
Theoretical Statistics. Lecture 13.
Peter Bartlett

Metric entropy.

1. Covering number bound

2. Chaining
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Recall: Covering and packing numbers

Definition: An ǫ-cover of a subsetT of a pseudometric space(S, d) is a set

T̂ ⊂ T such that for eacht ∈ T there is ât ∈ T̂ such thatd(t, t̂) ≤ ǫ. The

ǫ-covering number ofT is

N(ǫ, T, d) = min{|T̂ | : T̂ is anǫ-cover ofT}.

An ǫ-packing ofT is a subset̂T ⊂ T such that each pairs, t ∈ T̂ satisfies

d(s, t) > ǫ. Theǫ-packing number ofT is

M(ǫ, T, d) = max{|T̂ | : T̂ is anǫ-packing ofT}.
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Recall: Covering and packing numbers

Theorem: For all ǫ > 0, M(2ǫ) ≤ N(ǫ) ≤ M(ǫ).

Theorem: Let ‖ · ‖ be a norm onRd and letB be the unit ball. Then

1

ǫd
≤ N(ǫ, B, ‖ · ‖) ≤

(

2

ǫ
+ 1

)d

.

Example: IfF is parameterized in a Lipschitz-continuous way by

parameters in (a compact subset of)R
p, thenN(ǫ, F ) = O(1/ǫp).
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Recall: Canonical Rademacher and Gaussian Processes

Definition: Fix a setT ⊂ R
n.

1. Thecanonical Gaussian processis the stochastic process

Gθ = 〈g, θ〉 =
n
∑

i=1

giθi,

wheregi ∼ N(0, 1) i.i.d.

2. Thecanonical Rademacher processis the stochastic process

Rθ = 〈ǫ, θ〉 =
n
∑

i=1

ǫiθi,

where theǫi are i.i.d. and uniform on{±1}.
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Recall: Canonical Rademacher and Gaussian Processes

Definition: A stochastic processθ 7→ Xθ with indexing setT is sub-

Gaussian with respect to a metricd onT if, for all θ, θ′ ∈ T and allλ ∈ R,

E exp (λ(Xθ −Xθ′)) ≤ exp

(

λ2d(θ, θ′)2

2

)

.

The canonical Rademacher and Gaussian processes are sub-Gaussian wrt

the Euclidean metric.

5



Lemma: [Finite Classes] ForXθ sub-Gaussian wrtd onT , andA a set of

pairs fromT ,

E max
(θ,θ′)∈A

(Xθ −Xθ′) ≤ max
(θ,θ′)∈A

d(θ, θ′)
√

2 log |A|.
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Covering number bound

Here’s a crude approach to bounding the supremum of a sub-Gaussian

process using a covering at a single scale:

Theorem: Consider a zero-mean processXθ that is sub-Gaussian wrt the

metric d on T . Suppose that the diameter ofT is D = supθ,θ′ d(θ, θ′).

Then for anyǫ,

E sup
θ

Xθ ≤ 2E sup
d(θ,θ′)≤ǫ

(Xθ −Xθ′) + 2D
√

logN(ǫ, T, d).
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Covering number bound: Proof

E sup
θ

Xθ = E sup
θ
(Xθ −Xθ′) ≤ E sup

θ,θ′

(Xθ −Xθ′).

Also, if we choosêθ ∈ T̂ (a minimalǫ-cover) withd(θ̂, θ) ≤ ǫ (and
similarly for θ′), we have

Xθ −Xθ′ = Xθ −Xθ̂ +Xθ̂ −Xθ̂′ +Xθ̂′ −Xθ′

≤ 2 sup
d(θ,θ̂)≤ǫ

(Xθ −Xθ̂) + sup
θ̂,θ̂′∈T̂

Xθ̂ −Xθ̂′ .

Finally, since any pairXθ −Xθ′ is sub-Gaussian with parameterD2, the
Finite Lemma shows that

E sup
θ̂,θ̂′∈T̂

Xθ̂ −Xθ̂′ ≤
√

2D2 log |T̂ |2 = 2D
√

logN(ǫ, T, d).
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Application: Canonical Gaussian/Rademacher process

Consider the canonical Gaussian process,Xθ = 〈g, θ〉 for θ ∈ T ⊂ R
n.

ThenXθ is sub-Gaussian wrt the Euclidean metric onT . So we have

E sup
d(θ,θ′)≤ǫ

(Xθ −Xθ′) = 2E sup
‖v‖2≤ǫ

〈g, v〉 ≤ 2ǫE‖g‖2 = 2ǫ
√
n.

