Theoretical Statistics. Lecture 1.
Peter Bartlett

1. Organizational issues.

2. Overview.

3. Stochastic convergence.




‘ Organizational Issueﬂ

Lectures: Tue/Thu 11am-12:30pm, 332 Evans.

Peter Bartlett. bartlett@stat. Office hours: Tue 1-2pm, Wed
1:30-2:30pm (Evans 399).

GSI: Sigi Wu. sigi@stat. Office hours: Mon 3:30-4:30pm, Tue
3:30-4:30pm (Evans 307).

http://www.stat.berkeley.edubartlett/courses/210b-spring2013/
Check it for announcements, homework assignments, ...

Texts:

Asymptotic Satistics, Aad van der Vaart. Cambridge. 1998.
Convergence of Sochastic Processes, David Pollard. Springer. 1984.
Available on-line at

http://ww. stat.yal e. edu/ ~pol | ard/ 1984book/




‘ Organizational Issuea

Assessment:;

Homework Assignments (60%): posted on the website.
Final Exam (40%): scheduled for Thursday, 5/16/13, 8-11am.

Required background:
Stat 210A, and either Stat 205A or Stat 204.




‘Asymptotics: Why?'

Example: We have a sample of sizefrom a
densitypy. Some estimator gives, .

Consistent? i.ef},, — #? Stochastic convergence.

Rate? Is it optimal? Often no finite sample optimality result
Asymptotically optimal?

Variance of estimate? Optimal? Asymptotically?

Distribution of estimate? Confidence region. Asymptotycal




‘Asymptotics: Approximate confidence regioni

Example: We have a sample of size from
a densitypy. Maximum likelihood estimato
givesd,,.

Under mild conditions,/n (én — 9) IS asymptoticallyV (O, 19‘1). Thus
vl ?(6, — 0) ~ N(0,1), andn(6,, — 6)T Iy (0, — ) ~ (k).

So we have an approximate- « confidence region fof:

n

2
{9 (0 —0,)"1; (0—0,) < Xk.o }




Overview of the Course'

1. Tools for consistency, rates, asymptotic distributions
e Stochastic convergence.
o Concentration inequalities.
e Projections.
o U-statistics.
e Delta method.

2. Tools for richer settings (eg: function spaceRf

e Uniform laws of large numbers.
e Empirical process theory.
o Metric entropy.

Functional delta method.




3. Tools for asymptotics of likelihood ratios:
o Contiguity.
e Local asymptotic normality.

4. Asymptotic optimality:
o Efficiency of estimators.

o Efficiency of tests.

5. Applications:

o Nonparametric regression.
e Nonparametric density estimation.
e M-estimators.

Bootstrap estimators.




Convergence in Distribution'

X1, Xo,...,X are random vectors,

Definition: X,, converges in distribution (or weakly converge$ to X
(written X,, ~~ X) means that their distribution functions satigfy(z) —
F(z) at all continuity points off.




Review: Other Types of Convergencj

d is a distance ofR”* (for which the Borelr-algebra is the usual one).

Definition: X,, converges almost surelyo X (written X,, =5 X) means
thatd(X,, X) — 0 a.s.

Definition: X,, converges in probability to X (written X, i X) means
that, for alle > 0,

P(d(X,,X)>¢e) — 0.




Review: Other Types of Convergencj

Theorem:
X, BX— X, 5 X=X, ~ X,

P
X, > c<= X, v~ c.

NB: ForX, %3 X andX,, 5 X, X,, andX must be functions on the
sample space of the same probability space. But not convegge
distribution.
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‘ Convergence in Distribution: Equivalent Definitions'

Theorem: [Portmanteau] The following are equivalent:
1. P(Xp <z) — P(X < z)forall continuity pointsz of P (X < -).
2. Ef(Xn) — Ef(X) forall bounded, continuoug .
3. Ef(Xn) — Ef(X)forall bounded, Lipschitzf.

T T
. Eelt” Xn 4 EetT X forallt € RF. (Levy's Continuity Theorem)

. forallt € Rk, tTXn — tT x. (Cramér-Wold Device)

. liminf Ef(X,) > Ef(X) forall nonnegative, continuoug.
. liminf P(X,, € U) > P(X € U) forallopenU.

. limsup P(Xp € F) < P(X € F)forall closedF'.

. P(Xp € B) —» P(X € B) forall continuity setsB
(e, P(X € 8B) = 0).
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‘ Convergence in Distribution: Equivalent Definitions'

Example: [Why do we need continuity?]

Considerf(z) = 1|z > 0], X,, = 1/n. ThenX,, — 0, f(z) — 1, but
f(0) = 0.

[Why do we need boundedness?]

Considerf(x) = =,

¥, — n  W.p.1/n,
0 w.p.1—1/n.

ThenX,, ~ 0, Ef(X,) — 1, but f(0) = 0.
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Relating Convergence Propertiei

Theorem:

X, ~ X andd(X,,Y,) 5 0 =Y, ~ X,

X, ~ X andY,, ~ ¢ = (X,,,Y,) ~ (X, ¢),

X, 5 XandY, 5 Y = (X,,Y,) & (X,Y).
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Relating Convergence Propertiei

Example: NB: NOT X, ~» X andY,, ~ Y —= (X,,,Y,) ~ (X,Y).

