Theoretical Statistics. Lecture 17. Peter Bartlett

- 1. Asymptotic normality of Z-estimators: classical conditions.
- 2. Asymptotic equicontinuity.

Recall: Delta method

Theorem: Suppose $\phi : \mathbb{R}^k \to \mathbb{R}^m$ is differentiable at θ , and $\sqrt{n}(T_n - \theta) \rightsquigarrow T$, then

$$
\sqrt{n}(\phi(T_n) - \phi(\theta)) \rightsquigarrow \phi'_{\theta}(T)
$$

$$
\sqrt{n}(\phi(T_n) - \phi(\theta)) - \phi'_{\theta}(\sqrt{n}(T_n - \theta)) \stackrel{P}{\to} 0.
$$

Here, ϕ'_{θ} is the derivative (linear map) satisfying

$$
\phi(\theta + h) - \phi(\theta) = \phi'_{\theta}(h) + o(||h||)
$$

for $h \to 0$.

Asymptotic normality of Z-estimators

Theorem: Consider

$$
\Psi_n(\theta) = P_n \psi_\theta, \qquad \Psi(\theta) = P \psi_\theta.
$$

Suppose $\hat{\theta}_n \in \mathbb{R}$ is a zero of $\Psi_n, \theta_0 \in \mathbb{R}$ is a zero of $\Psi, \hat{\theta}_n$ $\stackrel{P}{\rightarrow} \theta_0$. Then

$$
\sqrt{n}(\hat{\theta}_n - \theta_0) = \frac{-\sqrt{n}\Psi_n(\theta_0)}{\dot{\Psi}_n(\theta_0) + \frac{1}{2}(\hat{\theta}_n - \theta_0)\ddot{\Psi}_n(\tilde{\theta}_n)}
$$

where $\widetilde{\theta}_n = \lambda \widehat{\theta}_n + (1-\lambda) \theta_0$ for some $0 \leq \lambda \leq 1$. If $P\psi_\theta^2$ $\hat{\theta}_0$ exists, $P\dot{\psi}_{\theta_0}$ exists and is non-zero, and $\ddot{\Psi}_n(\tilde{\theta}_n) = O_P(1)$, then

$$
\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow N\left(0, P\psi_{\theta_0}^2/(P\dot{\psi}_{\theta_0})^2\right).
$$

Asymptotic normality of Z-estimators: Proof

We take a Taylor series expansion of $\Psi_n(\hat{\theta}_n)$ around θ_0 :

$$
0 = \Psi_n(\theta_0) + (\hat{\theta}_n - \theta_0) \dot{\Psi}_n(\theta_0) + \frac{1}{2} (\hat{\theta}_n - \theta_0)^2 \ddot{\Psi}_n(\tilde{\theta}_n),
$$

=
$$
\Psi_n(\theta_0) + (\hat{\theta}_n - \theta_0) \left(\dot{\Psi}_n(\theta_0) + \frac{1}{2} (\hat{\theta}_n - \theta_0) \ddot{\Psi}_n(\tilde{\theta}_n) \right),
$$

where $\tilde{\theta}_n$ is between $\hat{\theta}_n$ and θ_0 . Rearranging gives the first equality of the theorem:

$$
\sqrt{n}(\hat{\theta}_n - \theta_0) = \frac{-\sqrt{n}\Psi_n(\theta_0)}{\dot{\Psi}_n(\theta_0) + \frac{1}{2}(\hat{\theta}_n - \theta_0)\ddot{\Psi}_n(\tilde{\theta}_n)}
$$

Since $P\psi^2_\theta$ $\frac{2}{\theta_0}$ exists,

$$
-\sqrt{n}\Psi_n(\theta_0) = -\frac{1}{\sqrt{n}}\sum_{i=1}^n \psi_{\theta_0}(X_i) \rightsquigarrow N(P\psi_{\theta_0}, \text{var}(\psi_{\theta_0})) = N(0, P\psi_{\theta_0}^2).
$$

Asymptotic normality of Z-estimators: Proof

Since $P\dot{\psi}_{\theta_0}$ exists,

$$
\dot{\Psi}_n(\theta_0) = \frac{1}{n} \sum_{i=1}^n \dot{\psi}_{\theta_0}(X_i) \stackrel{P}{\to} P \dot{\psi}_{\theta_0}.
$$

Finally,

$$
\frac{1}{2}(\hat{\theta}_n - \theta_0)\ddot{\Psi}_n(\tilde{\theta}_n) = \frac{1}{2}o_P(1)O_P(1) = o_P(1).
$$

Slutsky's lemma gives the result.

Asymptotic normality of Z-estimators

Analogous result for $\theta \in \mathbb{R}^p$:

$$
\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow N\left(0, (P\dot{\psi}_{\theta_0})^{-1} P \psi_{\theta_0} \psi_{\theta_0}^T (P\dot{\psi}_{\theta_0})^{-1}\right)
$$

Asymptotic normality of Z-estimators

Consider the (classical) conditions we used:

 \bullet $P\psi^2_{\theta}$ $\frac{2}{\theta_0}$ exists:

> The form of the estimating equations (and the distribution) keep the variance under control.

