Theoretical Statistics. Lecture 13. Peter Bartlett

Metric entropy.

1. Covering number bound

2. Chaining

Recall: Covering and packing numbers

Definition: An ϵ -cover of a subset T of a pseudometric space (S, d) is a set $\hat{T} \subset T$ such that for each $t \in T$ there is a $\hat{t} \in \hat{T}$ such that $d(t, \hat{t}) \leq \epsilon$. The ϵ -covering number of T is

$$
N(\epsilon, T, d) = \min\{|\hat{T}| : \hat{T} \text{ is an } \epsilon\text{-cover of } T\}.
$$

An ϵ -packing of T is a subset $\hat{T} \subset T$ such that each pair $s, t \in \hat{T}$ satisfies $d(s,t) > \epsilon$. The ϵ -packing number of T is

 $M(\epsilon, T, d) = \max\{|\hat{T}| : \hat{T} \text{ is an } \epsilon\text{-packing of } T\}.$

Recall: Covering and packing numbers

Theorem: For all $\epsilon > 0$, $M(2\epsilon) \le N(\epsilon) \le M(\epsilon)$.

Theorem: Let $\|\cdot\|$ be a norm on \mathbb{R}^d and let B be the unit ball. Then

$$
\frac{1}{\epsilon^d} \le N(\epsilon, B, \|\cdot\|) \le \left(\frac{2}{\epsilon} + 1\right)^d.
$$

Example: If F is parameterized in a Lipschitz-continuous way by parameters in (a compact subset of) \mathbb{R}^p , then $N(\epsilon, F) = O(1/\epsilon^p)$.

Recall: Canonical Rademacher and Gaussian Processes

Definition: A stochastic process $\theta \mapsto X_{\theta}$ with indexing set T is sub-Gaussian with respect to a metric d on T if, for all $\theta, \theta' \in T$ and all $\lambda \in \mathbb{R}$,

$$
\mathbf{E} \exp\left(\lambda (X_{\theta}-X_{\theta'})\right) \leq \exp\left(\frac{\lambda^2 d(\theta,\theta')^2}{2}\right).
$$

The canonical Rademacher and Gaussian processes are sub-Gaussian wrt the Euclidean metric.

Lemma: [Finite Classes] For X_{θ} sub-Gaussian wrt d on T, and A a set of pairs from ^T,

$$
\mathbf{E} \max_{(\theta, \theta') \in A} (X_{\theta} - X_{\theta'}) \leq \max_{(\theta, \theta') \in A} d(\theta, \theta') \sqrt{2 \log |A|}.
$$

Covering number bound

Here's ^a crude approach to bounding the supremum of ^a sub-Gaussian process using ^a covering at ^a single scale:

Theorem: Consider a zero-mean process X_{θ} that is sub-Gaussian wrt the metric d on T. Suppose that the diameter of T is $D = \sup_{\theta, \theta'} d(\theta, \theta').$ Then for any ϵ ,

 ${\bf E} \sup$ θ $X_\theta \leq 2{\mathbf E} \quad \sup \quad (X_\theta-X_{\theta'})+2D\sqrt{\log N(\epsilon,T,d)}.$ $d(\theta, \theta') \leq \epsilon$

Covering number bound: Proof

$$
\mathbf{E}\sup_{\theta}X_{\theta}=\mathbf{E}\sup_{\theta}(X_{\theta}-X_{\theta'})\leq\mathbf{E}\sup_{\theta,\theta'}(X_{\theta}-X_{\theta'}).
$$

Also, if we choose $\hat{\theta} \in \hat{T}$ (a minimal ϵ -cover) with $d(\hat{\theta}, \theta) \leq \epsilon$ (and similarly for θ'), we have

$$
X_{\theta} - X_{\theta'} = X_{\theta} - X_{\hat{\theta}} + X_{\hat{\theta}} - X_{\hat{\theta'}} + X_{\hat{\theta'}} - X_{\theta'}
$$

$$
\leq 2 \sup_{d(\theta, \hat{\theta}) \leq \epsilon} (X_{\theta} - X_{\hat{\theta}}) + \sup_{\hat{\theta}, \hat{\theta'} \in \hat{T}} X_{\hat{\theta}} - X_{\hat{\theta'}}.
$$

