖P − Pn‖F ≤ 2E‖Rn‖F ,

and, with probability at least1− 2 exp(−2ǫ2n),

E‖P − Pn‖F − ǫ ≤ ‖P − Pn‖F ≤ E‖P − Pn‖F + ǫ.

Thus,E‖Rn‖F → 0 iff ‖P − Pn‖F
as
→ 0.
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Recall: Growth function

Definition: For a classF ⊆ {0, 1}X , thegrowth function is

ΠF (n) = max{|F (xn
1 )| : x1, . . . , xn ∈ X}.

E‖Rn‖F ≤
√

2 log(2ΠF (n))
n

. Notice thatlog ΠF (n) = o(n) implies

E‖Rn‖F → 0.
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Recall: Vapnik-Chervonenkis dimension

Definition: A classF ⊆ {0, 1}X shatters{x1, . . . , xd} ⊆ X means that

|F (xd
1)| = 2d.

The Vapnik-Chervonenkis dimension ofF is

dV C(F ) = max {d : somex1, . . . , xd ∈ X is shattered byF}

= max
{

d : ΠF (d) = 2d
}

.
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Recall: “Sauer’s Lemma”

Theorem: [Vapnik-Chervonenkis]dV C(F ) ≤ d implies

ΠF (n) ≤
d

∑

i=0

(

n

i

)

.

If n ≥ d, the latter sum is no more than
(

en
d

)d
.

ΠF (n)







= 2n if n ≤ d,

≤ (e/d)d nd if n > d.
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VC-dimension bounds for parameterized families

Consider a parameterized class of binary-valued functions,

F = {x 7→ f(x, θ) : θ ∈ R
p} ,

wheref : Rm × R
p → {±1}.

Suppose thatf can be computed using no more thant operations of the
following kinds:

1. arithmetic (+, −, ×, /),

2. comparisons (>, =, <),

3. output±1.

Theorem: dV C(F ) ≤ 4p(t+ 2).
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VC-dimension bounds for parameterized families

Proof idea:

Any f of this kind can be expressed as

f(x, θ) = h(sign(g1(x, θ)), . . . , sign(gk(x, θ))) for functionsgi that are

polynomial inθ, and some boolean functionh. (Notice thatk ≤ 2t, and the

degree of any polynomialgi is no more than2t.) Notice that a change of the

value off must be due to a change of the sign of one of thegi. Hence,

ΠF (n) ≤ number of connected components inR
d after the setsgi(xj) = 0

are removed. We won’t go through the proof of this (it can be found in

Neural Network Learning: Theoretical Foundations). It is rather similar to

the case of linear threshold functions, which we’ll look at next.
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VC-dimension bounds for linear threshold functions

Considerf(x, θ) = sign(wTx− w0), wherex ∈ R
d andθ = (wT , w0).

Thenf can only change value on somex1, . . . , xn for θ such that
wT − w0 = 0. Then (provided these zero sets satisfy some genericity
condition),|F (xn

1 )| = C(n, d+ 1), whereC(n, d+ 1) is the number of
cells created inRd+1 whenn hyperplanes are removed.

Inductive argument:C(1, d) = 2. And
C(n+ 1, d) = C(n, d) + C(n, d− 1). To see this, notice that when we
haven planes inRp, and we add a plane, the number of cells that we split in
two is precisely the number of cells in thed− 1-subspace of the new plane
that the firstn planes leave. Then an inductive argument shows that

ΠF (n) = C(n, d+ 1) = 2
d

∑

i=0

(

n− 1

i

)

. [Schaffli, 1851.]

8



Rademacher complexity: structural results

1. F ⊆ G implies‖Rn‖F ≤ ‖Rn‖G.

2. ‖Rn‖cF = |c|‖Rn‖F .

3. For|g(X)| ≤ 1, |E‖Rn‖F+g −E‖Rn‖F | ≤
√

2 log 2/n.

4. ‖Rn‖coF = ‖Rn‖F , wherecoF is the convex hull ofF .

5. If φ : X × R hasy 7→ φ(x, y) 1-Lipschitz for allx andφ(x, 0) = 0,

then forφ(F ) = {x 7→ φ(x, f(x))}, E‖Rn‖φ(F ) ≤ 2E‖Rn‖F .
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Rademacher complexity: structural results

Proofs:

(1) and (2) are immediate. For (3):

‖Rn‖F+g = sup
f∈F

∣

∣

∣

∣

∣

1

n

∑

i

ǫi (f(Xi) + g(Xi))

∣

∣

∣

∣

∣

,

so |E‖Rn‖F+g −E‖Rn‖F | ≤ E |Rn(g)| ≤

√

2 log 2

n

for |g(X)| ≤ 1.

(4) follows from the fact that a linear criterion in a convex set is maximized

at an extreme point.

(5) is a result due to Ledoux and Talagrand. See website for a link to a

proof.
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Covering and packing numbers

Definition: A pseudometric space(S, d) is a setS and a functiond :

S × S → [0,∞) satisfying

1. d(x, x) = 0,

2. d(x, y) = d(y, x),

3. d(x, z) ≤ d(x, y) + d(y, z).

Examples:

1. Metric spaces like(Rd, ‖ · ‖2).

2. A setF of functions with pseudometric

d(f, g) = 1
n

∑n

i=1 |f(xi)− g(xi)|.
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Covering numbers

Definition: An ǫ-cover of a subsetT of a pseudometric space(S, d) is a set

T̂ ⊂ T such that for eacht ∈ T there is ât ∈ T̂ such thatd(t, t̂) ≤ ǫ. The

ǫ-covering number ofT is

N(ǫ, T, d) = min{|T̂ | : T̂ is anǫ-cover ofT}.

A setT is totally bounded if, for all ǫ > 0, N(ǫ, T, d) < ∞.

The functionǫ 7→ logN(ǫ, T, d) is themetric entropy of T .

If limǫ→0 logN(ǫ)/ log(1/ǫ) exists, it is called themetric dimension.

[PICTURE]

Intuition: A d-dimensional set has metric dimensiond. (N(ǫ) = Θ(1/ǫd).)
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Covering numbers

Example:([0, 1]d, l∞) hasN(ǫ) = Θ(1/ǫd).
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