- $P\dot{\psi}_{\theta_0}$ exists and is non-singular: This requires the function ψ to be regular at its zero.
- $\dot{\Psi}_n(\tilde{\theta}_n) = O_P(1)$: We used this to control the remainder term in the Taylor series. But it is not necessary to have these derivatives existing. We can replace this with ^a stochastic equicontinuity condition: showing that $\{\psi_\theta: \|\theta-\theta_0\|\leq \epsilon\}$ is a **Donsker class** for some $\epsilon>0.$

[Construct conditions of theorem below as we proceed through the proof.] Suppose $\Psi(\theta) = P\psi_\theta, \Psi_n(\theta) = P_n\psi_\theta$ and $\Psi(\theta_0) = 0$. Then $\sqrt{n}(\Psi - \Psi_n)(\theta_0) = \sqrt{n}(P - P_n)\psi_{\theta_0} \rightsquigarrow N(0, P\psi_{\theta_0}\psi_{\theta_0}^T)$ $\frac{1}{\theta_0}$.

Suppose also that $\hat{\theta}_n$ is an approximate zero of Ψ_n (we'll assume that $\Psi_n(\hat{\theta}_n) = o_P(n^{-1/2})$. We'd like to show that $\sqrt{n}(\hat{\theta}_n)$ $-\theta_0$ \rightsquigarrow Z for some normal Z.

If Ψ is differentiable at θ_0 , we can write

$$
\Psi(\hat{\theta}_n) = \Psi(\theta_0) + \dot{\Psi}_{\theta_0}(\hat{\theta}_n - \theta_0) + o_P(||\hat{\theta}_n - \theta_0||).
$$

Assuming that the inverse of $\dot{\Psi}_{\theta_0}$ exists, we can rearrange this to:

$$
\sqrt{n}(\hat{\theta}_n - \theta_0) = \sqrt{n}(\dot{\Psi}_{\theta_0})^{-1} \left(\Psi(\hat{\theta}_n) - \Psi(\theta_0) \right) + o_P(\sqrt{n} \|\hat{\theta}_n - \theta_0\|)
$$

= $\sqrt{n}(\dot{\Psi}_{\theta_0})^{-1} \left(\Psi(\hat{\theta}_n) - \Psi_n(\hat{\theta}_n) \right) + o_P(1 + \sqrt{n} \|\hat{\theta}_n - \theta_0\|),$

from the definition of θ_0 and the condition that $\hat{\theta}_n$ is an approximate solution to the estimating equations $\Psi_n.$

We would like to relate the term $\sqrt{n}(\Psi - \Psi_n)(\hat{\theta}_n)$ to the asymptotically normal $\sqrt{n}(\Psi - \Psi_n)(\theta_0)$.

If we knew that

$$
\sqrt{n}(\Psi - \Psi_n)(\hat{\theta}_n) - \sqrt{n}(\Psi - \Psi_n)(\theta_0) = o_P(1 + \sqrt{n}||\hat{\theta}_n - \theta_0||),
$$

then we would have

$$
\sqrt{n}(\hat{\theta}_n - \theta_0) = \sqrt{n}(\dot{\Psi}_{\theta_0})^{-1} (\Psi(\theta_0) - \Psi_n(\theta_0)) + o_P(1 + \sqrt{n} \|\hat{\theta}_n - \theta_0\|).
$$

Dividing both sides by \sqrt{n} shows that the norm of the parameter error decreases as $\|\hat{\theta}_n\|$ $-\theta_0 \parallel = o_P(1/\sqrt{n}),$ so

$$
\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow N\left(0, (\dot{\Psi}_{\theta_0})^{-1} P \psi_{\theta_0} \psi_{\theta_0}^T (\dot{\Psi}_{\theta_0})^{-1}\right)
$$

.

Theorem:

Suppose $\Psi(\theta) = P \psi_{\theta},$ $\Psi_n(\theta) = P_n \psi_\theta,$ $\Psi(\theta_0)=0,$ $\Psi_n(\hat{\theta}_n) = o_P(n)$ $-1/2$, $\dot{\Psi}^{-1}_{0}$ $\overline{\theta}_0^{\text{I}}$ exists, $\sqrt{n}(\Psi - \Psi_n)(\hat{\theta}_n) \sqrt{n}(\Psi - \Psi_n)(\theta_0) = o_P(1 + \sqrt{n}\|\hat{\theta}_n\)$ $-\theta_0$ ||). Then $\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow N$ $\left(\right)$ $0,(\dot{\Psi}_{\theta_0})^{-1}P\psi_{\theta_0}\psi_{\theta_0}^T$ $\frac{T}{\theta_0} (\dot{\Psi}_{\theta_0})^{-1}$ $\left.\rule{0pt}{12pt}\right)$.

