Theoretical Statistics. Lecture 13. Peter Bartlett

Metric entropy.

1. Covering number bound

2. Chaining

Recall: Covering and packing numbers

Definition: An ϵ -cover of a subset T of a pseudometric space (S, d) is a set $\hat{T} \subset T$ such that for each $t \in T$ there is a $\hat{t} \in \hat{T}$ such that $d(t, \hat{t}) \leq \epsilon$. The ϵ -covering number of T is

$$N(\epsilon, T, d) = \min\{|\hat{T}| : \hat{T} \text{ is an } \epsilon \text{-cover of } T\}.$$

An ϵ -packing of T is a subset $\hat{T} \subset T$ such that each pair $s, t \in \hat{T}$ satisfies $d(s,t) > \epsilon$. The ϵ -packing number of T is

 $M(\epsilon, T, d) = \max\{|\hat{T}| : \hat{T} \text{ is an } \epsilon \text{-packing of } T\}.$

Recall: Covering and packing numbers

Theorem: For all $\epsilon > 0$, $M(2\epsilon) \le N(\epsilon) \le M(\epsilon)$.

Theorem: Let $\|\cdot\|$ be a norm on \mathbb{R}^d and let *B* be the unit ball. Then

$$\frac{1}{\epsilon^d} \le N(\epsilon, B, \|\cdot\|) \le \left(\frac{2}{\epsilon} + 1\right)^d$$

Example: If F is parameterized in a Lipschitz-continuous way by parameters in (a compact subset of) \mathbb{R}^p , then $N(\epsilon, F) = O(1/\epsilon^p)$.

Recall: Canonical Rademacher and Gaussian Processes Definition: Fix a set $T \subset \mathbb{R}^n$. 1. The canonical Gaussian process is the stochastic process $G_{\theta} = \langle g, \theta \rangle = \sum_{i=1}^{n} g_{i} \theta_{i},$ where $q_i \sim N(0, 1)$ i.i.d. 2. The canonical Rademacher process is the stochastic process $R_{\theta} = \langle \epsilon, \theta \rangle = \sum_{i=1}^{n} \epsilon_{i} \theta_{i},$ where the ϵ_i are i.i.d. and uniform on $\{\pm 1\}$.

Recall: Canonical Rademacher and Gaussian Processes

Definition: A stochastic process $\theta \mapsto X_{\theta}$ with indexing set T is sub-Gaussian with respect to a metric d on T if, for all $\theta, \theta' \in T$ and all $\lambda \in \mathbb{R}$,

$$\mathbf{E}\exp\left(\lambda(X_{\theta} - X_{\theta'})\right) \le \exp\left(\frac{\lambda^2 d(\theta, \theta')^2}{2}\right).$$

The canonical Rademacher and Gaussian processes are sub-Gaussian wrt the Euclidean metric.

Lemma: [Finite Classes] For X_{θ} sub-Gaussian wrt d on T, and A a set of pairs from T,

$$\mathbf{E} \max_{(\theta,\theta')\in A} (X_{\theta} - X_{\theta'}) \le \max_{(\theta,\theta')\in A} d(\theta,\theta') \sqrt{2\log|A|}$$

Covering number bound

Here's a crude approach to bounding the supremum of a sub-Gaussian process using a covering at a single scale:

Theorem: Consider a zero-mean process X_{θ} that is sub-Gaussian wrt the metric d on T. Suppose that the diameter of T is $D = \sup_{\theta, \theta'} d(\theta, \theta')$. Then for any ϵ ,

$$\mathbf{E}\sup_{\theta} X_{\theta} \leq 2\mathbf{E}\sup_{d(\theta,\theta')\leq\epsilon} \left(X_{\theta} - X_{\theta'}\right) + 2D\sqrt{\log N(\epsilon, T, d)}.$$

Covering number bound: Proof

$$\mathbf{E}\sup_{\theta} X_{\theta} = \mathbf{E}\sup_{\theta} (X_{\theta} - X_{\theta'}) \le \mathbf{E}\sup_{\theta, \theta'} (X_{\theta} - X_{\theta'}).$$

