
Theoretical Statistics. Lecture 19.
Peter Bartlett

1. Functional delta method. [vdV20]

2. Differentiability in normed spaces:

Hadamard derivatives. [vdV20]

3. Quantile estimates. [vdV21]
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Recall: Delta method

Theorem: If φ : Rk → R
m is differentiable atθ,

and
√
n(Tn − θ) T , then

√
n(φ(Tn)− φ(θ)) φ′θ(T )

√
n(φ(Tn)− φ(θ))− φ′θ(

√
n(Tn − θ))

P→ 0.

Here,φ′θ is the derivative (linear map) satisfying

φ(θ + h)− φ(θ) = φ′θ(h) + o(‖h‖)

for h→ 0.
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Functional delta method

• What about more complex cases? For instance, what if we are

interested in a property of the probability distributionφ(P ), and we use

an estimatorφ(Pn)?

• As a first example, we’ll get some intuition by considering a “Taylor

series” expansion about the valueφ(P ). But what does it mean for the

Taylor series expansion ofφ to exist?

• To make this rigorous, we need to considerφ as a map between normed

linear spaces, and we need it to be appropriately differentiable.

• The right notion isHadamard differentiability.
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Functional delta method

GivenX1, . . . , Xn from a distributionP , and a parameter of interestφ(P ),

suppose that we estimateφ(P ) by φ(Pn), wherePn is the empirical

distribution. What is the asymptotic behavior ofφ(Pn)?

Define the derivativeφ(k)P (H) of the mapt 7→ φ(P + tH) at t = 0, where

H is a perturbation direction. Then if the derivatives exist we have a Taylor

series expansion:

φ(P+tH)−φ(P ) = tφ′P (H)+
1

2
t2φ

(2)
P (H)+· · ·+ 1

m!
tmφ

(m)
P (H)+o(tm).
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Functional delta method

Substitutingt = 1/
√
n andH = Gn(=

√
n(Pn − P )X),

tH =
1√
n
Gn = Pn − P,

gives thevon Mises expansion,

φ(Pn)− φ(P ) =
1√
n
φ′P (Gn) +

1

2n
φ
(2)
P (Gn) + · · ·

+
1

m!nm/2
φ
(m)
P (Gn) + o(n−m/2).

(This is not rigorous: it requires a stronger notion of differentiability,

because the perturbation direction is now random:H = Gn.)
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Functional delta method

If φ′P is a linear map, we have

φ(Pn)− φ(P ) =
1√
n
φ′P (Gn) + o(n−1/2)

=
1

n

n
∑

i=1

φ′P (δXi
− P ) + o(n−1/2),

whereδXi
is the discrete distribution concentrated onXi.

So if φ′P (δX − P ) is mean zero and finite variance, we have that√
n(φ(Pn)− φ(P )) is asymptotically normal.
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Aside: influence functions

The functionx 7→ φ′P (δx − P ) is theinfluence functionof φ:

φ′P (δx − P ) =
d

dt
φ(P + t(δx − P ))

∣

∣

∣

∣

t=0

=
d

dt
φ((1− t)P + tδx)

∣

∣

∣

∣

t=0

.

This measures the impact of changingP by mixing in a tiny amount ofδXi
.

It is important in robust statistics.
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Example: Quantiles

Suppose we wish to estimate thepth quantile ofP , wherep ∈ (0, 1). We’ll

write it asφ(F ) for the cumulative distribution functionF of P . If F is

continuous at the appropriate point, we can define

φ(F ) = F−1(p).

We need to calculate

φ′F (sx − F ) =
d

dt
φ((1− t)F + tsx)

∣

∣

∣

∣

t=0

,

wheresx is the cdf ofδx, i.e., the step functiona 7→ 1[a ≥ x].
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Example: Quantiles

WriteFt = (1− t)F + tsx, then differentiate both sides of the equation

p = Ft(φ(Ft)) at t = 0 (ignoring the non-differentiability atφ(Ft) = x):

0 =
d

dt
Ft(φ(Ft))

∣

∣

∣

∣

t=0

=
d

dt
(1− t)F (φ(Ft)) + tsx(φ(Ft))

∣

∣

∣

∣

t=0

= −F (φ(Ft)) + (1− t)f(φ(Ft))φ
′

Ft
(sx − F ) + sx(φ(Ft))

∣

∣

t=0

= −F (φ(F )) + f(φ(F ))φ′F (sx − F ) + sx(φ(F )),

wheref is the density ofP .
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Example: Quantiles

Rearranging, we have

φ′F (sx − F ) =
F (φ(F ))− sx(φ(F ))

f(φ(F ))

=
p− sx(F

−1(p))

f(F−1(p))

=







p−1
f(F−1(p)) if x ≤ F−1(p),

p
f(F−1(p)) if x > F−1(p).
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Example: Quantiles

So

Eφ′F (sX − F ) =
p(p− 1) + (1− p)p

f(F−1(p))
= 0

varφ′F (sX − F ) =
p(1− p)2 + (1− p)p2

f(F−1(p))2

=
p(1− p)

f(F−1(p))2
.

And we have

√
n(φ(Fn)− φ(F )) N

(

0,
p(1− p)

(f(F−1(p)))2

)

.
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Differentiability of functions in normed spaces

How do we make this rigorous?Functional delta method.

Theorem: Supposeφ : D → E, whereD andE are normed linear spaces.

Suppose the statisticTn : Ωn → D satisfies
√
n(Tn−θ) T for a random

elementT in D0 ⊂ D.

If φ is Hadamard differentiable atθ tangentially toD0 then

√
n(φ(Tn)− φ(θ)) φ′θ(T ).

