Theoretical Statistics. Lecture 15. Peter Bartlett

M-Estimators.

Consistency of M-Estimators.

Nonparametric maximum likelihood.

M-estimators

Goal: estimate a parameter θ of the distribution P of observations X_1, \ldots, X_n .

Define a criterion $\theta \mapsto M_n(\theta)$ in terms of functions $m_\theta : \mathcal{X} \to \mathbb{R}$,

 $M_n(\theta) = P_n m_\theta.$

The estimator $\hat{\theta} = \arg\max_{\theta \in \Theta} M_n(\theta)$ is called an **M-estimator** (M for maximum).

Example: maximum likelihood uses

$$
m_{\theta}(x) = \log p_{\theta}(x).
$$

Z-estimators

Can maximize by setting derivatives to zero:

$$
\Psi_n(\theta) = P_n \psi_\theta = 0.
$$

These are **estimating equations**. van der Vaart calls this ^a **Z-estimator** (Z for zero), but it's often called an M-estimator (even if there's no maximization).

Example:

maximum likelihood:

$$
\psi_{\theta}(x) = \nabla_{\theta} \log p_{\theta}(x).
$$

M-estimators and Z-estimators

Of course, sometimes we cannot transform an M-estimator into ^a Z-estimator. Example: $p_{\theta} =$ uniform on $[0, \theta]$ is not differentiable in θ , and there is no natural Z-estimator. The M-estimator chooses

$$
\hat{\theta} = \arg \max_{\theta} P_n m_{\theta}
$$

$$
= \arg \max_{\theta} P_n \log \frac{1 \left[\cdot \in [0, \theta] \right]}{\theta}
$$

$$
= \max_{i} X_i.
$$

M-estimators and Z-estimators: Examples

Mean:

$$
m_{\theta}(x) = -(x - \theta)^{2}.
$$

$$
\psi_{\theta}(x) = (x - \theta).
$$

Median:

$$
m_{\theta}(x) = -|x - \theta|.
$$

$$
\psi_{\theta}(x) = \text{sign}(x - \theta).
$$

M-estimators and Z-estimators: Examples

Huber: [PICTURE]

$$
m_{\theta}(x) = r_k(x - \theta)
$$

\n
$$
r_k(x) = \begin{cases} \frac{1}{2}k^2 - k(x + k) & \text{if } x < -k, \\ \frac{1}{2}x^2 & \text{if } |x| \le k, \\ \frac{1}{2}k^2 + k(x - k) & \text{if } x > k. \end{cases}
$$

\n
$$
\psi_{\theta}(x) = [x - \theta]_{-k}^k
$$

\n
$$
[x]_{-k}^k = \begin{cases} -k & \text{if } x < -k, \\ x & \text{if } |x| \le k, \\ k & \text{if } x > k. \end{cases}
$$

These are all location estimators: $m_{\theta}(x) = m(x - \theta), \psi_{\theta}(x) = \psi(x - \theta)$.

Consistency of M-estimators and Z-estimators

We want to show that $\hat{\theta} \stackrel{P}{\rightarrow} \theta_0$, where $\hat{\theta}$ approximately maximizes $M_n(\theta) = P_n m_\theta$ and θ_0 maximizes $M(\theta) = P m_\theta$. We use a ULLN.

Theorem: Suppose that

1.
$$
\sup_{\theta \in \Theta} |M_n(\theta) - M(\theta)| \stackrel{P}{\to} 0
$$
,

2. For all $\epsilon > 0$, sup $\{M(\theta) : d(\theta, \theta_0) \geq \epsilon\} < M(\theta_0)$, and

$$
3. M_n(\hat{\theta}_n) \geq M_n(\theta_0) - o_P(1).
$$

Then $\hat{\theta}_n$ $\stackrel{P}{\rightarrow} \theta_0.$

(2) is an identifiability condition: approximately maximizing $M(\theta)$ unambiguously specifies θ_0 . It suffices if there is a unique maximizer, Θ is compact, and M is continuous.