Also, if we choose $\hat{\theta} \in \hat{T}$ (a minimal ϵ -cover) with $d(\hat{\theta}, \theta) \leq \epsilon$ (and similarly for θ'), we have

$$X_{\theta} - X_{\theta'} = X_{\theta} - X_{\hat{\theta}} + X_{\hat{\theta}} - X_{\hat{\theta}'} + X_{\hat{\theta}'} - X_{\theta'}$$
$$\leq 2 \sup_{d(\theta,\hat{\theta}) \leq \epsilon} (X_{\theta} - X_{\hat{\theta}}) + \sup_{\hat{\theta},\hat{\theta}' \in \hat{T}} X_{\hat{\theta}} - X_{\hat{\theta}'}$$

Finally, since any pair $X_{\theta} - X_{\theta'}$ is sub-Gaussian with parameter D^2 , the Finite Lemma shows that

$$\mathbf{E} \sup_{\hat{\theta}, \hat{\theta}' \in \hat{T}} X_{\hat{\theta}} - X_{\hat{\theta}'} \le \sqrt{2D^2 \log |\hat{T}|^2} = 2D\sqrt{\log N(\epsilon, T, d)}.$$

Application: Canonical Gaussian/Rademacher process

Consider the canonical Gaussian process, $X_{\theta} = \langle g, \theta \rangle$ for $\theta \in T \subset \mathbb{R}^n$. Then X_{θ} is sub-Gaussian wrt the Euclidean metric on T. So we have

$$\mathbf{E}\sup_{d(\theta,\theta')\leq\epsilon} \left(X_{\theta} - X_{\theta'}\right) = 2\mathbf{E}\sup_{\|v\|_2\leq\epsilon} \langle g, v\rangle \leq 2\epsilon \mathbf{E} \|g\|_2 = 2\epsilon \sqrt{n}.$$

(The same argument holds for the canonical Rademacher process.) And so

$$\mathbf{E}\sup_{\theta} X_{\theta} \le 2\epsilon\sqrt{n} + 2D\sqrt{\log N(\epsilon, T, \|\cdot\|_2)}$$

Example: Canonical Gaussian process on a subspace

Consider the canonical Gaussian process with T the unit ball in a d-dimensional subspace of \mathbb{R}^n :

 $D = 2; \log N(\epsilon, B, \| \cdot \|_2) \le d \log(1 + 2/\epsilon).$ Hence, choosing $\epsilon = \sqrt{d/n}$ gives

$$\mathbf{E}\sup_{\theta} X_{\theta} \le 2\sqrt{d} + 4\sqrt{d\log\left(1 + 2\sqrt{n/d}\right)} = O\left(\sqrt{d\log(n/d)}\right).$$

(This is loose: the log factor is unnecessary.)

Example: Smoothly parameterized class

Suppose that F is a parameterized class, $F = \{f(\theta, \cdot) : \theta \in \Theta\}$, where $\Theta = B_2 \subset \mathbb{R}^p$. The parameterization is L-Lipschitz wrt Euclidean distance on Θ , so that for all x,

$$|f(\theta, x) - f(\theta', x)| \le L \|\theta - \theta'\|_2.$$

Suppose also that F = -F (that is, F is closed under negations).

Theorem:

$$\mathbf{E} \| R_n \|_F = O\left(L \sqrt{\frac{p \log(Ln)}{n}} \right)$$

NB: $O(\sqrt{p/n})$, plus log factor. The log factor is unnecessary.

