Theoretical Statistics. Lecture 17.
Peter Bartlett

1. Asymptotic normality of Z-estimators: classical corahs.

2. Asymptotic equicontinuity.




\ Recall: Delta method'

Theorem: Supposep : R¥ — R™ is differentiable ap,
and+/n(T,, — 0) ~ T, then

Va(b(T,) — 6(0)) — ¢y(V/r(T, — 0)) 5 0.

Here, ¢, is the derivative (linear map) satisfying

¢(0 + h) — ¢(0) = ¢y(h) + o([|1]])




Asymptotic normality of Z-estimators I

Theorem: Consider
U, (0) = Py, U(0) = Py.

Supposéd,, € R is a zero ofl,,, 0, € R is a zero of¥, 4,, = 6,. Then

n o _\/ﬁan(eO)

whered,, = M\, + (1 — \)0, for somed < X < 1.
If Py? exists,Pyy, exists and is non-zero, anig, (6,,) = Op(1), then

V(0 = 60) ~ N (0, P3, / (Piba,)?)




‘Asymptotic normality of Z-estimators: Proof I

whered,, is betweerd,, andd,. Rearranging gives the first equality of the

theorem:
—\/ﬁA\IJn(HO) -
(‘90) + %(‘971 - 90)\Ifn( n)

\/ﬁ(én - ‘90) — \If

SinceP1; exists,

_\/ﬁ\pn (‘90) —




‘Asymptotic normality of Z-estimators: Proof I

SincePy, exists,

Finally,

~

1 - . 1
A \Un — \Ijn n) — X
2(9 00) W, (0r) 5

Slutsky’s lemma gives the result.




Asymptotic normality of Z-estimators I

Analogous result fof € RP:

Vn(B, —6o) ~ N (0, (P¢90)_1P¢00¢£)(P¢90)_1>




Asymptotic normality of Z-estimators I

Consider the (classical) conditions we used:

o Pyj exists:
The form of the estimating equations (and the distributlia@®p the
variance under control.

o Puy, exists and is non-singular:
This requires the functiot to be regular at its zero.

o U, (6,) = Op(1): We used this to control the remainder term in the
Taylor series. But it is not necessary to have these deresgxisting.
We can replace this with a stochastic equicontinuity camalitshowing
that{vy : |0 — 0y]| < €} is aDonsker classfor somee > 0.




Asymptotics of Z-estimators'

[Construct conditions of theorem below as we proceed thrdig proof.]

Supposel(0) = Py, ¥, (0) = P,g and¥(6y) = 0. Then

V(W = 0,)(80) = V(P — P, ~ N(O, P, ).

Suppose also that, is an approximate zero df,, (we'll assume that
U, (0,) = op(n~1/2)). We'd like to show that/n(6,, — 6y) ~ Z for some
normalZ.

If O is differentiable at,, we can write

U(0,) = U (0o) + Vo, (6 — 00) + 0p ([0 — bol)).




Asymptotics of Z-estimators'

Assuming that the inverse dfgo exists, we can rearrange this to:

Vil = 00) = V(o) (W(00) = ©(00)) + 0p (vl — b0

= V(W) 7t (W(B) = Wa(0n)) + 0p (1 + Vil — o)),

from the definition o, and the condition that,, is an approximate
solution to the estimating equatiols,.

We would like to relate the terrnyn(¥ — ¥,,)(6,,) to the asymptotically
normaly/n(¥ — ¥,,)(6)).




Asymptotics of Z-estimators'
If we knew that

V(W = 0,)(0n) — V(¥ = W,)(60) = op (1 + Vnll6, — fol)),

then we would have

V(0 —b0) = Vn(Wo,) ™! (¥(00) — W (6o)) + 0 (1 + v/nl[8, — bol)).