Proof

From (2), for all $\epsilon > 0$ there is a $\delta > 0$ such that $\Pr(d(\hat{\theta}_n, \theta_0) \geq \epsilon)$ $\leq \Pr(M(\theta_0) - M(\hat{\theta}_n) \geq \delta)$ $= \Pr(M(\theta_0) - M_n(\theta_0) + M_n(\theta_0) - M_n(\hat{\theta}_n) + M_n(\hat{\theta}_n) - M(\hat{\theta}_n) \geq \delta)$ $\leq Pr(M(\theta_0) - M_n(\theta_0) \geq \delta/3) + Pr(M_n(\theta_0) - M_n(\hat{\theta}_n) \geq \delta/3)$ $+ \Pr(M_n(\hat{\theta}_n) - M(\hat{\theta}_n) \geq \delta/3).$

Then (1) implies the first and third probabilities go to zero, and (3) implies the second probability goes to zero.

Consistency of M-estimators and Z-estimators

Same thing for Z-estimators: Finding $\hat{\theta}$ that is an approximate zero of $\Psi_n(\theta) = P_n \psi_\theta$ leads to θ_0 , which is the unique zero of $\Psi(\theta) = P \psi_\theta$.

Theorem: Suppose that

1.
$$
\sup_{\theta \in \Theta} \|\Psi_n(\theta) - \Psi(\theta)\| \stackrel{P}{\to} 0
$$
,

2. For all $\epsilon > 0,$ inf $\{\|\Psi(\theta)\| : d(\theta, \theta_0) \geq \epsilon\} > 0 = \|\Psi(\theta_0)\|$, and

$$
\mathfrak{Z}.\ \Psi_n(\hat{\theta}_n)=o_P(1).
$$

Then $\hat{\theta}_n$ $\stackrel{P}{\rightarrow} \theta_0.$

Proof: Choosing $M_n(\theta) = -\|\Psi_n(\theta)\|$ and $M(\theta) = -\|\Psi(\theta)\|$ in the previous theorem implies the result.

Example: Sample median

Sample median $\hat{\theta}_n$ is the zero of

$$
P_n\psi_\theta(X) = P_n \operatorname{sign}(X - \theta).
$$

Suppose that P is continuous and positive around the median, and check the conditions:

- 1. The class $\{x \mapsto sign(x \theta) : \theta \in \mathbb{R}\}$ is Glivenko-Cantelli.
- 2. The population median is unique, so for all $\epsilon > 0$,

$$
P(X < \theta_0 - \epsilon) < \frac{1}{2} < P(X < \theta_0 + \epsilon).
$$

3. The sample median always has $|P_n \text{sign}(X - \hat{\theta}_n)| = 0$.

ULLN and M-estimators

Notice the ULLN condition: $\sup_{\theta \in \Theta} |M_n(\theta) - M(\theta)| \stackrel{P}{\to} 0.$

Typically, this requires the empirical process $\theta \mapsto P_n m_\theta$ to be totally bounded. This can be problematic if m_{θ} is unbounded. For instance: Mean: $m_{\theta}(x) = -(x - \theta)^2$, Median: $m_{\theta}(x) = -|x - \theta|$.

We can ge^t around the problem by restricting to ^a compac^t set where most of the mass of P lies, and showing that this does not affect the asymptotics. In that case, we can also restrict θ to an appropriate compact subset.

Estimate P on $\mathcal X$. Suppose it has a density

$$
p_0=\frac{dP}{d\mu}\in\mathcal{P},
$$

where P is a family of densities. Define the maximum likelihood estimate

$$
\hat{p}_n = \arg\max_{p \in \mathcal{P}} P_n \log p.
$$

We'll show conditions for which \hat{p}_n is **Hellinger consistent**, that is, $h(\hat{p}_n, p_0) \stackrel{as}{\rightarrow} 0$, where h is the Hellinger distance:

$$
h(p,q) = \left(\frac{1}{2}\int \left(p^{1/2}-q^{1/2}\right)^2\,d\mu\right)^{1/2}
$$

.

[The $1/2$ ensures $0 \leq h(p,q) \leq 1$.]

Hellinger distance

We have

$$
h(p,q)^2 = \frac{1}{2} \int \left(p^{1/2} - q^{1/2} \right)^2 d\mu
$$

= $\frac{1}{2} \int \left(p + q - 2p^{1/2}q^{1/2} \right) d\mu$
= $1 - \int p^{1/2}q^{1/2} d\mu$.

