Theoretical Statistics. Lecture 11. Peter Bartlett

Uniform laws of large numbers: Bounding Rademacher complexity.

- 1. Vapnik-Chervonenkis dimension.
- 2. Structural results for Rademacher complexity.
- 3. Metric entropy.

Recall: Uniform laws and Rademacher complexity

Theorem: For $F \subset [0,1]^{\mathcal{X}}$,

$$
\frac{1}{2} \mathbf{E} \|R_n\|_F - \sqrt{\frac{\log 2}{2n}} \leq \mathbf{E} \|P - P_n\|_F \leq 2 \mathbf{E} \|R_n\|_F,
$$

and, with probability at least $1-2\exp(-2\epsilon^2 n),$

$$
\mathbf{E}||P - P_n||_F - \epsilon \le ||P - P_n||_F \le \mathbf{E}||P - P_n||_F + \epsilon.
$$

Thus, $\mathbf{E} \| R_n \|_F \to 0$ iff $\| P - P_n \|_F$ $\stackrel{as}{\rightarrow} 0.$

Recall: Growth function

Definition: For a class $F \subseteq \{0, 1\}^{\mathcal{X}}$, the **growth function** is

$$
\Pi_F(n) = \max\{|F(x_1^n)| : x_1, \ldots, x_n \in \mathcal{X}\}.
$$

 $\mathbf{E} \|R_n\|_F \leq \sqrt{\frac{2\log(2\Pi_F(n))}{n}}$ $\frac{n^{(11)}F(n)}{n}$. Notice that $\log \Pi_F(n) = o(n)$ implies $\mathbf{E} \|R_n\|_F \to 0.$

Recall: Vapnik-Chervonenkis dimension

Definition: A class $F \subseteq \{0,1\}^{\mathcal{X}}$ **shatters** $\{x_1, \ldots, x_d\} \subseteq \mathcal{X}$ means that $|F(x_1^d$ $\left| \begin{smallmatrix} d \ 1 \end{smallmatrix} \right| = 2^d.$ The Vapnik-Chervonenkis dimension of F is $d_{VC}(F) = \max\left\{d: \text{some } x_1,\ldots,x_d \in \mathcal{X} \text{ is shattered by } F\right\}$ = max { $d : \Pi_F(d) = 2^d$ $\Big\}$.

Recall: "Sauer's Lemma"

Theorem: [Vapnik-Chervonenkis] $d_{VC}(F) \le d$ implies

$$
\Pi_F(n) \leq \sum_{i=0}^d \binom{n}{i}.
$$

.

If $n \geq d$, the latter sum is no more than $\left(\frac{en}{d}\right)$ $\left.\rule{-20pt}{10pt}\right)$ d

$$
\Pi_F(n) \begin{cases} = 2^n & \text{if } n \le d, \\ \le (e/d)^d n^d & \text{if } n > d. \end{cases}
$$

VC-dimension bounds for parameterized families

Consider ^a parameterized class of binary-valued functions,

$$
F = \{x \mapsto f(x, \theta) : \theta \in \mathbb{R}^p\},\
$$

where $f : \mathbb{R}^m \times \mathbb{R}^p \to {\{\pm 1\}}$.

Suppose that f can be computed using no more than t operations of the following kinds:

- 1. arithmetic $(+, -, \times, /),$
- 2. comparisons ($> , = , <$),
- 3. output ± 1 .

Theorem: $d_{VC}(F) \leq 4p(t+2)$.

VC-dimension bounds for parameterized families

Proof idea:

Any f of this kind can be expressed as $f(x, \theta) = h(\text{sign}(g_1(x, \theta)), \dots, \text{sign}(g_k(x, \theta)))$ for functions g_i that are polynomial in θ , and some boolean function h. (Notice that $k \leq 2^t$, and the degree of any polynomial g_i is no more than 2^t .) Notice that a change of the value of f must be due to a change of the sign of one of the g_i . Hence, $\Pi_F(n) \leq$ number of connected components in \mathbb{R}^d after the sets $g_i(x_j) = 0$ are removed. We won't go through the proof of this (it can be found in *Neural Network Learning: Theoretical Foundations*). It is rather similar to the case of linear threshold functions, which we'll look at next.