(Joint convergence versus marginal convergence in digioh)

ConsiderX, Y independentV(0,1), X,, ~ N(0,1),Y, = —X,. Then
X, ~ X, Y, ~Y,but(X,,Y,) ~ (X,—X), which has a very differer
distribution from that of X, Y).

14



‘ Relating Convergence Properties: Continuous Mapping

Supposef : R¥ — R™ is “almost surely continuous”
(i.e., for someS with P(X € S)=1, f is continuous ord).

Theorem: [Continuous mapping]
X, X = f(X,) ~ f(X).

Xp 5 X = f(Xn) 5 f(X),

X, B3 X = f(X,)=
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‘ Relating Convergence Properties: Continuous Mapping

Example: ForX,,..., X, ii.d. meanu, variances?, we have

@(Xn — 1) ~ N(0,1).

(X — p)? ~ (N(0,1))% = 2.

O

Example: We also haveX,, — u ~ 0 hence(X,, — 1)? ~ 0. Consider
f(@) = 1fz > 0). Thenf((X, — u)?) ~ 1 # f(0).

(The problem is thatf is not continuous a0, and Px(0) > 0, for X
satisfying(X,, — u)? ~ X.)
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‘ Relating Convergence Properties: Slutsky’s Lemmj

Theorem: X, ~~ X andY,, ~» cimply

X, +Y,~ X +e,
Y, X, ~ cX,
Y X, ~ et X

(Why doesX,, ~~ X andY,, ~ Y notimply X,, +Y,, ~ X +Y?)
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‘ Relating Convergence Properties: Example'

Theorem: Fori.i.d.Y; with EY; = u, EY? = 02 < o0,

Y, — 1

Vn—g

~s N(O, 1),

18



(

1 mn

- E Yz2 —| v,

n “ —~—
1=1 P

~ "~ o —EY1

\ LEY? )

(weak law of large numbers)

L EY? - (EY;)?

(continuous mapping theorem, Slutsky’s Lemma)
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E>1/c7

(central limit theorem)
~ N(0,1)

(continuous mapping theorem, Slutsky’s Lemma)
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‘Showing Convergence in Distribution'

Recall that theeharacteristic function demonstrates weak convergence:
X, ~ X — Ee't Xn 5 Ee't X forallt € R*.

Theorem: [Lévy’s Continuity Theorem]
If Eet® X» — ¢(t) for all ¢t in R¥, andg : R¥ — C is continuous ab,
thenX,, ~ X, whereEe® X = o(t).

Special caseX,, =Y. So.X, Y have same distribution ithx = ¢y.
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‘Showing Convergence in Distribution'

Theorem: [Weak law of large numbers]
SupposeX, ..., X,, are i.id. ThenX,, 5 piff ¢, (0) = ip.

Proof:
We'll show thatg’y (0) = ip implies X, i 1. Indeed,

Ec'tXn = Q" (t/n)
= (1 +tip/n+ o(1/n))"

— elth
~—~—

=du (t)

Lévy’s Theorem impliesy,, ~ 1, henceX,, - u.
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‘Showing Convergence in Distribution'

e.g.,X ~ N(u,X) has characteristic function

by (t) = Eeit X — pit' p—t'%t/2

Theorem: [Central limit theorem]
SupposeX,..., X, are ii.d.,EX; = 0, EX? = 1. Then\/nX, ~
N(0,1).
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Proof: ¢ x, (0) = 1, ¢y, (0) =iEX; =0, ¢k, (0) = *EX} = —1.

Ee’V™n = ™ (t/\/n)
= (1+0—#’EY?/(2n) + o(1/n))"

2
— e /2

= dn(0,1)(1).
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Uniformly tight I

Definition:
X Istight means that for at > 0 there is an\/ for which

P(||X]|| > M) < e.

{X,} is uniformly tight (or bounded in probability) means that for al
e > 0 there is anM for which

sup P(|| X,|| > M) < e.

(so there is a compact set that contains edghwith high probability.)
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‘Notation: Uniformly tight I

Theorem: [Prohorov’s Theorem]

1. X, ~ X implies{X, } is uniformly tight.

2. {X,} uniformly tight implies that for som& and some subsequen;
Xp,; ~ X,
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Notation for rates: op, Op I

Definition:

X, =op(l) =X, 50,
X, =op(R,) =X, =Y,R, andY,, = op(1).

= Op(1) <X, uniformly tight
Op(R,) <X, =Y,R, andY,, = Op(1).

(i.e.,op, Op specifyrates of growth of a sequence., means strictly
slower (sequenck,, converges in probability to zerod? » means within
some constant (sequenkg lies in a ball).
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\ Relations between ratej

op(1).

op(1) 4+ op(1

op(1)Op(1
(1+op(1))”
op(Op(1)) ).

op(1
Xn = 0, R(h) = o(||h]|") = R(Xy) = op([| Xn]”)-
R

(Xn) = Op([ Xal?)-

op(1).
Op(1).

)
op(1) +Op(1) = Op(1).
)

X, 0, R(h) = O(|[h]")

28



