Theoretical Statistics. Lecture 21. Peter Bartlett

- 1. Motivation: Asymptotics of tests
- 2. Recall: Contiguity
- 3. Le Cam's lemmas. [vdV6]

Motivating example: asymptotic testing

Consider the asymptotics of a test. We have

- A parametric model P_{θ} for $\theta \in \Theta$.
- A null hypothesis $\theta = \theta_0$.
- An alternative hypothesis $\theta = \theta_0 + h$.

Test: compute the log likelihood ratio,

$$\lambda = \log \prod_{i=1}^{n} \frac{dP_{\theta_0 + h}(X_i)}{dP_{\theta_0}(X_i)},$$

and reject the null hypothesis if it is sufficiently large.

For a fixed alternative, this typically has trivial asymptotics. For example, suppose $P_{\theta} = N(\theta, \sigma^2)$. Then

$$\lambda = \log \prod_{i=1}^{n} \frac{dP_{\theta_0+h}}{dP_{\theta_0}} (X_i)$$

= $\frac{1}{2\sigma^2} \sum_{i=1}^{n} \left((X_i - \theta_0)^2 - (X_i - \theta_0 - h)^2 \right)$
= $\frac{1}{2\sigma^2} \sum_{i=1}^{n} (2h(X_i - \theta_0) - h^2)$
= $\frac{nh}{\sigma^2} (\bar{X} - \theta_0) - \frac{nh^2}{2\sigma^2}.$

Under the null hypothesis, $\bar{X} \sim N(\theta_0, \sigma^2/n)$, so the log likelihood ratio is

$$\lambda \stackrel{\theta_0}{\sim} N\left(-\frac{nh^2}{2\sigma^2}, \frac{nh^2}{\sigma^2}\right).$$

[Notice that the mean is half the negative variance!] Clearly (consider, for example, Chebyshev's inequality), for a fixed $h \neq 0$, we have $\lambda \xrightarrow{P} -\infty$ (that is, for all c, $\Pr(\lambda < c) \rightarrow 1$). So the asymptotics are rather trivial: asymptotically, we do not reject the null hypothesis.

Consider instead a shrinking alternative: Replace h with $h_n \rightarrow 0$. Then

$$\begin{split} \lambda &= \log \prod_{i=1}^{n} \frac{dP_{\theta_0 + h_n}}{dP_{\theta_0}}(X_i) \\ &= \frac{nh_n}{\sigma^2} (\bar{X} - \theta_0) - \frac{nh_n^2}{2\sigma^2} \\ &\stackrel{\theta_0}{\sim} N \left(-\frac{nh_n^2}{2\sigma^2}, \frac{nh_n^2}{\sigma^2} \right). \end{split}$$

So for $\sqrt{n}h_n \to h \neq 0$, its parameters approach $(-h^2/(2\sigma^2), h^2/\sigma^2)$. And provided $h^2/(2\sigma^2) \gg h/\sigma$ (that is, $h/(2\sigma) \gg 1$, or $h_n/(2\sigma) \gg n^{-1/2}$), we do not reject the null hypothesis.

These asymptotics are typical. Another example: The exponential family with sufficient statistic T has density $p_{\theta}(x) = \exp(T(x)\theta - A(\theta))$. We have

$$\lambda = \log \prod_{i=1}^{n} \frac{dP_{\theta_0 + h_n}}{dP_{\theta_0}} (X_i)$$

= $h_n \sum_{i=1}^{n} T(X_i) - n \left(A(\theta_0 + h_n) - A(\theta_0) \right)$
= $h_n \sum_{i=1}^{n} T(X_i) - n \left(A'(\theta_0)h_n + \frac{1}{2}A''(\theta_0)h_n^2 + o(h_n^2) \right)$
= $h_n \sum_{i=1}^{n} \left(T(X_i) - P_{\theta_0}T(X_i) \right) - \frac{n}{2}A''(\theta_0)h_n^2 + o(nh_n^2).$