This latter integral is called the Hellinger affinity. Expressing h in this form can simplify its calculation for product densities. Notice that, by Cauchy-Schwartz,

$$
\int p^{1/2} q^{1/2} \, d\mu \le \int p \, d\mu \int q \, d\mu = 1,
$$

so $h(p, q) \in [0, 1]$.

The Kullback-Leibler divergence between p and q is

$$
d_{KL}(p,q) = \int \log \frac{q}{p} q \ d\mu.
$$

Clearly, $d_{KL}(p, p) = 0$. Also, since $-\log(\cdot)$ is convex,

$$
d_{KL}(p,q) = -\int \log \frac{p}{q} q \, d\mu \ge -\log \left(\int \frac{p}{q} q \, d\mu\right) = 0.
$$

Relating KL-divergence to ^a ULLN:

$$
d_{KL}(\hat{p}_n, p_0) = \int \log \frac{p_0}{\hat{p}_n} \quad p_0 \quad d\mu
$$

\n
$$
\leq \int \log \frac{p_0}{\hat{p}_n} \quad p_0 \quad d\mu - P_n \log \frac{p_0}{\hat{p}_n}
$$

\n
$$
= P \log \frac{p_0}{\hat{p}_n} - P_n \log \frac{p_0}{\hat{p}_n}
$$

\n
$$
\leq ||P - P_n||_G,
$$

where the first inequality follows from the fact that \hat{p}_n maximizes $P_n \log p$

over $p \in \mathcal{P}$, and the class G is defined as

$$
G = \left\{ 1[p_0 > 0] \log \frac{p_0}{p} : p \in \mathcal{P} \right\}.
$$

One problem here is that $\log(p_0/p)$ is unbounded, since p can be zero. We'll take a different approach: For any $p \in \mathcal{P}$, consider the mixture

$$
\tilde{p} = \frac{p + p_0}{2}.
$$

If the class P is convex and $\hat{p}_n, p_0 \in \mathcal{P}$, this mixture has $P_n \log \tilde{p} \leq P_n \log \hat{p}_n$. This is behind the following lemma.

Lemma: Define

$$
\tilde{p}_n = \frac{\hat{p}_n + p_0}{2}.
$$

If P is convex,

$$
h(\hat{p}_n, p_0)^2 \le \int \frac{\hat{p}_n}{\tilde{p}_n} d(P_n - P).
$$

Theorem: For a convex class P of densities, if P has density $p_0 \in P$ and \hat{p}_n maximizes likelihood over $\mathcal{P},$ we have

$$
h(\hat{p}_n, p_0)^2 \leq ||P - P_n||_G
$$
,

where

$$
G = \left\{ \frac{2p}{p+p_0} : p \in \mathcal{P} \right\}.
$$

Notice that functions in G are bounded between 0 and 2.

Non-parametric maximum likelihood: Example

Lemma: Suppose P is a set of densities on a compact subset X of \mathbb{R}^d . Fix a norm $\|\cdot\|$ on $\mathbb{R}^d.$ Suppose that, for all $p\in\mathcal{P},$

$$
\frac{p(x)}{p(y)} - 1 \Big| \le L \|x - y\|.
$$

1. For all $p \in \text{conv } \mathcal{P}, \left| \frac{p(x)}{p(y)} - 1 \right| \leq L \|x - y\|.$ $\overline{}$ $\overline{}$ $\overline{}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array}$ $\overline{}$

 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$

- 2. For all $p, p_0 \in \text{conv } \mathcal{P}, \frac{2p}{p+r}$ $\frac{p+p_0}{p}$ is $O(L^2)$ -Lipschitz wrt $\|\cdot\|.$
- 3. $\|P-P_n\|_G$ $\stackrel{as}{\rightarrow} 0$, where

$$
G = \left\{ \frac{2p}{p+p_0} : p \in \text{conv } \mathcal{P} \right\}.
$$

Non-parametric maximum likelihood: Example

But notice that the dependence on the dimension d is terrible: the rate is exponentially slow in d . The Lipschitz property is a very weak restriction.