Theoretical Statistics. Lecture 19.
Peter Bartlett

1. Functional delta method. [vdV20]

2. Differentiability in normed spaces:
Hadamard derivatives. [vdV20]

3. Quantile estimates. [vdV21]




\ Recall: Delta method'

Theorem: If ¢ : R¥ — R™ is differentiable ab,
and+/n(T,, — 0) ~ T, then

V((T) — 6(0)) — p(vn(T, — 0)) 5 0.

Here, ¢, is the derivative (linear map) satisfying

¢(0 + h) — ¢(0) = ¢ (h) + o([|h]])

for h — 0.




Functional delta method'

What about more complex cases? For instance, what if we are
Interested in a property of the probability distributio(P), and we use
an estimatorp(P,,)?

As a first example, we’ll get some intuition by consideringlaylor
series” expansion about the valgigP). But what does it mean for the
Taylor series expansion gfto exist?

To make this rigorous, we need to consigesis a map between normec
linear spaces, and we need it to be appropriately diffeabl#i

The right notion iHadamard differentiability




Functional delta method'

Given X1, ..., X, from a distributionP, and a parameter of interes{P),
suppose that we estimaté P) by ¢(P,,), whereP, is the empirical
distribution. What is the asymptotic behavior@(fP,, )?

Define the derivativeﬁﬁf)(H) of the mapt — ¢(P + tH) att = 0, where
H is a perturbation direction. Then if the derivatives existhmave a Taylor
series expansion:

H(P+tH)—d(P) = tdn(H )+2t2 @) (H)+-- + . m o (H)+o(t™).




Functional delta method'

Substitutingg = 1/y/nandH = G, (= /n(P, — P)X),
tH = —G,, = P, — P,

gives thevon Mises expansion

B(Po) = $(P) = —=p(Gn) + 62 (Go) + -+

on

/n

1 m o
i mlnm/2 ED )(Gn) + O(n /2)°

(This is not rigorous: it requires a stronger notion of diéfetiability,
because the perturbation direction is now randéin= G,,.)




Functional delta method.

If ¢5 is alinear map, we have
1

\/ﬁ(b}’(Gn) + O(n_1/2)

(/b(Pn) _¢(P) —

— % Z ¢/})(6X,L - P) T 0(71_1/2),
1=1

wheredx, Is the discrete distribution concentrated ®n

Soif ¢’»(dx — P) is mean zero and finite variance, we have that
Vn(o(P,) — ¢(P)) is asymptotically normal.




\Aside: Influence functionEI

The functionz — ¢'»(6, — P) is theinfluence functiorf ¢:

d
Bp (0, — P) = Z0(P+ (5, — P))
t=0

d
%gb((l — )P+ té,)

t=0

This measures the impact of changiAdy mixing in a tiny amount o x. .
It is important in robust statistics.




Example: Quantiles'

Suppose we wish to estimate thi quantile of P, wherep € (0,1). We'll
write it as¢(F') for the cumulative distribution functiof’ of P. If F'is
continuous at the appropriate point, we can define

We need to calculate

d
Golse — F) = 2 6((1 = )F +1s,)
t=0

wheres, is the cdf ofd,, i.e., the step function — 1[a > x|.




Example: Quantiles'

Write F; = (1 — t)F + ts,, then differentiate both sides of the equation
p = Fi(o(Fy)) att = 0 (ignoring the non-differentiability ab(F;) = z):

S OF(S(F) + 152 (9(F)|

>>¢Ft< F)+ s,(6(F))],_,
— F) + 5,(6(F)),

where f is the density ofP.




Example: Quantiles'

Rearranging, we have

if x < F~1
if x> F1

p—1
f(EF~(p))
p
f(EF~(p))
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Example: Quantiles'

plp—1)+ (1 —p)p
f(F=1(p))

p o p(L=p)*+ (1 —-p)p?
[ N (P

E¢p(sx — F) = =0

And we have
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‘ Differentiability of functions in normed spaces'

How do we make this rigoroud?unctional delta method.

Theorem: Suppose : D — E, whereD andE are normed linear spaces.
Suppose the statisti, : 2, — D satisfies,/n(T,, —6) ~~ T for arandom

elementl’ in Dy C D.
If ¢ is Hadamard differentiable ad tangentially toD, then

V(1) — ¢(6)) ~ ¢4(T).

If we can extend)’ : Dy — E to a continuous map’ : D — FE, then

Vi(o(Tn) — ¢(0)) = ¢y(vVn(Tn — 0)) + op(1).
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‘ Differentiability of functions in normed spaces'

For the von Mises expansion, we considered

d
'"(H) = —¢(P +tH
Op(H) = Go(P+iH)|

for some perturbation directioH. This Is the Gateaux derivative.