VC-dimension bounds for linear threshold functions

Consider $f(x, \theta) = sign(w^T x - w_0)$, where $x \in \mathbb{R}^d$ and $\theta = (w^T, w_0)$. Then f can only change value on some x_1, \ldots, x_n for θ such that $w^T - w₀ = 0$. Then (provided these zero sets satisfy some genericity condition), $|F(x_1^n)|$ $\binom{n}{1}$ = $C(n, d + 1)$, where $C(n, d + 1)$ is the number of cells created in \mathbb{R}^{d+1} when n hyperplanes are removed.

Inductive argument: $C(1, d) = 2$. And

 $C(n+1, d) = C(n, d) + C(n, d - 1)$. To see this, notice that when we have n planes in \mathbb{R}^p , and we add a plane, the number of cells that we split in two is precisely the number of cells in the $d-1$ -subspace of the new plane that the first n planes leave. Then an inductive argument shows that

$$
\Pi_F(n) = C(n, d+1) = 2 \sum_{i=0}^{d} {n-1 \choose i}.
$$
 [Schaffli, 1851.]

Rademacher complexity: structural results

1. $F \subseteq G$ implies $||R_n||_F \le ||R_n||_G$.

2.
$$
||R_n||_{cF} = |c||R_n||_F
$$
.

- 3. For $|g(X)| \leq 1$, $|\mathbf{E}||R_n||_{F+g}$ $-\mathbf{E} ||R_n||_F \leq \sqrt{2 \log 2/n}.$
- 4. $||R_n||_{\text{co }F} = ||R_n||_F$, where $\text{co }F$ is the convex hull of F.
- 5. If $\phi: \mathcal{X} \times \mathbb{R}$ has $y \mapsto \phi(x, y)$ 1-Lipschitz for all x and $\phi(x, 0) = 0$, then for $\phi(F) = \{x \mapsto \phi(x, f(x))\}, \mathbf{E} ||R_n||_{\phi(F)} \leq 2\mathbf{E} ||R_n||_F.$

Rademacher complexity: structural results

Proofs:

 (1) and (2) are immediate. For (3) :

$$
||R_n||_{F+g} = \sup_{f \in F} \left| \frac{1}{n} \sum_i \epsilon_i (f(X_i) + g(X_i)) \right|,
$$

so
$$
||\mathbf{E}||R_n||_{F+g} - \mathbf{E}||R_n||_F| \le \mathbf{E}|R_n(g)| \le \sqrt{\frac{2\log 2}{n}}
$$

for $|g(X)| \leq 1$.

(4) follows from the fact that ^a linear criterion in ^a convex set is maximized at an extreme point.

(5) is ^a result due to Ledoux and Talagrand. See website for ^a link to ^a proof.

Covering and packing numbers

Definition: A **pseudometric space** (S, d) is a set S and a function d : $S \times S \rightarrow [0, \infty)$ satisfying

$$
1. d(x, x) = 0,
$$

$$
2. d(x, y) = d(y, x),
$$

3.
$$
d(x, z) \le d(x, y) + d(y, z)
$$
.

Examples:

1. Metric spaces like $(\mathbb{R}^d, \|\cdot\|_2)$.

2. A set F of functions with pseudometric $d(f,g)=\frac{1}{n}$ $\frac{1}{n} \sum$ \overline{n} $\sum_{i=1}^{n} |f(x_i) - g(x_i)|.$

Covering numbers

Definition: An ϵ -cover of a subset T of a pseudometric space (S, d) is a set $\hat{T} \subset T$ such that for each $t \in T$ there is a $\hat{t} \in \hat{T}$ such that $d(t, \hat{t}) \leq \epsilon$. The ϵ -covering number of T is

 $N(\epsilon, T, d) = \min\{|\hat{T}| : \hat{T} \text{ is an } \epsilon\text{-cover of }T\}.$

A set T is **totally bounded** if, for all $\epsilon > 0$, $N(\epsilon, T, d) < \infty$. The function $\epsilon \mapsto \log N(\epsilon, T, d)$ is the **metric entropy** of T. If $\lim_{\epsilon \to 0} \log N(\epsilon) / \log(1/\epsilon)$ exists, it is called the **metric dimension**.

[PICTURE]

Intuition: A d-dimensional set has metric dimension d. ($N(\epsilon) = \Theta(1/\epsilon^d)$.)

Covering numbers

Example: $([0,1]^d, l_{\infty})$ has $N(\epsilon) = \Theta(1/\epsilon^d)$.