Theoretical Statistics. Lecture 19. Peter Bartlett

- 1. Functional delta method. [vdV20]
- 2. Differentiability in normed spaces: Hadamard derivatives. [vdV20]
- 3. Quantile estimates. [vdV21]

Recall: Delta method

Theorem: If $\phi : \mathbb{R}^k \to \mathbb{R}^m$ is differentiable at θ , and $\sqrt{n}(T_n - \theta) \rightsquigarrow T$, then

$$
\sqrt{n}(\phi(T_n) - \phi(\theta)) \rightsquigarrow \phi'_{\theta}(T)
$$

$$
\sqrt{n}(\phi(T_n) - \phi(\theta)) - \phi'_{\theta}(\sqrt{n}(T_n - \theta)) \stackrel{P}{\to} 0.
$$

Here, ϕ'_{θ} is the derivative (linear map) satisfying

$$
\phi(\theta + h) - \phi(\theta) = \phi'_{\theta}(h) + o(||h||)
$$

for $h \to 0$.

- What about more complex cases? For instance, what if we are interested in a property of the probability distribution $\phi(P)$, and we use an estimator $\phi(P_n)$?
- As ^a first example, we'll ge^t some intuition by considering ^a "Taylor series" expansion about the value $\phi(P)$. But what does it mean for the Taylor series expansion of ϕ to exist?
- To make this rigorous, we need to consider ϕ as a map between normed linear spaces, and we need it to be appropriately differentiable.
- The right notion is *Hadamard differentiability*.

Given X_1, \ldots, X_n from a distribution P, and a parameter of interest $\phi(P)$, suppose that we estimate $\phi(P)$ by $\phi(P_n)$, where P_n is the empirical distribution. What is the asymptotic behavior of $\phi(P_n)$?

Define the derivative $\phi_P^{(k)}(H)$ of the map $t \mapsto \phi(P + tH)$ at $t = 0$, where H is a perturbation direction. Then if the derivatives exist we have a Taylor series expansion:

$$
\phi(P+tH) - \phi(P) = t\phi'_P(H) + \frac{1}{2}t^2\phi_P^{(2)}(H) + \dots + \frac{1}{m!}t^m\phi_P^{(m)}(H) + o(t^m).
$$

Substituting $t = 1/\sqrt{n}$ and $H = \mathbb{G}_n (=\sqrt{n}(P_n - P)X),$

$$
tH = \frac{1}{\sqrt{n}} \mathbb{G}_n = P_n - P,
$$

gives the *von Mises expansion*,

$$
\phi(P_n) - \phi(P) = \frac{1}{\sqrt{n}} \phi'_P(\mathbb{G}_n) + \frac{1}{2n} \phi_P^{(2)}(\mathbb{G}_n) + \cdots + \frac{1}{m!n^{m/2}} \phi_P^{(m)}(\mathbb{G}_n) + o(n^{-m/2}).
$$

(This is not rigorous: it requires ^a stronger notion of differentiability, because the perturbation direction is now random: $H = \mathbb{G}_n$.)

If ϕ'_{P} is a linear map, we have

$$
\phi(P_n) - \phi(P) = \frac{1}{\sqrt{n}} \phi'_P(\mathbb{G}_n) + o(n^{-1/2})
$$

=
$$
\frac{1}{n} \sum_{i=1}^n \phi'_P(\delta_{X_i} - P) + o(n^{-1/2}),
$$

where δ_{X_i} is the discrete distribution concentrated on X_i .

So if ϕ'_{i} $P_P(\delta_X - P)$ is mean zero and finite variance, we have that $\sqrt{n}(\phi(P_n) - \phi(P))$ is asymptotically normal.

Aside: influence functions

The function $x \mapsto \phi'_P (\delta_x - P)$ is the *influence function* of ϕ :

$$
\phi'_P(\delta_x - P) = \frac{d}{dt}\phi(P + t(\delta_x - P))\Big|_{t=0}
$$

=
$$
\frac{d}{dt}\phi((1-t)P + t\delta_x)\Big|_{t=0}.
$$

This measures the impact of changing P by mixing in a tiny amount of δ_{X_i} . It is important in robust statistics.

Suppose we wish to estimate the pth quantile of P, where $p \in (0, 1)$. We'll write it as $\phi(F)$ for the cumulative distribution function F of P. If F is continuous at the appropriate point, we can define

$$
\phi(F) = F^{-1}(p).
$$

We need to calculate

$$
\phi'_{F}(s_{x} - F) = \frac{d}{dt}\phi((1 - t)F + ts_{x})\Big|_{t=0},
$$

where s_x is the cdf of δ_x , i.e., the step function $a \mapsto 1[a \ge x]$.

