Theoretical Statistics. Lecture 18. Peter Bartlett

- 1. Asymptotic equicontinuity.
- 2. Donsker property.

Outline of today's lecture

We noticed that, in showing that the asymptotic distribution of Z-estimates is normal, what we really needed was continuity of the sample paths of the stochastic process defined by the estimating equations. This property is called **Asymptotic Equicontinuity**. It is closely related to the **Donsker property**.

Recall: Asymptotics of Z-estimators

Theorem:

Suppose $\Psi(\theta) = P \psi_{\theta},$ $\Psi_n(\theta) = P_n \psi_\theta,$ $\Psi(\theta_0)=0,$ $\Psi_n(\hat{\theta}_n) = o_P(n)$ $-1/2$, $\dot{\Psi}^{-1}_{0}$ $\overline{\theta}_0^{\text{I}}$ exists, $\sqrt{n}(\Psi - \Psi_n)(\hat{\theta}_n) \sqrt{n}(\Psi - \Psi_n)(\theta_0) = o_P(1 + \sqrt{n}\|\hat{\theta}_n\)$ $-\theta_0$ ||). Then $\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow N$ $\left(\right)$ $0,(\dot{\Psi}_{\theta_0})^{-1}P\psi_{\theta_0}\psi_{\theta_0}^T$ $\frac{T}{\theta_0} (\dot{\Psi}_{\theta_0})^{-1}$ $\left.\rule{0pt}{12pt}\right)$.

Recall: Asymptotic equicontinuity

Definition: Define

$$
\mathbb{G}_n f = \sqrt{n} (P_n - P) f
$$

\n
$$
F_{\delta_n} = \{ f - g : f, g \in F, \ \rho_P(f - g) < \delta_n \},
$$

\n
$$
\rho_P(f) = (P(f - Pf)^2)^{1/2}.
$$

Then the empirical process \mathbb{G}_n on F is **asymptotically equicontinuous** if, for every sequence $\delta_n \to 0$, $\|\mathbb{G}_n\|_{F_{\delta_n}}$ $\stackrel{P}{\rightarrow} 0.$

Donsker Property

Definition: Suppose *F* satisfies

for all x,
$$
\sup_{f \in F} |f(x) - Pf| < \infty
$$
.

We say F is a **Donsker class** if $\mathbb{G}_n \rightsquigarrow \mathbb{G}$, where \mathbb{G} is a tight random element in $\ell^{\infty}(F)$.

The limit process is the zero-mean Gaussian process with covariance function

$$
\mathbf{E} \mathbb{G} f \mathbb{G} g = P(f - Pf)(g - Pg) = Pfg - PfPg.
$$

This process is called the P-Brownian bridge.

Asymptotic equicontinuity

Lemma: F is Donsker iff

- 1. \mathbb{G}_n is asymptotically equicontinuous on F.
- 2. F is totally bounded in $L_2(P)$.

Asymptotic equicontinuity

Proof (Donsker implies asymptotically equicontinuous): Define $g:\ell$ ∞ $(F) \times F \to \mathbb{R}$ by $g(z, f) = z(f)$ (consider the $L_2(P)$) pseudometric on F). Then g is continuous at (z, f) for which $f \mapsto z(f)$ is continuous.

Consider $\|\mathbb{G}_n\|_{F_{\delta_n}}$. For any random difference sequence $f_n - g_n$ in F_{δ_n} , since $\rho_P(f_n - g_n) < \delta_n$, we have $f_n - g_n$ $- \mathbf{E}(f_n - g_n) \rightsquigarrow 0$. Also, since F is Donsker, $\mathbb{G}_n \rightsquigarrow \mathbb{G}_P$ in ℓ^{∞} (F). Because of the fact (vdV Lemma 18.15) that almost all sample paths of \mathbb{G}_P are continuous on F, g is continuous at almost every point $(\mathbb{G}_P, 0)$. By the definition of \mathbb{G}_n and by the continuous mapping theorem,

$$
\mathbb{G}_n(f_n - g_n) = \mathbb{G}_n(f_n - g_n - \mathbf{E}(f_n - g_n)) =
$$

$$
g(\mathbb{G}_n, f_n - g_n - \mathbf{E}(f_n - g_n)) \rightsquigarrow g(\mathbb{G}_P, 0) = 0.
$$
 Thus,
$$
\mathbb{G}_n(f_n - g_n) \stackrel{P}{\rightarrow} 0.
$$
 Since this is true for an arbitrary random difference sequence

 $f_n - g_n \in F_{\delta_n}$, it is true for the supremum.

