
Theoretical Statistics. Lecture 17.
Peter Bartlett

1. Asymptotic normality of Z-estimators: classical conditions.

2. Asymptotic equicontinuity.
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Recall: Delta method

Theorem: Supposeφ : Rk → R
m is differentiable atθ,

and
√
n(Tn − θ) T , then

√
n(φ(Tn)− φ(θ)) φ′θ(T )

√
n(φ(Tn)− φ(θ))− φ′θ(

√
n(Tn − θ))

P→ 0.

Here,φ′θ is the derivative (linear map) satisfying

φ(θ + h)− φ(θ) = φ′θ(h) + o(‖h‖)

for h→ 0.

2



Asymptotic normality of Z-estimators

Theorem: Consider

Ψn(θ) = Pnψθ, Ψ(θ) = Pψθ.

Supposêθn ∈ R is a zero ofΨn, θ0 ∈ R is a zero ofΨ, θ̂n
P→ θ0. Then

√
n(θ̂n − θ0) =

−√
nΨn(θ0)

Ψ̇n(θ0) +
1

2
(θ̂n − θ0)Ψ̈n(θ̃n)

whereθ̃n = λθ̂n + (1− λ)θ0 for some0 ≤ λ ≤ 1.

If Pψ2

θ0
exists,Pψ̇θ0 exists and is non-zero, and̈Ψn(θ̃n) = OP (1), then

√
n(θ̂n − θ0) N

(

0, Pψ2

θ0/(Pψ̇θ0)
2

)

.
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Asymptotic normality of Z-estimators: Proof

We take a Taylor series expansion ofΨn(θ̂n) aroundθ0:

0 = Ψn(θ0) + (θ̂n − θ0)Ψ̇n(θ0) +
1

2
(θ̂n − θ0)

2Ψ̈n(θ̃n),

= Ψn(θ0) + (θ̂n − θ0)

(

Ψ̇n(θ0) +
1

2
(θ̂n − θ0)Ψ̈n(θ̃n)

)

,

whereθ̃n is between̂θn andθ0. Rearranging gives the first equality of the
theorem:

√
n(θ̂n − θ0) =

−√
nΨn(θ0)

Ψ̇n(θ0) +
1

2
(θ̂n − θ0)Ψ̈n(θ̃n)

SincePψ2

θ0
exists,

−
√
nΨn(θ0) = − 1√

n

n
∑

i=1

ψθ0(Xi) N(Pψθ0 , var(ψθ0)) = N(0, Pψ2

θ0).
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Asymptotic normality of Z-estimators: Proof

SincePψ̇θ0 exists,

Ψ̇n(θ0) =
1

n

n
∑

i=1

ψ̇θ0(Xi)
P→ Pψ̇θ0 .

Finally,
1

2
(θ̂n − θ0)Ψ̈n(θ̃n) =

1

2
oP (1)OP (1) = oP (1).

Slutsky’s lemma gives the result.
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Asymptotic normality of Z-estimators

Analogous result forθ ∈ R
p:

√
n(θ̂n − θ0) N

(

0, (Pψ̇θ0)
−1Pψθ0ψ

T
θ0(Pψ̇θ0)

−1

)
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Asymptotic normality of Z-estimators

Consider the (classical) conditions we used:

• Pψ2

θ0
exists:

The form of the estimating equations (and the distribution)keep the

variance under control.

• Pψ̇θ0 exists and is non-singular:

This requires the functionψ to be regular at its zero.

• Ψ̈n(θ̃n) = OP (1): We used this to control the remainder term in the

Taylor series. But it is not necessary to have these derivatives existing.

We can replace this with a stochastic equicontinuity condition: showing

that{ψθ : ‖θ − θ0‖ ≤ ǫ} is aDonsker classfor someǫ > 0.
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Asymptotics of Z-estimators

[Construct conditions of theorem below as we proceed through the proof.]

SupposeΨ(θ) = Pψθ, Ψn(θ) = Pnψθ andΨ(θ0) = 0. Then

√
n(Ψ−Ψn)(θ0) =

√
n(P − Pn)ψθ0  N(0, Pψθ0ψ

T
θ0).

Suppose also that̂θn is an approximate zero ofΨn (we’ll assume that

Ψn(θ̂n) = oP (n
−1/2)). We’d like to show that

√
n(θ̂n − θ0) Z for some

normalZ.

If Ψ is differentiable atθ0, we can write

Ψ(θ̂n) = Ψ(θ0) + Ψ̇θ0(θ̂n − θ0) + oP (‖θ̂n − θ0‖).
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Asymptotics of Z-estimators

Assuming that the inverse oḟΨθ0 exists, we can rearrange this to:

√
n(θ̂n − θ0) =

√
n(Ψ̇θ0)

−1

(

Ψ(θ̂n)−Ψ(θ0)
)

+ oP (
√
n‖θ̂n − θ0‖)

=
√
n(Ψ̇θ0)

−1

(

Ψ(θ̂n)−Ψn(θ̂n)
)

+ oP (1 +
√
n‖θ̂n − θ0‖),

from the definition ofθ0 and the condition that̂θn is an approximate

solution to the estimating equationsΨn.

