
Theoretical Statistics. Lecture 15.
Peter Bartlett

M-Estimators.

Consistency of M-Estimators.

Nonparametric maximum likelihood.
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M-estimators

Goal: estimate a parameterθ of the distributionP of observations

X1, . . . , Xn.

Define a criterionθ 7→Mn(θ) in terms of functionsmθ : X → R,

Mn(θ) = Pnmθ.

The estimator̂θ = argmaxθ∈ΘMn(θ) is called anM-estimator (M for

maximum).

Example:

maximum likelihood uses

mθ(x) = log pθ(x).
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Z-estimators

Can maximize by setting derivatives to zero:

Ψn(θ) = Pnψθ = 0.

These areestimating equations. van der Vaart calls this aZ-estimator (Z

for zero), but it’s often called an M-estimator (even if there’s no

maximization).

Example:

maximum likelihood:

ψθ(x) = ∇θ log pθ(x).
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M-estimators and Z-estimators

Of course, sometimes we cannot transform an M-estimator into a

Z-estimator. Example:pθ =uniform on[0, θ] is not differentiable inθ, and

there is no natural Z-estimator. The M-estimator chooses

θ̂ = argmax
θ
Pnmθ

= argmax
θ
Pn log

1 [· ∈ [0, θ]]

θ

= max
i
Xi.
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M-estimators and Z-estimators: Examples

Mean:

mθ(x) = −(x− θ)2.

ψθ(x) = (x− θ).

Median:

mθ(x) = −|x− θ|.

ψθ(x) = sign(x− θ).
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M-estimators and Z-estimators: Examples

Huber: [PICTURE]

mθ(x) = rk(x− θ)

rk(x) =















1
2k

2 − k(x+ k) if x < −k,
1
2x

2 if |x| ≤ k,
1
2k

2 + k(x− k) if x > k.

ψθ(x) = [x− θ]k−k

[x]k−k =















−k if x < −k,

x if |x| ≤ k,

k if x > k.

These are all location estimators:mθ(x) = m(x− θ), ψθ(x) = ψ(x− θ).
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Consistency of M-estimators and Z-estimators

We want to show that̂θ
P
→ θ0, whereθ̂ approximately maximizes

Mn(θ) = Pnmθ andθ0 maximizesM(θ) = Pmθ. We use a ULLN.

Theorem: Suppose that

1. supθ∈Θ |Mn(θ)−M(θ)|
P
→ 0,

2. For allǫ > 0, sup {M(θ) : d(θ, θ0) ≥ ǫ} < M(θ0), and

3. Mn(θ̂n) ≥Mn(θ0)− oP (1).

Thenθ̂n
P
→ θ0.

(2) is an identifiability condition: approximately maximizingM(θ)

unambiguously specifiesθ0. It suffices if there is a unique maximizer,Θ is
compact, andM is continuous.
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Proof

From (2), for allǫ > 0 there is aδ > 0 such that

Pr(d(θ̂n, θ0) ≥ ǫ)

≤ Pr(M(θ0)−M(θ̂n) ≥ δ)

= Pr(M(θ0)−Mn(θ0) +Mn(θ0)−Mn(θ̂n) +Mn(θ̂n)−M(θ̂n) ≥ δ)

≤ Pr(M(θ0)−Mn(θ0) ≥ δ/3) + Pr(Mn(θ0)−Mn(θ̂n) ≥ δ/3)

+ Pr(Mn(θ̂n)−M(θ̂n) ≥ δ/3).

Then (1) implies the first and third probabilities go to zero,and (3) implies

the second probability goes to zero.
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Consistency of M-estimators and Z-estimators

Same thing for Z-estimators: Findinĝθ that is an approximate zero of

Ψn(θ) = Pnψθ leads toθ0, which is the unique zero ofΨ(θ) = Pψθ.

Theorem: Suppose that

1. supθ∈Θ ‖Ψn(θ)−Ψ(θ)‖
P
→ 0,

2. For allǫ > 0, inf {‖Ψ(θ)‖ : d(θ, θ0) ≥ ǫ} > 0 = ‖Ψ(θ0)‖, and

3. Ψn(θ̂n) = oP (1).

Thenθ̂n
P
→ θ0.

Proof: ChoosingMn(θ) = −‖Ψn(θ)‖ andM(θ) = −‖Ψ(θ)‖ in the

previous theorem implies the result.
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Example: Sample median

Sample median̂θn is the zero of

Pnψθ(X) = Pn sign(X − θ).

Suppose thatP is continuous and positive around the median, and check the

conditions:

1. The class{x 7→ sign(x− θ) : θ ∈ R} is Glivenko-Cantelli.

2. The population median is unique, so for allǫ > 0,

P (X < θ0 − ǫ) <
1

2
< P (X < θ0 + ǫ).