Definition: ¢ : D — E is Gateaux differentiablatfd € D if

¢(0 +th) — ¢(0)

Vh € D, 3¢gy(h) € E, s.t. ast — 0, ;

— ¢’9(h)H — 0.

¢y, might not be (i) linear, or (i) continuous (even if it's ling it might not
be continuous IfD, E are infinite dimensional).
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‘ Differentiability of functions in normed spaces'

Definition: ¢ : D — E is Hadamard differentiablatd € D if

¢y : D — E (linear, continuous)yh € D, if t — 0, ||hy — h|| — 0, then

H o0 + th;) — ¢(0)

— ¢’9(h)H — 0.

Gateaux requires the difference quotients to convergert@sg (k) for
each directiorh; Hadamard requires a singlg that works for every
directionh. It is equivalent to the convergence in the definition of @ate
differentiability being uniform ovef, in a compact subset db.
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‘ Differentiability of functions in normed spaces'

Definition: ¢ : D — FE is Frechet differentiablatd € D if

d¢y : D — E (linear, continuous)yh € D, if ||h|| — 0, then

H ¢(0 +h) — ¢(0) — ¢p(h)
|7]]

H—>O.

Hadamard requires the difference guotients to convergertmfpr each
direction, possibly with different rates for different eations; Fechet
requires the same rate for each direction. They are equivle D = R<.
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‘ Differentiability of functions in normed spaces'

We’'ll consider Hadamard differentiability, but allow theeaker notion of
tangential differentiability: the limiting direction’s can be constrained.

Definition: ¢ : D — E is Hadamard differentiablatf € D tangentially
to Dy C D if
¢y : Dy — E (linear, continuous)yh € Dy,
if t — 0, |[hs — h|| = 0, then

(0 +thy) — ¢(0)
t

— ¢’9(h)H — 0.
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‘ Differentiability of functions in normed spaces'

Theorem: Suppose : D — E, whereD andFE are normed linear spaces.

Suppose the statistit, : €2,, — D satisfies,/n(T,,—0) ~» T for a random
elementl’ in Dy C D.

If ¢ is Hadamard differentiable ad tangentially toD, then

V(d(Th) — ¢(6)) ~ ¢4(T).

If we can extendy’ : Dy — FE to a continuous map’ : D — E, then

Vi(o(Tn) — ¢(0)) = ¢y(vVn(Tn — 0)) +op(1).
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‘ Differentiability of functions in normed spaces'

Proof:
Based on continuous mapping theorem. Consider the maps

fult) =i (9 (64 7=1) - 000))

Hadamard differentiability implies that for any sequehge— h € D, we
have fr,(hn) — ¢y(h). SO fr(Vn(Tn — 0)) ~~ ¢4(T).

(Second statement follows from continuous mapping thedogrie
functionh — (¢(h), ¢y(h)).)
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‘ Differentiability of functions in normed spaces'

The chain rule lets us determine Hadamard derivatives ofrgosition of
maps.

Theorem: Supposep) : D — E,y : E — F, whereD, E andF are
normed linear spaces. If

1. ¢ is Hadamard differentiable éttangentially toD,, and
2. 1 is Hadamard differentiable &t f) tangentially tog; (D),

theny o ¢ : D — F'is Hadamard differentiable @ttangentially toD,,
with derivativewgbw) o ¢j.
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Example: Quantiles'

Definition: Thequantile functiorof Fis F~1: (0,1) — R,

F~Y(p) = inf{z : F(z) > p}.

PICTURE]
Forp € (0,1) andz € R,

F'p) <z < p< Fla),

which implies theguantile transformationfor U uniform on(0, 1),

FY(U)~F.
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Example: Quantiles'

Also, F(F~1(p)) > p, with equality unlesg~ has a discontinuity at
F~1(p). This implies theprobability integral transformationfor X ~ F,
F(X) is uniform on [0,1] iff F is continuous ofR, because

= F(F~'(U)) = U inthat case.

Finally,

F=(F(z)) < =,

with equality unlesd is flat to the left ofx. Thus,F~! is an inverse (i.e.,
F~YF(z)) =zandF(F~1(p)) = pforall z andp) iff F is continuous
and strictly increasing.
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‘ Empirical quantile function I

For a sample with distribution functioh, define theempirical quantile
functionas the quantile functio ! of the empirical distribution function
F,.

Fo(p) = inf{x : Fy(x) > p} = X,0),

n

where: is chosen such that
1 — 1 )
< p S R
n n
and X, ),..., X, ) are the order statistics of the sample, that Is,

(Xn(1)s- > X))

IS a permutation of the sampl&X4, ..., X,,).
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