Theoretical Statistics. L ecture 16.
Peter Bartlett

1. M-estimators: Consistency of nonparametric maximumliliiood.

2. Asymptotic normality: Delta method.

3. Asymptotic normality of Z-estimators: classical corahs.




‘ Non-parametric maximum likelihood I

EstimateP on X'. Suppose it has a density

dP
Po = —— EP,
dp

whereP is a family of densities. Define the maximum likelihood estim

P, = arg max P, log p.
peP

We’'ll show conditions for whiclhp,, is Hellinger consistent, that is,
h(pn, po) = 0, whereh is the Hellinger distance:

= G/ (b2~ 472)’ du)lm.




‘ Non-parametric maximum likelihood I

For anyp € P, consider the mixture

P+ Do

P = 9

If the classP is convex and,,, po € P, this mixture has
P, logp < P, logp,,. This is behind the following lemma.

Lemma: Define

If P iIs convex,




‘ Non-parametric maximum likelihood I
Proof:

Because,, maximizes the log likelihood oveP, and convexity ofP
impliesp,, € P, we have

0< /log@ dP,,.

Pn

Now the inequalitylog x < x — 1 Implies

f(& )
Pn

= —dP — P) /—dP—l
Dn




‘ Non-parametric maximum likelihood I

We can write
ATL 2An ATL
/]f—dp—1:/Ap dP—/]z P 4p
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Po — Pn Po — Pn
0P gp / 0P
/ DPn _|_ Po Pn _|_ Po

1/p0_]§n ~ ~
el Po + Dn + Do — Dn) dit
2 pn"_pO( )

1 p_ﬁn2
__/(0 )du-

2 ﬁn +p0




‘ Non-parametric maximum likelihood I

Finally,

2 2
(153/2 - p(]j/Q) (153/2 + p(l)/Q)

(Al/g B 1/2)2 __(Bn—=p0)*  _ (Pn—po)”

pn pO 5 = ~
~1/2 1/2 -+
(pn/ n po/ ) Dn + Do

And this implies

Combining gives the result.




‘ Non-parametric maximum likelihood I

Theorem: For a convex clas® of densities, ifP has density, € P and
P, Maximizes likelihood oveP, we have

h(Pn,po)? < ||P — Pylla,

2
G:{ P :pEP}.
P+ Do

Notice that functions ity are bounded betwednand?2.




Non-parametric maximum likelihood: Example'

ConsiderP the class of piecewise-polynomial densities (splines)0oi|
with k(n) fixed knots (boundaries between the pieces). Since the knets
fixed, it is a convex class. Plus, the ratio classan be computed in
O(k(n)) time, so the VC-dimension of the subgraph classis O(k(n)?),
and hence

d
ElRle < /2.
n

Fork(n) = o(y/n), we have|P — P,|c = 0.

(The subgraph class for a clag<of real-valued functions is

F<o ={(z,y) — 1[f(x) > y| : f € F'}. The log covering numbers d@f are
bounded above big(N (e, F')) = O(dyvo(F<)log(1/€)), so computing
the entropy integral gives the boufié® — P, ||r = O(\/dvc(F<)/n.)




Asymptotic distributions: Delta method I

(See vdV3.)

We have an estimatdr,,, and we know’’, iy and/n(T,, —0) ~ Z.

Suppose we are interested in the saymptotics(@f, ).

The continuous mapping theorem implies that it continuous then
o(Ty) i »(0). The delta method gives its asymptotic distribution.




\ Delta method '

Theorem: If ¢ : R¥ — R™ is differentiable ab,
and+/n(T,, — 0) ~ T, then

V((T) — 6(0)) — p(vn(T, — 0)) 5 0.

Here, ¢, is the derivative (linear map) satisfying

¢(0 + h) — ¢(0) = ¢ (h) + o([|h]])

for h — 0.
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\ Delta method '
Proof:

Consider the remainder function
R(h) = ¢(0 4 h) — ¢(0) — dy(h).

Differentiability impliesR(h) = o(||h||) ash — 0. But/n(T,, — )
converges in distribution, so it is uniformly tight and sngn — oo,
T, —0 0. So we can substitute = T,, — 6 and get

R(T, —0) = op(||Tn — 0])).

R(Tn — ‘9) — ¢(Tn) - ¢(‘9) - ¢/9(Tn — ‘9)
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\ Delta method '

Thus,
ﬁ<§b<Tn) R ¢(9)) — gbé(\/ﬁ(Tn _ 9)) + \/50P<||Tn — QH)
But \/nop(|Tn — 0l]) = op(vn|[T, — 0) = op(1).

This shows that

Vi(b(T,) — $(0)) — ¢y(vV/n(T, — 6)) 5 0.

The continuous mapping theorem and Slutsky’s lemma shaats th

V() — ¢(6)) ~ ¢4(T).
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Asymptotic normality of Z-estimators'

Theorem: Consider
U, (0) = Py, U(0) = Py.

Supposéd,, € R is a zero ofl,,, 0, € R is a zero of¥, 4,, = 6,. Then

n o _\/ﬁan(eO)

whered,, = M\, + (1 — \)0, for somed < X < 1.
If Py? exists,Pyy, exists and is non-zero, anig, (6,,) = Op(1), then

V(0 = 60) ~ N (0, P3, / (Piba,)?)
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