Theoretical Statistics. Lecture 13.
Peter Bartlett

Metric entropy.

1. Covering number bound

2. Chaining




‘ Recall: Covering and packing numberj

Definition: An e-cover of a subséf’ of a pseudometric spa¢é, d) is a set
T C T such that for each € T there is & € T such that(¢,?) < ¢. The

e-covering number of ' is

N(e,T,d) = min{|T| : T is ane-cover ofT'}.

An e-packing ofT" is a subsef” ¢ T such that each pair, ¢ € T satisfies
d(s,t) > e. Thee-packing number of’ is

M(e,T,d) = max{|T| : T is ane-packing ofT"}.




‘ Recall: Covering and packing numberj

Theorem: Foralle > 0, M (2¢) < N(e) < M(e).

Theorem: Let|| - || be a norm oR¢ and letB be the unit ball. Then

Example: IfF' Iis parameterized in a Lipschitz-continuous way by
parameters in (a compact subsetRf) thenN (e, F') = O(1/€P).




\Recall: Canonical Rademacher and Gaussian Proces#s

Definition: Fix a setl’ C R".

1. Thecanonical Gaussian process the stochastic process

G9 — <ga (9> — Zgze’w
i=1

whereg; ~ N(0,1) i.i.d.
2. Thecanonical Rademacher process the stochastic process

n

R@ — <€, 9> — 261‘92‘,

1=1

where the:; are i.i.d. and uniform og+1}.




\Recall: Canonical Rademacher and Gaussian Proces#s

Definition: A stochastic proces8 — Xy with indexing setl’ is sub-
Gaussian with respect to a metdon 7' if, for all 6,6’ € T and all\ € R,

\2d(0,0')?
. .

Bexp (A(X5 — Xp1)) < exp (

The canonical Rademacher and Gaussian processes are gsiaBanrt
the Euclidean metric.




Lemma: [Finite Classes] FoXy sub-Gaussian wrt onT’, and A a set of
pairs fromT,

E Xog — Xo) < d(0,60")\/21log | A|.
(9{3%>€<A( 6 9)_(0%%>€<A (0,607)\/2log |A]




‘ Covering number bound'

Here’s a crude approach to bounding the supremum of a subsizau
process using a covering at a single scale:

Theorem: Consider a zero-mean proceks that is sub-Gaussian wirt tf
metricd on T'. Suppose that the diameter Bfis D = supy 4. d(0,0").
Then for anye,

Esup Xg <2E sup (Xy— Xyp)+2D+/logN(e,T,d).
0 d(0,0")<e




‘ Covering number bound: Proof.

E sup Xy = Esup(Xg — Xy) < Esup(Xg — Xg/).
0 0,6’

Also, if we choosd € T (a minimale-cover) withd(6, §) < ¢ (and
similarly for 8”), we have
Xo — Xgr = Xy —Xé—l—Xé —XA, —I—XA, — Xy

<2 sup (Xy—X;)+ sup X;— X,
d(6,0)<e 6,0'cT

Finally, since any paiXy — Xy is sub-Gaussian with parameter, the
Finite Lemma shows that

E sup X;— X, < \/2D210g\f\2 = 2D+/log N (e, T, d).
0,0'cT




‘Application: Canonical Gaussian/Rademacher procej

Consider the canonical Gaussian procé§s= (g,6) for 0 € T C R".
Then Xy is sub-Gaussian wrt the Euclidean metricionSo we have

E sup (Xo— Xo)=2E sup (g,v) <2¢E||gll2 = 2ev/n.
d(0,0")<e [v][2<e

(The same argument holds for the canonical Rademachergs:pdnd so

Esup Xy < 26\/ﬁ+ 2D\/logN(e,T, H ' ”2)
0




Example: Canonical Gaussian process on a subspe'e

Consider the canonical Gaussian process Withe unit ball in a
d-dimensional subspace Bf*:
D =2 log N(e, B, | - ||2) < dlog(1 +2/e).

Hence, choosing = +/d/n gives

Esngg < 2\/E+4\/dlog (1 + 2\/TM> =0 (\/dlog(n/d)> :

(This is loose: the log factor is unnecessary.)
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‘ Example: Smoothly parameterized clasi

Suppose that' is a parameterized clask,= {f(4,-) : § € ©}, where
© = By C RP. The parameterization i5-Lipschitz wrt Euclidean distance
on ©, so that for alkr,

|f<0733) — f<9/7$)| < L”H _ 0/”2'

Suppose also thdt = —F (that is,F' is closed under negations).

B[R,/ = O (# plogf“) |

Theorem:

NB: O(+/p/n), plus log factor. The log factor is unnecessary.
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Smoothly parameterized class: ProoI

The Lipschitz condition implies that the Euclidean disebetween vectors
f(0, X7) is (Ly/n)-Lipschitz wrt the Euclidean distance éh

D O1F0,X5) — F(0, X)]P < nL?|6— 6|3,
=1

First, exploit the fact that

nEHRnHF = E Sup <67 > — ESUp<€, > — ESllp<€, f(ea XIL»
FU—F F 0
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Smoothly parameterized class: ProoI

Since the procesg(d, X7') — (e, f(0, X7")) is sub-Gaussian wrt the
Euclidean norm on the vectofg6, X7'), we have

nE|| Ryl r < 2ev/n + BALy/nlog N(e, (0, X7).1|-[12),

becausd) = 2L+/n. Because of the Lipschitz condition,

N(e, f(©,X7). |- ll2) < N(e/(Lvn), O, - [l2) < (1 +2Lv/n/e)’.
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Smoothly parameterized class: ProoI

Substitutinge = 1 gives

2 p
E|\R,||lF < — +4L,/=log(1 + 2L
IRl < 2=+ 42 /L 1og(1+ 2Ly

5 <L\/plog(Ln)>.
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Nonparametric example: Lipschitz functions'

Theorem: For F, the set ofL-Lipschitz functions (wrt| - || ) from [0, 1]¢
to [—1, 1], there is a universal constast, which depends only od, such

that
L\ 72
Bk <o (1)

NB: O(n~1/(4+2)) Even ford = 1, this isn~1/3, so slower than
parametric. And the rate gets worsedascreases.
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Nonparametric example: Proof'

As before, we consider the processX() — (e, f(X7)) for f € Fy.
Notice thatF; = —F,. Also, the diameter of the indexing set in the

Euclidean norm i€2/n (because functions ihy can differ by at mosg).
So we have

NE|| Ry | < 2ev/n + 4By /nlog N(e, Fa(X7). |- |12

Because
| F(XT) = f1(XT)l2 < Vnmax|f(X;) = f1(Xi)] < Vallf = [l

we havelog N (e, Fa(XT'), || - [[2) < log N(e/v/n, Fa, || - ||so)-
Recall thatog N (e, Fy, || - ||oo) = O ((L/e)*), so we have
log N (e, Fa(X7), || - [12) = O ((Ly//)%).
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Nonparametric example: Proof'

Thus there is a constaatuch that for sufficiently smad,

Ve Ldnd/Q—l
iR < 2 1o/
1Bl < 7=+ ey =

Optimizing over the choice df, that is, setting
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