Write $F_t = (1 - t)F + ts_x$, then differentiate both sides of the equation $p = F_t(\phi(F_t))$ at $t = 0$ (ignoring the non-differentiability at $\phi(F_t) = x$):

$$
0 = \frac{d}{dt} F_t(\phi(F_t)) \Big|_{t=0}
$$

= $\frac{d}{dt} (1-t) F(\phi(F_t)) + t s_x(\phi(F_t)) \Big|_{t=0}$
= $-F(\phi(F_t)) + (1-t) f(\phi(F_t)) \phi'_{F_t}(s_x - F) + s_x(\phi(F_t)) \Big|_{t=0}$
= $-F(\phi(F)) + f(\phi(F)) \phi'_{F}(s_x - F) + s_x(\phi(F)),$

where f is the density of P .

Rearranging, we have

$$
\phi'_F(s_x - F) = \frac{F(\phi(F)) - s_x(\phi(F))}{f(\phi(F))}
$$

=
$$
\frac{p - s_x(F^{-1}(p))}{f(F^{-1}(p))}
$$

=
$$
\begin{cases} \frac{p-1}{f(F^{-1}(p))} & \text{if } x \leq F^{-1}(p), \\ \frac{p}{f(F^{-1}(p))} & \text{if } x > F^{-1}(p). \end{cases}
$$

So

$$
\mathbf{E}\phi'_F(s_X - F) = \frac{p(p-1) + (1-p)p}{f(F^{-1}(p))} = 0
$$

var $\phi'_F(s_X - F) = \frac{p(1-p)^2 + (1-p)p^2}{f(F^{-1}(p))^2}$

$$
= \frac{p(1-p)}{f(F^{-1}(p))^2}.
$$

And we have

$$
\sqrt{n}(\phi(F_n) - \phi(F)) \rightsquigarrow N\left(0, \frac{p(1-p)}{(f(F^{-1}(p)))^2}\right).
$$

How do we make this rigorous? *Functional delta method.*

Theorem: Suppose $\phi: D \to E$, where D and E are normed linear spaces. Suppose the statistic T_n : $\Omega_n \to D$ satisfies $\sqrt{n}(T_n - \theta) \rightsquigarrow T$ for a random element T in $D_0 \subset D$.

If ϕ is *Hadamard differentiable at* θ *tangentially to* D_0 then

$$
\sqrt{n}(\phi(T_n) - \phi(\theta)) \rightsquigarrow \phi'_{\theta}(T).
$$

If we can extend $\phi' : D_0 \to E$ to a continuous map $\phi' : D \to E$, then

$$
\sqrt{n}(\phi(T_n) - \phi(\theta)) = \phi'_{\theta}(\sqrt{n}(T_n - \theta)) + o_P(1).
$$

For the von Mises expansion, we considered

$$
\phi'_P(H) = \left. \frac{d}{dt} \phi(P + tH) \right|_{t=0}
$$

for some perturbation direction H . This is the Gateaux derivative.

Definition: $\phi: D \to E$ is *Gateaux differentiable* at $\theta \in D$ if $\forall h\in D,\,\exists \phi'_\theta$ $\theta'_\theta(h) \in E$, s.t. as $t \to 0$, $\overline{\mathbf{u}}$ \parallel \parallel \parallel $\phi(\theta+th)-\phi(\theta)$ t $-\phi'_{\ell}$ $_{\theta }^{\prime }(h)$ $\overline{\mathbf{u}}$ \parallel \parallel \parallel $\rightarrow 0.$

 ϕ'_{θ} might not be (i) linear, or (ii) continuous (even if it's linear, it might not be continuous if D, E are infinite dimensional).

Definition: $\phi: D \to E$ is *Hadamard differentiable* at $\theta \in D$ if

 $\exists \phi'_\ell$ $\mathcal{L}_{\theta}: D \to E$ (linear, continuous), $\forall h \in D$, if $t \to 0$, $\| h_t \|$ $- h \| \rightarrow 0$, then $\overline{\mathbf{u}}$ $\phi(\theta+th_t)-\phi(\theta)$ t $-\phi'_{\ell}$ $_{\theta }^{\prime }(h)$ $\overline{\mathbf{u}}$ \parallel \parallel \parallel $\rightarrow 0.$

Gateaux requires the difference quotients to converge to some ϕ'_ℓ $\mathcal{C}_{\theta}(h)$ for each direction h ; Hadamard requires a single ϕ^\prime_θ that works for every direction h . It is equivalent to the convergence in the definition of Gateaux differentiability being uniform over h in a compact subset of $D.$

Definition: $\phi: D \to E$ is *Fréchet differentiable* at $\theta \in D$ if

 $\exists \phi'_\ell$ $\theta'_{\theta}: D \to E$ (linear, continuous), $\forall h \in D$, if $||h|| \to 0$, then

$$
\left\|\frac{\phi(\theta+h)-\phi(\theta)-\phi'_{\theta}(h)}{\|h\|}\right\| \to 0.
$$

Hadamard requires the difference quotients to converge to zero for each direction, possibly with different rates for different directions; Fréchet requires the same rate for each direction. They are equivalent for $D = \mathbb{R}^d$.