Dividing both sides by/n shows that the norm of the parameter error
decreases d¥),, — 6y| = op(1/4/n), SO

Vil — 80) ~ N (0, (¥o,) ™ Py, (0,) )

10



Asymptotics of Z-estimators'

Theorem:

) =
) =
) =
) =

v, o, EXISts

\/ﬁ(\IJ o q’n)(éw) o ﬁ(\l} o \Ijn)<00) — 0P<1 + \/ﬁnén — 90“)

Then v/n(0, — o) ~ N (0, (¥a,) ™ Piog, v, (Ws,) ™)
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‘Asymptotic equicontinuity I

We need to know that, a, approaches,, we have that., (vy — vg,)
becomes small, wher@,, is the scaled empirical process

Gn = /(P — Py).

This is a continuity condition: the random varialilg 1)y IS continuous in

Its indexing variablé. That is, the sample paths are continuous. In the cg
of vectoriyy, we want the changes {#,, to be small uniformly across the
dimensions. More generally, when we consider infinite-aisienald, we
can think ofyy(x) = h — g 1 (z) Whereh € H (a set of size the
dimensionality of). In that case, we need the change&into be

uniformly small overh € H. This is called asymptotic continuity of the
stochastic process. We’'ll see later that the pseudometradvies the
variance.
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Stochastic Convergence in Metric Spacﬂs

vdV18.

Definition: For a setl’, define/>°(T") as the set of functions : T" — R
with ||z||7 < oo, where||z||7 = sup,cr |2(t)].

We can define convergence in a metric space through the ¢tdazation
given by the portmanteau lemma:

Definition: For random element&’,,, X of a metric spac¢)M, d), we say
X, ~» Xif Ef(X,) = Ef(X) for all bounded, continuoug : M — R.
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Central Limit Theorem: Empirical Distribution Functions I

The law of large numbers#;, (t) — F(1)] 5o.

The uniform law of large numbers (GGup,cr |Fin(t) — F(t)] 5o.

The central limit theorem:

V(En(t) = F(ty), Fu(ta) — F(t2), Fu(ty) — F(tr)) ~
(Gp(t1),Gp(t2),...,Gr(tx)), where the limit is a multivariate normal
distribution with mean zero and covariance

EGr(t:))Gr(t;) = E1[X <#]1[X <t;] - E1[X <4]E1[X < )]
= Flt; ANt;] — F(t;)F(t;).
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Central Limit Theorem: Empirical Distribution Functions I

The Donsker theorem shows that the sequence of empiricedgses

(random functions)/n(F,, — F') converges weakly to a Gaussian process
G with zero mean and this covariance. This isfauBrownian bridge
process. Iff' is uniform, it is a uniform-Brownian bridge. (Bridge becaus
It is constrained to be 0 at 0 and 1.) For a uniform bri@gehe

F-Brownian bridge ig — G(F'(t)).
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Weak convergence in a metric spac'

Definition: For (T, p) a totally bounded pseudometric space, de
UC(T, p) as the set of uniformly continuous functions 7' — R.

Notice thatUC'(T', p) C ¢°°(T).

16



Weak convergence in a metric spac'

vdV Thm 18.14, Lemma 18.15:

Theorem: A sequenceX,, : 2, — ¢°°(T) converges weakly to a tigl
random elemenk (that is,Ve, 3 compactk, Pr(X ¢ K) < e¢) iff

1. Vk,Vt1,...,tx € T,32, (X, (t1), ..., Xn(tr)) ~ Z, and
2. Ve, n, d partitionT?, ..., T C T such that

lim sup P*(sup sup |X,(s) — X, (t)| >¢€) <n.

n— 00 1 s, teT; - -

Furthermore, under (1), (2), there is a pseudometan 7" such tha{'T', p)
IS totally bounded an& has almost all sample pathsiiC'(T, p).
If X is zero-mean Gaussiap(s,t) = s.d.(Xs — X3).
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Weak convergence in a metric spac'

p Is defined in terms of the sequence of partitions—as songetikia a tree
distance in terms of the successive refinements ofthe. ., T;..
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‘Asymptotic equicontinuity I

Definition: Define

an:\/ﬁ<Pn_P>f

Fs, ={f—g9:f,9g€F, pp(f—g) <bn},
pp(f) = (P(f— Pf)*)'2

Then the empirical process,, on F' is asymptotically equicontinuousif,
for every sequence, — 0, |G, ||F;, 5o.
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