Donsker classes

We say that F has an **envelope function** $x \mapsto B(x)$ if for all x and f, $|f(x)| \leq B(x)$

Donsker classes

Theorem: Suppose F has an envelope function B with $PB^2 < \infty$, and

$$
\int_0^\infty \sup_Q \sqrt{\log \mathcal{N}(\epsilon \|B\|_{Q,2}, F, L_2(Q))} \ d\epsilon < \infty,
$$

where the supremum is over all finite discrete probability measures on X satisfying $QB^2 > 0$. Then for all $\delta_n \to 0$, $\|\mathbb{G}_n\|_{F_{\delta_n}} \to 0$, where

$$
F_{\delta} = \{ f - g : f, g \in F, \ P(f - g)^2 < \delta \}
$$

and F is totally bounded in $L_2(P)$. Hence, F is Donsker.

$$
\mathbf{E} \|\mathbb{G}_n\|_{F_{\delta_n}} = \sqrt{n} \mathbf{E} \|P_n - P\|_{F_{\delta_n}}
$$

\n
$$
\leq 2\sqrt{n} \mathbf{E} \|R_n\|_{F_{\delta_n}}
$$

\n
$$
\leq c \mathbf{E} \int_0^\infty \sqrt{\log \mathcal{N}(\epsilon, F_{\delta_n}, L_2(P_n))} \, d\epsilon.
$$

For $\epsilon > \epsilon_n$, $\log \mathcal{N}(\epsilon, F_{\delta_n}, L_2(P_n)) = 0$, where

$$
\epsilon_n^2 = \sup_{f \in F_{\delta_n}} \|f\|_{L_2(P_n)}^2 = \frac{1}{n} \left\| \sum_{i=1}^n f^2(X_i) \right\|_{F_{\delta_n}}
$$

.

Also, for all Q,

$$
\mathcal{N}(\epsilon, F_{\delta_n}, L_2(Q)) \leq N^2(\epsilon/2, F, L_2(Q)).
$$

Thus, for $b_n = ||B||_{L_2(P_n)}$,

$$
\mathbf{E} \|\mathbb{G}_n\|_{F_{\delta_n}} \leq c \mathbf{E} b_n \int_0^{\epsilon_n/b_n} \sqrt{\log \mathcal{N}(\epsilon b_n, F_{\delta_n}, L_2(P_n))} \, d\epsilon,
$$

$$
\leq c \mathbf{E} b_n \int_0^{\epsilon_n/b_n} \sup_Q \sqrt{\log \mathcal{N}(\epsilon b_n/2, F, L_2(Q))} \, d\epsilon.
$$

Since $b_n \stackrel{P}{\to} \mathbf{E} \|B\|_{L_2(P_n)} > 0$, the asymptotic equicontinuity follows from ϵ_n $\stackrel{P}{\rightarrow} 0$. But

$$
\epsilon_n^2 = \sup_{f \in F_{\delta_n}} ||f||_{L_2(P_n)}^2
$$

=
$$
\sup_{f \in F_{\delta_n}} P_n f^2
$$

$$
\leq \sup_{f \in F_{\delta_n}} (P_n - P) f^2 + \sup_{f \in F_{\delta_n}} Pf^2
$$

$$
\leq \sup_{f, g \in F} (P_n - P)(f - g)^2 + \sup_{f \in F_{\delta_n}} Pf^2.
$$

The first term goes to zero because of the entropy condition. The second term goes to zero because of the definition of F_{δ_n} .

Hence $\mathbf{E} ||G_n||_{F_{\delta_n}} \to 0$, and so Markov's inequality implies $||G_n||_{F_{\delta_n}} \stackrel{P}{\to} 0$. The entropy condition also implies F is totally bounded in $L_2(P)$, since the entropy condition means F is totally bounded in $L_2(P_n)$, and $\sup_{f,g\in F} |(P_n - P)(f - g)^2| \to 0.$

We've cheated slightly. (Where?)

The definition of F_{δ} used $L_2(P)$ instead of ρ_P . That is, we consider a smaller set, since we insist that the mean differences are also included.

But this is a minor difference. In particular, we can make F larger by shifting all means (that is, adding all translates by ^a constant), and this does not change the log covering numbers by more than a $\log(1/\epsilon)$ term. (Why?)

Recall: Asymptotics of Z-estimators

Theorem:

Suppose $\Psi(\theta) = P \psi_{\theta},$ $\Psi_n(\theta) = P_n \psi_\theta,$ $\Psi(\theta_0)=0,$ $\Psi_n(\hat{\theta}_n) = o_P(n)$ $-1/2$, $\dot{\Psi}^{-1}_{0}$ $\overline{\theta}_0^{\text{I}}$ exists, $\sqrt{n}(\Psi - \Psi_n)(\hat{\theta}_n) \sqrt{n}(\Psi - \Psi_n)(\theta_0) = o_P(1 + \sqrt{n}\|\hat{\theta}_n\)$ $-\theta_0$ ||). Then $\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow N$ $\left(\right)$ $0,(\dot{\Psi}_{\theta_0})^{-1}P\psi_{\theta_0}\psi_{\theta_0}^T$ $\frac{T}{\theta_0} (\dot{\Psi}_{\theta_0})^{-1}$ $\left.\rule{0pt}{12pt}\right)$.