We'll consider Hadamard differentiability, but allow the weaker notion of tangential differentiability: the limiting directions h can be constrained.

Definition: $\phi: D \to E$ is *Hadamard differentiable* at $\theta \in D$ *tangentially to* $D_0 \subseteq D$ if

$$
\exists \phi'_{\theta} : D_0 \to E \text{ (linear, continuous)}, \forall h \in D_0,
$$

if $t \to 0$, $||h_t - h|| \to 0$, then

$$
\left\| \frac{\phi(\theta + th_t) - \phi(\theta)}{t} - \phi'_{\theta}(h) \right\| \to 0.
$$

Theorem: Suppose $\phi: D \to E$, where D and E are normed linear spaces. Suppose the statistic T_n : $\Omega_n \to D$ satisfies $\sqrt{n}(T_n - \theta) \rightsquigarrow T$ for a random element T in $D_0 \subset D$.

If ϕ is *Hadamard differentiable at* θ *tangentially to* D_0 then

 $\sqrt{n}(\phi(T_n) - \phi(\theta)) \rightsquigarrow \phi'_\theta$ $_{\theta }^{\prime }(T).$

If we can extend $\phi' : D_0 \to E$ to a continuous map $\phi' : D \to E$, then

$$
\sqrt{n}(\phi(T_n) - \phi(\theta)) = \phi'_{\theta}(\sqrt{n}(T_n - \theta)) + o_P(1).
$$

Proof:

Based on continuous mapping theorem. Consider the maps

$$
f_n(h) = \sqrt{n} \left(\phi \left(\theta + \frac{1}{\sqrt{n}} h \right) - \phi(\theta) \right).
$$

Hadamard differentiability implies that for any sequence $h_n \to h \in D_0$, we have $f_n(h_n) \to \phi'_\theta$ $\phi_n^{\prime}(h)$. So $f_n(\sqrt{n}(T_n - \theta)) \rightsquigarrow \phi_n^{\prime}$ $_{\theta }^{\prime }(T).$

(Second statement follows from continuous mapping theorem for the function $h \mapsto (\phi(h), \phi'_h)$ $'_\theta(h)).$

The chain rule lets us determine Hadamard derivatives of ^a composition of maps.

Theorem: $\phi: D \to E$, $\psi: E \to F$, where D, E and F are normed linear spaces. If

1. ϕ is Hadamard differentiable at θ tangentially to D_0 , and

2. ψ is Hadamard differentiable at $\phi(\theta)$ tangentially to ϕ'_θ $'_\theta(D_0),$

then $\psi \circ \phi : D \to F$ is Hadamard differentiable at θ tangentially to D_0 , with derivative ψ' $\phi'_{\theta}(\theta) \circ \phi'_{\theta}$ θ .

Definition: The *quantile function* of F is F^{-1} : $(0,1) \rightarrow \mathbb{R}$,

 $F^{-1}(p) = \inf\{x : F(x) \geq p\}.$

[PICTURE]

For $p \in (0,1)$ and $x \in \mathbb{R}$,

$$
F^{-1}(p) \le x \iff p \le F(x),
$$

which implies the *quantile transformation*: for U uniform on $(0, 1)$,

 $F^{-1}(U) \sim F$.

Also, $F(F^{-1}(p)) \geq p$, with equality unless F has a discontinuity at $F^{-1}(p)$. This implies the *probability integral transformation*: for $X \sim F$, $F(X)$ is uniform on [0,1] iff F is continuous on R, because $F(X) = F(F^{-1}(U)) = U$ in that case.

Finally,

 $F^{-1}(F(x)) \leq x,$

with equality unless F is flat to the left of x. Thus, F^{-1} is an inverse (i.e., $F^{-1}(F(x)) = x$ and $F(F^{-1}(p)) = p$ for all x and p) iff F is continuous and strictly increasing.

Empirical quantile function

For ^a sample with distribution function F, define the *empirical quantile function* as the quantile function F_n^{-1} of the empirical distribution function F_n .

$$
F_n^{-1}(p) = \inf\{x : F_n(x) \ge p\} = X_{n(i)},
$$

where i is chosen such that

$$
\frac{i-1}{n} < p \le \frac{i}{n},
$$

and $X_{n(1)}, \ldots, X_{n(n)}$ are the order statistics of the sample, that is, $X_{n(1)} \leq \cdots \leq X_{n(n)}$ and

$$
\big(X_{n(1)},\ldots,X_{n(n)}\big)
$$

is a permutation of the sample (X_1, \ldots, X_n) .