If we can extendφ′ : D0 → E to a continuous mapφ′ : D → E, then

√
n(φ(Tn)− φ(θ)) = φ′θ(

√
n(Tn − θ)) + oP (1).
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Differentiability of functions in normed spaces

For the von Mises expansion, we considered

φ′P (H) =
d

dt
φ(P + tH)

∣

∣

∣

∣

t=0

for some perturbation directionH. This is the Gateaux derivative.

Definition: φ : D → E is Gateaux differentiableatθ ∈ D if

∀h ∈ D, ∃φ′θ(h) ∈ E, s.t. ast→ 0,

∥

∥

∥

∥

φ(θ + th)− φ(θ)

t
− φ′θ(h)

∥

∥

∥

∥

→ 0.

φ′θ might not be (i) linear, or (ii) continuous (even if it’s linear, it might not

be continuous ifD,E are infinite dimensional).
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Differentiability of functions in normed spaces

Definition: φ : D → E is Hadamard differentiableatθ ∈ D if

∃φ′θ : D → E (linear, continuous),∀h ∈ D, if t→ 0, ‖ht − h‖ → 0, then
∥

∥

∥

∥

φ(θ + tht)− φ(θ)

t
− φ′θ(h)

∥

∥

∥

∥

→ 0.

Gateaux requires the difference quotients to converge to someφ′θ(h) for

each directionh; Hadamard requires a singleφ′θ that works for every

directionh. It is equivalent to the convergence in the definition of Gateaux

differentiability being uniform overh in a compact subset ofD.
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Differentiability of functions in normed spaces

Definition: φ : D → E is Fréchet differentiableatθ ∈ D if

∃φ′θ : D → E (linear, continuous),∀h ∈ D, if ‖h‖ → 0, then
∥

∥

∥

∥

φ(θ + h)− φ(θ)− φ′θ(h)

‖h‖

∥

∥

∥

∥

→ 0.

Hadamard requires the difference quotients to converge to zero for each

direction, possibly with different rates for different directions; Fŕechet

requires the same rate for each direction. They are equivalent forD = Rd.
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Differentiability of functions in normed spaces

We’ll consider Hadamard differentiability, but allow the weaker notion of

tangential differentiability: the limiting directionsh can be constrained.

Definition: φ : D → E is Hadamard differentiableat θ ∈ D tangentially

toD0 ⊆ D if

∃φ′θ : D0 → E (linear, continuous),∀h ∈ D0,

if t→ 0, ‖ht − h‖ → 0, then
∥

∥

∥

∥

φ(θ + tht)− φ(θ)

t
− φ′θ(h)

∥

∥

∥

∥

→ 0.
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Differentiability of functions in normed spaces

Theorem: Supposeφ : D → E, whereD andE are normed linear spaces.

Suppose the statisticTn : Ωn → D satisfies
√
n(Tn−θ) T for a random

elementT in D0 ⊂ D.

If φ is Hadamard differentiable atθ tangentially toD0 then

√
n(φ(Tn)− φ(θ)) φ′θ(T ).

If we can extendφ′ : D0 → E to a continuous mapφ′ : D → E, then

√
n(φ(Tn)− φ(θ)) = φ′θ(

√
n(Tn − θ)) + oP (1).
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Differentiability of functions in normed spaces

Proof:

Based on continuous mapping theorem. Consider the maps

fn(h) =
√
n

(

φ

(

θ +
1√
n
h

)

− φ(θ)

)

.

Hadamard differentiability implies that for any sequencehn → h ∈ D0, we

havefn(hn) → φ′θ(h). Sofn(
√
n(Tn − θ)) φ′θ(T ).

(Second statement follows from continuous mapping theoremfor the

functionh 7→ (φ(h), φ′θ(h)).)
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Differentiability of functions in normed spaces

The chain rule lets us determine Hadamard derivatives of a composition of

maps.

Theorem: Supposeφ : D → E, ψ : E → F , whereD, E andF are

normed linear spaces. If

1. φ is Hadamard differentiable atθ tangentially toD0, and

2. ψ is Hadamard differentiable atφ(θ) tangentially toφ′θ(D0),

thenψ ◦ φ : D → F is Hadamard differentiable atθ tangentially toD0,

with derivativeψ′

φ(θ) ◦ φ′θ.
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Example: Quantiles

Definition: Thequantile functionof F isF−1 : (0, 1) → R,

F−1(p) = inf{x : F (x) ≥ p}.

[PICTURE]

Forp ∈ (0, 1) andx ∈ R,

F−1(p) ≤ x ⇔ p ≤ F (x),

which implies thequantile transformation: for U uniform on(0, 1),

F−1(U) ∼ F.
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Example: Quantiles

Also,F (F−1(p)) ≥ p, with equality unlessF has a discontinuity at

F−1(p). This implies theprobability integral transformation: for X ∼ F ,

F (X) is uniform on [0,1] iffF is continuous onR, because

F (X) = F (F−1(U)) = U in that case.

Finally,

F−1(F (x)) ≤ x,

with equality unlessF is flat to the left ofx. Thus,F−1 is an inverse (i.e.,

F−1(F (x)) = x andF (F−1(p)) = p for all x andp) iff F is continuous

and strictly increasing.
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Empirical quantile function

For a sample with distribution functionF , define theempirical quantile

functionas the quantile functionF−1
n of the empirical distribution function

Fn.

F−1
n (p) = inf{x : Fn(x) ≥ p} = Xn(i),

wherei is chosen such that

i− 1

n
< p ≤ i

n
,

andXn(1), . . . , Xn(n) are the order statistics of the sample, that is,
Xn(1) ≤ · · · ≤ Xn(n) and

(

Xn(1), . . . , Xn(n)

)

is a permutation of the sample(X1, . . . , Xn).
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