Smoothly parameterized class: Proof

The Lipschitz condition implies that the Euclidean distance between vectors $f(\theta, X_1^n)$ is $(L\sqrt{n})$ -Lipschitz wrt the Euclidean distance on Θ :

$$\sum_{i=1}^{n} |f(\theta, X_i) - f(\theta', X_i)|^2 \le nL^2 ||\theta - \theta'||_2^2.$$

First, exploit the fact that

$$n\mathbf{E}||R_n||_F = \mathbf{E}\sup_{F\cup -F} \langle \epsilon, \cdot \rangle = \mathbf{E}\sup_F \langle \epsilon, \cdot \rangle = \mathbf{E}\sup_{\theta} \langle \epsilon, f(\theta, X_1^n) \rangle.$$

Smoothly parameterized class: Proof

Since the process $f(\theta, X_1^n) \mapsto \langle \epsilon, f(\theta, X_1^n) \rangle$ is sub-Gaussian wrt the Euclidean norm on the vectors $f(\theta, X_1^n)$, we have

$$n\mathbf{E}||R_n||_F \le 2\epsilon\sqrt{n} + \mathbf{E}4L\sqrt{n\log N(\epsilon, f(\Theta, X_1^n), \|\cdot\|_2)},$$

because $D = 2L\sqrt{n}$. Because of the Lipschitz condition,

 $N(\epsilon, f(\Theta, X_1^n), \|\cdot\|_2) \le N(\epsilon/(L\sqrt{n}), \Theta, \|\cdot\|_2) \le (1 + 2L\sqrt{n}/\epsilon)^p.$

Smoothly parameterized class: Proof

Substituting $\epsilon = 1$ gives

$$\mathbf{E} \| R_n \|_F \le \frac{2}{\sqrt{n}} + 4L\sqrt{\frac{p}{n}\log(1+2L\sqrt{n})}$$
$$= O\left(L\sqrt{\frac{p\log(Ln)}{n}}\right).$$

Nonparametric example: Lipschitz functions

Theorem: For F_d the set of *L*-Lipschitz functions (wrt $\|\cdot\|_{\infty}$) from $[0, 1]^d$ to [-1, 1], there is a universal constant c_d , which depends only on *d*, such that

$$\mathbf{E} \| R_n \|_{F_d} \le c_d \left(\frac{L}{n} \right)^{\frac{1}{d+2}}$$

NB: $O(n^{-1/(d+2)})$. Even for d = 1, this is $n^{-1/3}$, so slower than parametric. And the rate gets worse as d increases.

Nonparametric example: Proof

As before, we consider the process $f(X_1^n) \mapsto \langle \epsilon, f(X_1^n) \rangle$ for $f \in F_d$. Notice that $F_d = -F_d$. Also, the diameter of the indexing set in the Euclidean norm is $2\sqrt{n}$ (because functions in F_d can differ by at most 2). So we have

$$n\mathbf{E} \|R_n\|_F \le 2\epsilon\sqrt{n} + 4\mathbf{E}\sqrt{n\log N(\epsilon, F_d(X_1^n), \|\cdot\|_2)}.$$

Because

$$\|f(X_1^n) - f'(X_1^n)\|_2 \le \sqrt{n} \max_i |f(X_i) - f'(X_i)| \le \sqrt{n} \|f - f'\|_{\infty},$$

we have $\log N(\epsilon, F_d(X_1^n), \|\cdot\|_2) \leq \log N(\epsilon/\sqrt{n}, F_d, \|\cdot\|_\infty)$. Recall that $\log N(\epsilon, F_d, \|\cdot\|_\infty) = O((L/\epsilon)^d)$, so we have $\log N(\epsilon, F_d(X_1^n), \|\cdot\|_2) = O((L\sqrt{n}/\epsilon)^d)$.

Nonparametric example: Proof

Thus there is a constant c such that for sufficiently small ϵ ,

$$\mathbf{E} \|R_n\|_F \le \frac{2\epsilon}{\sqrt{n}} + c\sqrt{\frac{L^d n^{d/2 - 1}}{\epsilon^d}}.$$

Optimizing over the choice of ϵ , that is, setting

$$\epsilon = \left(\frac{cd\sqrt{L}}{4}\right)^{\frac{2}{d+2}} n^{\frac{d}{2(d+2)}}$$

gives

$$\mathbf{E} \| R_n \|_F \le c_d \left(\frac{L}{n}\right)^{\frac{1}{d+2}}$$

with

$$c_d = 2^{\frac{d-2}{d+2}} d^{\frac{2}{d+2}} + 2^{-\frac{2d}{d+2}} d^{-\frac{d}{d+2}}.$$