Asymptotic normality of Z-estimates

We need to check why asymptotic equicontinuity of $F = \{\psi_{\theta}\}\$, that is,

$$
\|\mathbb{G}_n\|_{F_{\delta_n}} \xrightarrow{P} 0,
$$

implies $\mathbb{G}_{n}(\psi_{\theta_{0}})$ $-\psi_{\hat{\theta}_n}$) = $o_P(1+\sqrt{n}\|\hat{\theta}_n\)$ $-\theta_0$ ||).

For this, we notice that ψ_{θ_0} $-\psi_{\hat{\theta}_n}$ goes to zero when $P(\psi_{\theta_0})$ $-\psi_{\hat{\theta}_n}$ ² $\rightarrow 0$, which follows from differentiability of $P\psi$ at θ_0 and $\| \theta_0$ $-\hat{\theta}_n\|^2\to 0.$ Thus, the asymptotic equicontinuity condition implies tha t $\mathbb{G}_{n}(\psi_{\theta_{0}}% ^{n})\neq\mathbb{G}_{\theta_{0}}^{1}(\theta_{0}% ^{n})$ $-\psi_{\hat{\theta}_n}$) = $o_P(1)$ when $\|\hat{\theta}_n\|$ $-\theta_0 \| \overset{P}{\rightarrow} 0.$

Donsker classes: converse result

A class F is star-shaped if, for all $f \in F$, we also have $\lambda f \in F$ for $0 \leq \lambda \leq 1$. [PICTURE]

Theorem: F is star-shaped, $||f||_{\infty} \leq B$ for all $f \in F$, and for some $\alpha > 0$

$$
\mathbf{E}||R_n||_{F-F} = \Omega(n^{-1/2+\alpha}),
$$

where $F - F$ is the set of differences of functions in F, then F is not asymptotically equicontinuous.

Donsker classes: converse result

Proof:

We want to show that $\|\mathbb{G}_n\|_{F_{\delta_n}}$ stays large. But we know that

$$
\|\mathbb{G}_n\|_{F_{\delta_n}} = \sqrt{n} \|P_n - P\|_{F_{\delta_n}}
$$

\n
$$
\ge c\sqrt{n} \left(\mathbf{E} \|R_n\|_{F_{\delta_n}} - \frac{1}{\sqrt{n}} \right) \qquad \text{(with prob } \ge 1/2\text{).}
$$

Next, we need to relate $\|R_n\|_{F_{\delta_n}}$ to $\|R_n\|_{F-F}.$ Suppose $||R_n||_{F-F} = |R_n(f-g)|$. Since F is star-shaped, for any $0 \leq \lambda \leq 1$, λf and λg are in F, and so

$$
\rho_P(\lambda(f-g)) = \lambda \rho_P(f-g) = \lambda (P(f-g-(Pf-Pg))^{2})^{1/2} \le 2\lambda B.
$$

Donsker classes: converse result

Choosing $\lambda = c_1 \delta_n$ (with $c_1 = 1/(2B)$) ensures that $\rho_P(\lambda(f - g)) \leq \delta_n$, so we see that

$$
||R_n||_{F_{\delta_n}} \geq c_1 \delta_n ||R_n||_{F-F}.
$$

Thus, with high probability,

$$
\|\mathbb{G}_n\|_{F_{\delta_n}} \ge c \left(\sqrt{n} \mathbf{E} \|R_n\|_{F_{\delta_n}} - 1\right)
$$

\n
$$
\ge c_2 \left(\sqrt{n} \delta_n \|R_n\|_{F-F} - 1\right)
$$

\n
$$
= \Omega \left(\delta_n n^{1/2} n^{-1/2 + \alpha}\right) - O(1)
$$

\n
$$
= \Omega \left(\delta_n n^{\alpha}\right) - O(1).
$$

Clearly, we can have $\delta_n \to 0$ but $\delta_n n^{\alpha} \to \infty$.

Donsker classes

Thus

- 1. Finiteness of the entropy integral (which suffices for the Donsker property) leads to $\|R_n\|_F$ decreasing at a $n^{-1/2}$ rate, and
- 2. A slower rate for $\|R_n\|_{F-F}$ implies that the Donsker property does not hold.

(We assumed a uniform bound on $||f||_{\infty}$ for $f \in F$, in order to relate $\|\mathbb{G}_n\|_{F_{\delta_n}}$ to $\mathbf{E}\|\mathbb{G}_n\|_{F_{\delta_n}}$ and to rescale F_{δ_n} , rather than an envelope function—i.e., for all x and all $f \in F$, $|f(x)| \le B(x)$.)