3. The sample median always has|Pn sign(X − θ̂n)| = 0.
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ULLN and M-estimators

Notice the ULLN condition:

supθ∈Θ |Mn(θ)−M(θ)|
P
→ 0.

Typically, this requires the empirical processθ 7→ Pnmθ to be totally

bounded. This can be problematic ifmθ is unbounded. For instance:

Mean:mθ(x) = −(x− θ)2,

Median:mθ(x) = −|x− θ|.

We can get around the problem by restricting to a compact set where most

of the mass ofP lies, and showing that this does not affect the asymptotics.

In that case, we can also restrictθ to an appropriate compact subset.
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Non-parametric maximum likelihood

EstimateP onX . Suppose it has a density

p0 =
dP

dµ
∈ P ,

whereP is a family of densities. Define the maximum likelihood estimate

p̂n = argmax
p∈P

Pn log p.

We’ll show conditions for whicĥpn is Hellinger consistent, that is,
h(p̂n, p0)

as
→ 0, whereh is the Hellinger distance:

h(p, q) =

(

1

2

∫

(

p1/2 − q1/2
)2

dµ

)1/2

.

[The1/2 ensures0 ≤ h(p, q) ≤ 1.]
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Hellinger distance

We have

h(p, q)2 =
1

2

∫

(

p1/2 − q1/2
)2

dµ

=
1

2

∫

(

p+ q − 2p1/2q1/2
)

dµ

= 1−

∫

p1/2q1/2 dµ.

This latter integral is called the Hellinger affinity. Expressingh in this form
can simplify its calculation for product densities. Noticethat, by
Cauchy-Schwartz,

∫

p1/2q1/2 dµ ≤

∫

p dµ

∫

q dµ = 1,

soh(p, q) ∈ [0, 1].
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Non-parametric maximum likelihood

The Kullback-Leibler divergence betweenp andq is

dKL(p, q) =

∫

log
q

p
q dµ.

Clearly,dKL(p, p) = 0. Also, since− log(·) is convex,

dKL(p, q) = −

∫

log
p

q
q dµ ≥ − log

(
∫

p

q
q dµ

)

= 0.
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Non-parametric maximum likelihood

Relating KL-divergence to a ULLN:

dKL(p̂n, p0) =

∫

log
p0
p̂n

p0 dµ

≤

∫

log
p0
p̂n

p0 dµ− Pn log
p0
p̂n

= P log
p0
p̂n

− Pn log
p0
p̂n

≤ ‖P − Pn‖G,

where the first inequality follows from the fact thatp̂n maximizesPn log p
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overp ∈ P, and the classG is defined as

G =

{

1[p0 > 0] log
p0
p

: p ∈ P

}

.
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Non-parametric maximum likelihood

One problem here is thatlog(p0/p) is unbounded, sincep can be zero.
We’ll take a different approach: For anyp ∈ P, consider the mixture

p̃ =
p+ p0

2
.

If the classP is convex and̂pn, p0 ∈ P, this mixture has
Pn log p̃ ≤ Pn log p̂n. This is behind the following lemma.

Lemma: Define

p̃n =
p̂n + p0

2
.

If P is convex,

h(p̂n, p0)
2 ≤

∫

p̂n
p̃n

d(Pn − P ).
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Non-parametric maximum likelihood

Theorem: For a convex classP of densities, ifP has densityp0 ∈ P and

p̂n maximizes likelihood overP, we have

h(p̂n, p0)
2 ≤ ‖P − Pn‖G,

where

G =

{

2p

p+ p0
: p ∈ P

}

.

Notice that functions inG are bounded between0 and2.
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Non-parametric maximum likelihood: Example

Lemma: SupposeP is a set of densities on a compact subsetX of Rd.

Fix a norm‖ · ‖ onRd. Suppose that, for allp ∈ P,
∣

∣

∣

∣

p(x)

p(y)
− 1

∣

∣

∣

∣

≤ L‖x− y‖.

1. For allp ∈ convP,
∣

∣

∣

p(x)
p(y) − 1

∣

∣

∣
≤ L‖x− y‖.

2. For allp, p0 ∈ convP, 2p
p+p0

isO(L2)-Lipschitz wrt‖ · ‖.

3. ‖P − Pn‖G
as
→ 0, where

G =

{

2p

p+ p0
: p ∈ convP

}

.
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Non-parametric maximum likelihood: Example

But notice that the dependence on the dimensiond is terrible: the rate is

exponentially slow ind. The Lipschitz property is a very weak restriction.
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