We would like to relate the term
√
n(Ψ−Ψn)(θ̂n) to the asymptotically

normal
√
n(Ψ−Ψn)(θ0).
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Asymptotics of Z-estimators

If we knew that

√
n(Ψ−Ψn)(θ̂n)−

√
n(Ψ−Ψn)(θ0) = oP (1 +

√
n‖θ̂n − θ0‖),

then we would have

√
n(θ̂n − θ0) =

√
n(Ψ̇θ0)

−1 (Ψ(θ0)−Ψn(θ0)) + oP (1 +
√
n‖θ̂n − θ0‖).

Dividing both sides by
√
n shows that the norm of the parameter error

decreases as‖θ̂n − θ0‖ = oP (1/
√
n), so

√
n(θ̂n − θ0) N

(

0, (Ψ̇θ0)
−1Pψθ0ψ

T
θ0(Ψ̇θ0)

−1

)

.
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Asymptotics of Z-estimators

Theorem:

Suppose Ψ(θ) = Pψθ,

Ψn(θ) = Pnψθ,

Ψ(θ0) = 0,

Ψn(θ̂n) = oP (n
−1/2),

Ψ̇−1

θ0
exists,

√
n(Ψ−Ψn)(θ̂n)−

√
n(Ψ−Ψn)(θ0) = oP (1 +

√
n‖θ̂n − θ0‖).

Then
√
n(θ̂n − θ0) N

(

0, (Ψ̇θ0)
−1Pψθ0ψ

T
θ0(Ψ̇θ0)

−1

)

.
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Asymptotic equicontinuity

We need to know that, aŝθn approachesθ0, we have thatGn(ψθ̂n
− ψθ0)

becomes small, whereGn is the scaled empirical process

Gn =
√
n(P − Pn).

This is a continuity condition: the random variableGnψθ is continuous in
its indexing variableθ. That is, the sample paths are continuous. In the case
of vectorψθ, we want the changes inGn to be small uniformly across the
dimensions. More generally, when we consider infinite-dimensionalθ, we
can think ofψθ(x) = h 7→ ψθ,h(x) whereh ∈ H (a set of size the
dimensionality ofθ). In that case, we need the changes inGn to be
uniformly small overh ∈ H. This is called asymptotic continuity of the
stochastic process. We’ll see later that the pseudometric involves the
variance.
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Stochastic Convergence in Metric Spaces

vdV18.

Definition: For a setT , defineℓ∞(T ) as the set of functionsz : T → R

with ‖z‖T <∞, where‖z‖T = supt∈T |z(t)|.

We can define convergence in a metric space through the characterization

given by the portmanteau lemma:

Definition: For random elementsXn, X of a metric space(M,d), we say

Xn  X if Ef(Xn) → Ef(X) for all bounded, continuousf :M → R.
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Central Limit Theorem: Empirical Distribution Functions

The law of large numbers:|Fn(t)− F (t)| P→ 0.

The uniform law of large numbers (GC):supt∈R
|Fn(t)− F (t)| P→ 0.

The central limit theorem:√
n(Fn(t1)− F (t1), Fn(t2)− F (t2), Fn(tk)− F (tk)) 

(GF (t1),GF (t2), . . . ,GF (tk)), where the limit is a multivariate normal

distribution with mean zero and covariance

EGF (ti)GF (tj) = E1[X ≤ ti]1[X ≤ tj ]−E1[X ≤ ti]E1[X ≤ tj ]

= F [ti ∧ tj ]− F (ti)F (tj).
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Central Limit Theorem: Empirical Distribution Functions

The Donsker theorem shows that the sequence of empirical processes

(random functions)
√
n(Fn − F ) converges weakly to a Gaussian process

GF with zero mean and this covariance. This is anF -Brownian bridge

process. IfF is uniform, it is a uniform-Brownian bridge. (Bridge because

it is constrained to be 0 at 0 and 1.) For a uniform bridgeG, the

F -Brownian bridge ist 7→ G(F (t)).
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Weak convergence in a metric space

Definition: For (T, ρ) a totally bounded pseudometric space, define

UC(T, ρ) as the set of uniformly continuous functionsz : T → R.

Notice thatUC(T, ρ) ⊆ ℓ∞(T ).
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Weak convergence in a metric space

vdV Thm 18.14, Lemma 18.15:

Theorem: A sequenceXn : Ωn → ℓ∞(T ) converges weakly to a tight

random elementX (that is,∀ǫ, ∃ compactK, Pr(X 6∈ K) < ǫ) iff

1. ∀k, ∀t1, . . . , tk ∈ T , ∃Z, (Xn(t1), . . . , Xn(tk)) Z, and

2. ∀ǫ, η, ∃ partitionT1, . . . , Tk ⊆ T such that

lim sup
n→∞

P ∗(sup
i

sup
s,t∈Ti

|Xn(s)−Xn(t)| ≥ ǫ) ≤ η.

Furthermore, under (1), (2), there is a pseudometricρ onT such that(T, ρ)

is totally bounded andX has almost all sample paths inUC(T, ρ).

If X is zero-mean Gaussian,ρ(s, t) = s.d.(Xs −Xt).
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Weak convergence in a metric space

ρ is defined in terms of the sequence of partitions—as something like a tree

distance in terms of the successive refinements of theT1, . . . , Tk.
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Asymptotic equicontinuity

Definition: Define

Gnf =
√
n(Pn − P )f

Fδn = {f − g : f, g ∈ F, ρP (f − g) < δn},

ρP (f) = (P (f − Pf)2)1/2.

Then the empirical processGn onF is asymptotically equicontinuousif,

for every sequenceδn → 0, ‖Gn‖Fδn

P→ 0.
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