Asymptotic equicontinuity

We need to know that, as $\hat{\theta}_n$ approaches θ_0 , we have that $\mathbb{G}_n(\psi_{\hat{\theta}_n})$ $-\psi_{\theta_0}$ becomes small, where \mathbb{G}_n is the scaled empirical process

$$
\mathbb{G}_n = \sqrt{n}(P - P_n).
$$

This is a continuity condition: the random variable $\mathbb{G}_n\psi_{\theta}$ is continuous in its indexing variable θ . That is, the sample paths are continuous. In the case of vector ψ_{θ} , we want the changes in \mathbb{G}_n to be small uniformly across the dimensions. More generally, when we consider infinite-dimensional θ , we can think of $\psi_{\theta}(x) = h \mapsto \psi_{\theta,h}(x)$ where $h \in H$ (a set of size the dimensionality of θ). In that case, we need the changes in \mathbb{G}_n to be uniformly small over $h \in H$. This is called asymptotic continuity of the stochastic process. We'll see later that the pseudometric involves the variance.

Stochastic Convergence in Metric Spaces

vdV18.

Definition: For a set T, define ℓ^{∞} (T) as the set of functions $z : T \to \mathbb{R}$ with $||z||_T < \infty$, where $||z||_T = \sup_{t \in T} |z(t)|$.

We can define convergence in ^a metric space through the characterization given by the portmanteau lemma:

Definition: For random elements X_n , X of a metric space (M, d) , we say $X_n \rightsquigarrow X$ if $\mathbf{E}f(X_n) \rightarrow \mathbf{E}f(X)$ for all bounded, continuous $f: M \rightarrow \mathbb{R}$.

Central Limit Theorem: Empirical Distribution Functions

The law of large numbers: $|F_n(t) - F(t)| \stackrel{P}{\to} 0$.

The uniform law of large numbers (GC): $\sup_{t \in \mathbb{R}} |F_n(t) - F(t)| \stackrel{P}{\to} 0$.

The central limit theorem:

 $\sqrt{n}(F_n(t_1) - F(t_1), F_n(t_2) - F(t_2), F_n(t_k) - F(t_k)) \rightsquigarrow$

 $(\mathbb{G}_F(t_1), \mathbb{G}_F(t_2), \ldots, \mathbb{G}_F(t_k))$, where the limit is a multivariate normal distribution with mean zero and covariance

 $\mathbf{E} \mathbb{G}_F(t_i) \mathbb{G}_F(t_j) = \mathbf{E} 1[X \le t_i] 1[X \le t_j] - \mathbf{E} 1[X \le t_i] \mathbf{E} 1[X \le t_j]$ $= F[t_i \wedge t_j] - F(t_i)F(t_j).$

Central Limit Theorem: Empirical Distribution Functions

The Donsker theorem shows that the sequence of empirical processes The Bonsker theorem shows that the sequence of empirical processes
(random functions) $\sqrt{n}(F_n - F)$ converges weakly to a Gaussian process \mathbb{G}_F with zero mean and this covariance. This is an F-Brownian bridge process. If F is uniform, it is a uniform-Brownian bridge. (Bridge because it is constrained to be 0 at 0 and 1.) For ^a uniform bridge G, the F-Brownian bridge is $t \mapsto \mathbb{G}(F(t))$.

Weak convergence in ^a metric space

Definition: (T,ρ) a totally bounded pseudometric space, define $UC(T, \rho)$ as the set of uniformly continuous functions $z: T \to \mathbb{R}$.

Notice that $UC(T, \rho) \subseteq \ell^{\infty}$ $(T).$

Weak convergence in ^a metric space

vdV Thm 18.14, Lemma 18.15:

Theorem: A sequence X_n : $\Omega_n \to \ell^{\infty}$ (T) converges weakly to ^a tight random element X (that is, $\forall \epsilon$, \exists compact K , $\Pr(X \notin K) < \epsilon$) iff 1. $\forall k, \forall t_1, \ldots, t_k \in T, \exists Z, (X_n(t_1), \ldots, X_n(t_k)) \leadsto Z$, and 2. $\forall \epsilon, \eta, \exists$ partition $T_1, \ldots, T_k \subseteq T$ such that lim sup $P^*(\text{sup sup } |X_n(s) - X_n(t)| \geq \epsilon) \leq \eta$. $n\rightarrow\infty$ i s, $t \in T_i$ Furthermore, under (1), (2), there is a pseudometric ρ on T such that (T,ρ) is totally bounded and X has almost all sample paths in $UC(T, \rho)$.

If X is zero-mean Gaussian, $\rho(s,t) = s.d.(X_s)$ $-X_t$).

Weak convergence in ^a metric space

 ρ is defined in terms of the sequence of partitions—as something like a tree distance in terms of the successive refinements of the $T_1,\ldots,T_k.$

Asymptotic equicontinuity

Definition: Define

$$
\mathbb{G}_n f = \sqrt{n} (P_n - P) f
$$

\n
$$
F_{\delta_n} = \{ f - g : f, g \in F, \ \rho_P(f - g) < \delta_n \},
$$

\n
$$
\rho_P(f) = (P(f - Pf)^2)^{1/2}.
$$

Then the empirical process \mathbb{G}_n on F is **asymptotically equicontinuous** if, for every sequence $\delta_n \to 0$, $\|\mathbb{G}_n\|_{F_{\delta_n}} \stackrel{P}{\to} 0$.