Finally, since any pair X_{θ} $-X_{\theta}$ is sub-Gaussian with parameter D^2 , the Finite Lemma shows that

$$
\mathbf{E} \sup_{\hat{\theta}, \hat{\theta}' \in \hat{T}} X_{\hat{\theta}} - X_{\hat{\theta}'} \le \sqrt{2D^2 \log |\hat{T}|^2} = 2D\sqrt{\log N(\epsilon, T, d)}.
$$

Application: Canonical Gaussian/Rademacher process

Consider the canonical Gaussian process, $X_{\theta} = \langle g, \theta \rangle$ for $\theta \in T \subset \mathbb{R}^n$. Then X_{θ} is sub-Gaussian wrt the Euclidean metric on T. So we have

$$
\mathbf{E} \sup_{d(\theta,\theta')\leq\epsilon} (X_{\theta}-X_{\theta'})=2\mathbf{E} \sup_{\|v\|_2\leq\epsilon} \langle g,v\rangle \leq 2\epsilon \mathbf{E} \|g\|_2=2\epsilon\sqrt{n}.
$$

(The same argumen^t holds for the canonical Rademacher process.) And so

$$
\mathbf{E} \sup_{\theta} X_{\theta} \le 2\epsilon \sqrt{n} + 2D \sqrt{\log N(\epsilon, T, \|\cdot\|_2)}
$$

Example: Canonical Gaussian process on ^a subspace

Consider the canonical Gaussian process with T the unit ball in a d-dimensional subspace of \mathbb{R}^n :

$$
D = 2; \log N(\epsilon, B, \|\cdot\|_2) \le d \log(1 + 2/\epsilon).
$$

Hence, choosing $\epsilon = \sqrt{d/n}$ gives

$$
\mathbf{E} \sup_{\theta} X_{\theta} \le 2\sqrt{d} + 4\sqrt{d \log \left(1 + 2\sqrt{n/d}\right)} = O\left(\sqrt{d \log(n/d)}\right).
$$

(This is loose: the log factor is unnecessary.)

Example: Smoothly parameterized class

Suppose that F is a parameterized class, $F = \{f(\theta, \cdot) : \theta \in \Theta\}$, where $\Theta = B_2 \subset \mathbb{R}^p$. The parameterization is *L*-Lipschitz wrt Euclidean distance on $\Theta,$ so that for all $x,$

$$
|f(\theta, x) - f(\theta', x)| \le L \|\theta - \theta'\|_2.
$$

Suppose also that $F = -F$ (that is, F is closed under negations).

Theorem:

$$
\mathbf{E} ||R_n||_F = O\left(L\sqrt{\frac{p\log(Ln)}{n}}\right)
$$

.

NB: $O(\sqrt{p/n})$, plus log factor. The log factor is unnecessary.

Smoothly parameterized class: Proof

The Lipschitz condition implies that the Euclidean distance between vectors $f(\theta, X_1^n)$ $\binom{n}{1}$ is $(L\sqrt{n})$ -Lipschitz wrt the Euclidean distance on Θ :

$$
\sum_{i=1}^{n} |f(\theta, X_i) - f(\theta', X_i)|^2 \leq nL^2 \|\theta - \theta'\|_2^2.
$$

First, exploit the fact that

$$
n\mathbf{E}||R_n||_F = \mathbf{E} \sup_{F\cup -F} \langle \epsilon, \cdot \rangle = \mathbf{E} \sup_F \langle \epsilon, \cdot \rangle = \mathbf{E} \sup_{\theta} \langle \epsilon, f(\theta, X_1^n) \rangle.
$$