(The same argument holds for the canonical Rademacher process.) And so

E sup
θ

Xθ ≤ 2ǫ
√
n+ 2D

√

logN(ǫ, T, ‖ · ‖2)
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Example: Canonical Gaussian process on a subspace

Consider the canonical Gaussian process withT the unit ball in a

d-dimensional subspace ofRn:

D = 2; logN(ǫ, B, ‖ · ‖2) ≤ d log(1 + 2/ǫ).

Hence, choosingǫ =
√

d/n gives

E sup
θ

Xθ ≤ 2
√
d+ 4

√

d log
(

1 + 2
√

n/d
)

= O
(

√

d log(n/d)
)

.

(This is loose: the log factor is unnecessary.)
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Example: Smoothly parameterized class

Suppose thatF is a parameterized class,F = {f(θ, ·) : θ ∈ Θ}, where

Θ = B2 ⊂ R
p. The parameterization isL-Lipschitz wrt Euclidean distance

onΘ, so that for allx,

|f(θ, x)− f(θ′, x)| ≤ L‖θ − θ′‖2.

Suppose also thatF = −F (that is,F is closed under negations).

Theorem:

E‖Rn‖F = O

(

L

√

p log(Ln)

n

)

.

NB: O(
√

p/n), plus log factor. The log factor is unnecessary.
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Smoothly parameterized class: Proof

The Lipschitz condition implies that the Euclidean distance between vectors

f(θ,Xn
1 ) is (L

√
n)-Lipschitz wrt the Euclidean distance onΘ:

n
∑

i=1

|f(θ,Xi)− f(θ′, Xi)|2 ≤ nL2‖θ − θ′‖22.

First, exploit the fact that

nE‖Rn‖F = E sup
F∪−F

〈ǫ, ·〉 = E sup
F

〈ǫ, ·〉 = E sup
θ
〈ǫ, f(θ,Xn

1 )〉.
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Smoothly parameterized class: Proof

Since the processf(θ,Xn
1 ) 7→ 〈ǫ, f(θ,Xn

1 )〉 is sub-Gaussian wrt the

Euclidean norm on the vectorsf(θ,Xn
1 ), we have

nE‖Rn‖F ≤ 2ǫ
√
n+E4L

√

n logN(ǫ, f(Θ, Xn
1 ), ‖ · ‖2),

becauseD = 2L
√
n. Because of the Lipschitz condition,

N(ǫ, f(Θ, Xn
1 ), ‖ · ‖2) ≤ N(ǫ/(L

√
n),Θ, ‖ · ‖2) ≤ (1 + 2L

√
n/ǫ)p.
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Smoothly parameterized class: Proof

Substitutingǫ = 1 gives

E‖Rn‖F ≤ 2√
n
+ 4L

√

p

n
log(1 + 2L

√
n)

= O

(

L

√

p log(Ln)

n

)

.

14



Nonparametric example: Lipschitz functions

Theorem: ForFd the set ofL-Lipschitz functions (wrt‖·‖∞) from [0, 1]d

to [−1, 1], there is a universal constantcd, which depends only ond, such

that

E‖Rn‖Fd
≤ cd

(

L

n

)
1

d+2

.

NB: O(n−1/(d+2)). Even ford = 1, this isn−1/3, so slower than

parametric. And the rate gets worse asd increases.
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Nonparametric example: Proof

As before, we consider the processf(Xn
1 ) 7→ 〈ǫ, f(Xn

1 )〉 for f ∈ Fd.

Notice thatFd = −Fd. Also, the diameter of the indexing set in the

Euclidean norm is2
√
n (because functions inFd can differ by at most2).

So we have

nE‖Rn‖F ≤ 2ǫ
√
n+ 4E

√

n logN(ǫ, Fd(Xn
1 ), ‖ · ‖2).

Because

‖f(Xn
1 )− f ′(Xn

1 )‖2 ≤
√
nmax

i
|f(Xi)− f ′(Xi)| ≤

√
n‖f − f ′‖∞,

we havelogN(ǫ, Fd(X
n
1 ), ‖ · ‖2) ≤ logN(ǫ/

√
n, Fd, ‖ · ‖∞).

Recall thatlogN(ǫ, Fd, ‖ · ‖∞) = O
(

(L/ǫ)d
)

, so we have

logN(ǫ, Fd(X
n
1 ), ‖ · ‖2) = O

(

(L
√
n/ǫ)d

)

.
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Nonparametric example: Proof

Thus there is a constantc such that for sufficiently smallǫ,

E‖Rn‖F ≤ 2ǫ√
n
+ c

√

Ldnd/2−1

ǫd
.

Optimizing over the choice ofǫ, that is, setting

ǫ =

(

cd
√
L

4

)
2

d+2

n
d

2(d+2)

gives

E‖Rn‖F ≤ cd

(

L

n

)
1

d+2

.

with
cd = 2

d−2
d+2 d

2
d+2 + 2−

2d
d+2 d−

d

d+2 .
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