Theoretical Statistics. L ecture 15.
Peter Bartlett

M-Estimators.

Consistency of M-Estimators.

Nonparametric maximum likelihood.




M -estimators.

Goal: estimate a paramet@pf the distributionP of observations
X1,...,X,.

Define a criteriord — M,,(0) in terms of functionsny : X — R,

Mn(ﬁ) = ang.

The estimatof = arg maxgeeo M,,(0) is called arM -estimator (M for
maximum).

Example:
maximum likelihood uses

mg(z) = log py(x).




\Z-estimators'

Can maximize by setting derivatives to zero:

\IJn(Q) — ine = 0.

These ar@stimating equations. van der Vaart calls this A-estimator (Z

for zero), but it's often called an M-estimator (even if themo
maximization).

Example:
maximum likelihood:




M -estimator s and Z-estimators'

Of course, sometimes we cannot transform an M-estimatorant
Z-estimator. Examplepy =uniform on|0, #] is not differentiable ir¢, and
there is no natural Z-estimator. The M-estimator chooses

0 = arg m@ax P,mg

17.
:argmélen log | 69[0’ o]

= max X;.
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‘ M-estimators and Z-estimators: Examples'

Median:




‘ M-estimators and Z-estimators: Examples'

Huber: [PICTURE]
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These are all location estimatoray (x) = m(x — 0), ¥g(x)



Consistency of M -estimators and Z-estimators'

We want to show thad = 6, whered approximately maximizes
M, (0) = P,my andfy maximizesM (#) = Pmy. We use a ULLN.

Theorem: Suppose that

1. supgee | Mn(0) — M(6)| = 0,

2. Foralle > 0,sup{M(0) : d(0,0p) > €} < M(6y), and

3. M, (6,) > M, (6o) — op(1).

Thend,, 5 4,.

(2) is an identifiability condition: approximately maxinmg M (6)
unambiguously specifigg. It suffices if there is a unigue maximizé,is
compact, and// is continuous.




Pr oof I

From (2), for alle > 0 there is & > 0 such that

Then (1) implies the first and third probabilities go to zeand (3) implies
the second probability goes to zero.




Consistency of M -estimators and Z-estimators'

Same thing for Z-estimators: Findiigthat is an approximate zero of
U, (0) = P,y leads tady, which is the unique zero oF () = P1y.

Theorem: Suppose that

P
1. supgeo 10 (6) — 0(6)] 5 0,

2. Foralle > 0,inf {||W(0)] : d(0,0p) > e} > 0= ||¥(0y)], and

3. 0, (0,) = op(1).

Thend,, 5 6.

Proof: ChoosingV/,,(0) = —||V.,.(0)|| andM (0) = —||¥(0)|| in the
previous theorem implies the result.




Example: Sample median I

Sample media#,, is the zero of

Pripo(X) = Py sign(X —0).

Suppose thaP is continuous and positive around the median, and check ghe
conditions:

1. The clasqx > sign(x — @) : 8 € R} is Glivenko-Cantelli.

2. The population median is unique, so foratb 0,

1
P(X<90—e)<§<P(X<90—|—e).

3. The sample median always Ha#, sign(X — 6,,)| =
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\ ULLN and M-estimators'

Notice the ULLN condition:

P
Supgee | Mn(0) — M(0)] = 0.

Typically, this requires the empirical process— P,,my to be totally
bounded. This can be problematiaiify is unbounded. For instance:
Mean:my(z) = —(x — 6)?,

Median:mgy(x) = —|x — 6|.

We can get around the problem by restricting to a compact setevmost
of the mass of lies, and showing that this does not affect the asymptotids.
In that case, we can also restricto an appropriate compact subset.
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‘ Non-parametric maximum likelihood I

EstimateP on X'. Suppose it has a density

dP
Po = EP,
dp

whereP is a family of densities. Define the maximum likelihood estim

P, = arg max P, log p.
peP

We’ll show conditions for whichp,, is Hellinger consistent, that is,
h(pn, po) = 0, whereh is the Hellinger distance:

= G/ (b2~ 4/2)’ du) -

[The1/2 ensure®) < h(p,q) < 1.]
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‘Hellinger distance'

1 2
h(p, q)* = 5/ (p1/2 - qm) du

1
25/(p+q—2p1/2q1/2) dyu

_ 1 _/p1/2q1/2 dp.

This latter integral is called the Hellinger affinity. Expeeng#h in this form
can simplify its calculation for product densities. Nottbat, by
Cauchy-Schwartz,

/p1/2q1/2 dMS/pdu/qdu:L

soh(p,q) € |0, 1].
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‘ Non-parametric maximum likelihood I

The Kullback-Leibler divergence betwegrandq is

q
drrL(p;q) Z/log]—)q du.

Clearly,dk 1 (p,p) = 0. Also, since— log(-) IS convex,

drr(p,q) Z—/loggq dp > —log (/gq du) = 0.
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‘ Non-parametric maximum likelihood I

Relating KL-divergence to a ULLN:

dxr.(Dn,Po) :/10g]3—0 po du

n

S/log]f—o po dp — Py log 22

n Pn

= Plog]?—O — Pnlog]j—O
Pn Pn

<[P = Pulle,

where the first inequality follows from the fact that maximizesP,, log p
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overp € P, and the clasé; is defined as

G:{l[po>0]10g%:pep}.
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‘ Non-parametric maximum likelihood I

One problem here is thatg(py /p) is unbounded, since can be zero.
We’'ll take a different approach: For apye P, consider the mixture

~:p+po
p 5

If the classP is convex and,,, po € P, this mixture has

P, logp < P, logp,. This is behind the following lemma.

Lemma: Define )
Pn + Po

If P is convex,
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‘ Non-parametric maximum likelihood I

Theorem: For a convex clas® of densities, ifP has density, € P and
P, Maximizes likelihood oveP, we have

h(Pn,po)? < ||P — Pylla,

2
G:{ P :pEP}.
P+ Do

Notice that functions ity are bounded betwednand?2.

18



Non-parametric maximum likelihood: Example'

Lemma: SupposeP is a set of densities on a compact sub¥eof R<.
Fix a norm|| - || onRR¢. Suppose that, for ali € P,

p(x
Q—l\surw—yn.

p(y)

1. Forallp € conv P, % — 1‘ < L||z — y||.

2. Forallp, p € conv P, 22— is O(L?)-Lipschitz wrt|| - .

3. ||P - P,|l¢ &0, where
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Non-parametric maximum likelihood: Example'

But notice that the dependence on the dimensgi@iterrible: the rate is
exponentially slow inrd. The Lipschitz property is a very weak restriction.
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