Smoothly parameterized class: Proof

Since the process $f(\theta, X_1^n)$ \mathcal{L}_{1}^{n} \mapsto $\langle \epsilon, f(\theta, X_{1}^{n}) \rangle$ $\binom{n}{1}$ is sub-Gaussian wrt the Euclidean norm on the vectors $f(\theta, X_1^n)$ $\binom{n}{1}$, we have

$$
n\mathbf{E}||R_n||_F \le 2\epsilon\sqrt{n} + \mathbf{E}4L\sqrt{n\log N(\epsilon, f(\Theta, X_1^n), \|\cdot\|_2)},
$$

because $D = 2L\sqrt{n}$. Because of the Lipschitz condition,

 $N(\epsilon, f(\Theta, X_1^n$ $\|T_1^n\|, \|\cdot\|_2 \leq N(\epsilon/(L\sqrt{n}), \Theta, \|\cdot\|_2) \leq (1+2L\sqrt{n}/\epsilon)^p.$

Smoothly parameterized class: Proof

Substituting $\epsilon = 1$ gives

$$
\mathbf{E}||R_n||_F \le \frac{2}{\sqrt{n}} + 4L\sqrt{\frac{p}{n}\log(1 + 2L\sqrt{n})}
$$

$$
= O\left(L\sqrt{\frac{p\log(Ln)}{n}}\right).
$$

Nonparametric example: Lipschitz functions

Theorem: For F_d the set of L-Lipschitz functions (wrt $\|\cdot\|_{\infty}$) from $[0, 1]^d$ to $[-1, 1]$, there is a universal constant c_d , which depends only on d, such that

$$
\mathbf{E} \|R_n\|_{F_d} \le c_d \left(\frac{L}{n}\right)^{\frac{1}{d+2}}
$$

.

NB: $O(n$ $(-1/(d+2))$. Even for $d=1$, this is n $^{-1/3}$, so slower than parametric. And the rate gets worse as d increases.

Nonparametric example: Proof

As before, we consider the process $f(X_1^n)$ $\binom{n}{1} \mapsto \langle \epsilon, f(X_1^n) \rangle$ $\{n\}\rangle$ for $f\in F_d$. Notice that $F_d = -F_d$. Also, the diameter of the indexing set in the Euclidean norm is $2\sqrt{n}$ (because functions in F_d can differ by at most 2). So we have

$$
n\mathbf{E}||R_n||_F \le 2\epsilon\sqrt{n} + 4\mathbf{E}\sqrt{n\log N(\epsilon, F_d(X_1^n), \|\cdot\|_2)}.
$$

Because

$$
||f(X_1^n) - f'(X_1^n)||_2 \le \sqrt{n} \max_i |f(X_i) - f'(X_i)| \le \sqrt{n} ||f - f'||_{\infty},
$$

we have $\log N(\epsilon, F_d(X_1^n))$ $\binom{n}{1}, \|\cdot\|_2 \leq \log N(\epsilon/\sqrt{n}, F_d, \|\cdot\|_{\infty}).$ Recall that $\log N(\epsilon, F_d, \|\cdot\|_{\infty}) = O((L/\epsilon)^d)$, so we have $\log N(\epsilon, F_d(X_1^n$ $\binom{n}{1},\|\cdot\|_2)=O\left((L\sqrt{n}/\epsilon)^d\right).$ $\left.\rule{-20pt}{10pt}\right)$

Nonparametric example: Proof

Thus there is a constant c such that for sufficiently small ϵ ,

$$
\mathbf{E}||R_n||_F \le \frac{2\epsilon}{\sqrt{n}} + c\sqrt{\frac{L^d n^{d/2-1}}{\epsilon^d}}.
$$

Optimizing over the choice of ϵ , that is, setting

$$
\epsilon = \left(\frac{cd\sqrt{L}}{4}\right)^{\frac{2}{d+2}} n^{\frac{d}{2(d+2)}}
$$

gives

$$
\mathbf{E}||R_n||_F \le c_d \left(\frac{L}{n}\right)^{\frac{1}{d+2}}
$$

.

with

$$
c_d = 2^{\frac{d-2}{d+2}} d^{\frac{2}{d+2}} + 2^{-\frac{2d}{d+2}} d^{-\frac{d}{d+2}}.
$$