So if $h_n = h/\sqrt{n}$, and $T(X_i)$ has finite variance, then we have

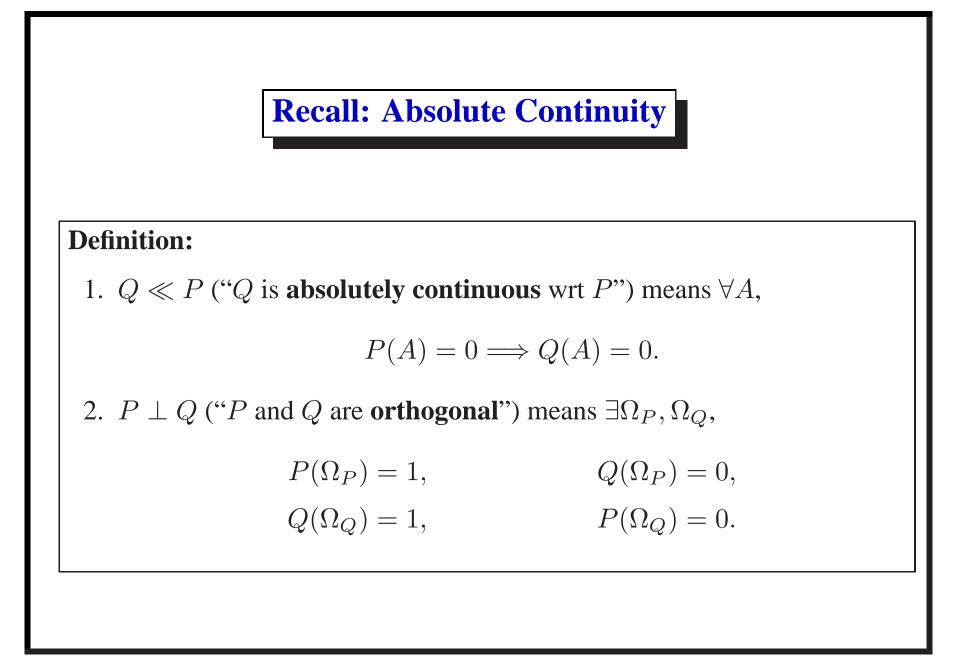
$$\lambda = \frac{h}{\sqrt{n}} \sum_{i=1}^{n} \left(T(X_i) - P_{\theta_0} T(X_i) \right) - \frac{h^2}{2} A''(\theta_0) + o(1)$$

$$\stackrel{\theta_0}{\sim} N\left(-\frac{h^2 \operatorname{var}(T(X_1))}{2}, h^2 \operatorname{var}(T(X_1)) \right).$$

For these examples, the distributions are absolutely continuous wrt each other. In general, we need to make sure that the **likelihood ratios**

$$\frac{dQ_n}{dP_n}$$

make sense (at least asymptotically). We need an analogous asymptotic condition to absolute continuity (P(A) = 0 only if Q(A) = 0): contiguity.



Recall: Absolute Continuity

Suppose that P and Q have densities p and q wrt some measure μ . Define

 $Q^{a}(A) = Q(A \cap \{p > 0\}), \qquad Q^{\perp}(A) = Q(A \cap \{p = 0\}).$

Lemma:

1.
$$Q = Q^a + Q^{\perp}$$
, with $Q^a \ll P$ and $Q^{\perp}P$ (Lebesgue decomposition)
2. $Q^a(A) = \int_A \frac{q}{p} dP \left(= \int_A \frac{dQ}{dP} dP \right)$.
3. $Q \ll P \Leftrightarrow Q = Q^a \Leftrightarrow Q(p = 0) = 0 \Leftrightarrow \int \frac{q}{p} dP = 1$.

If
$$Q \ll P$$
 then $Qf(X) = P\left(f(X)\frac{dQ}{dP}\right)$.

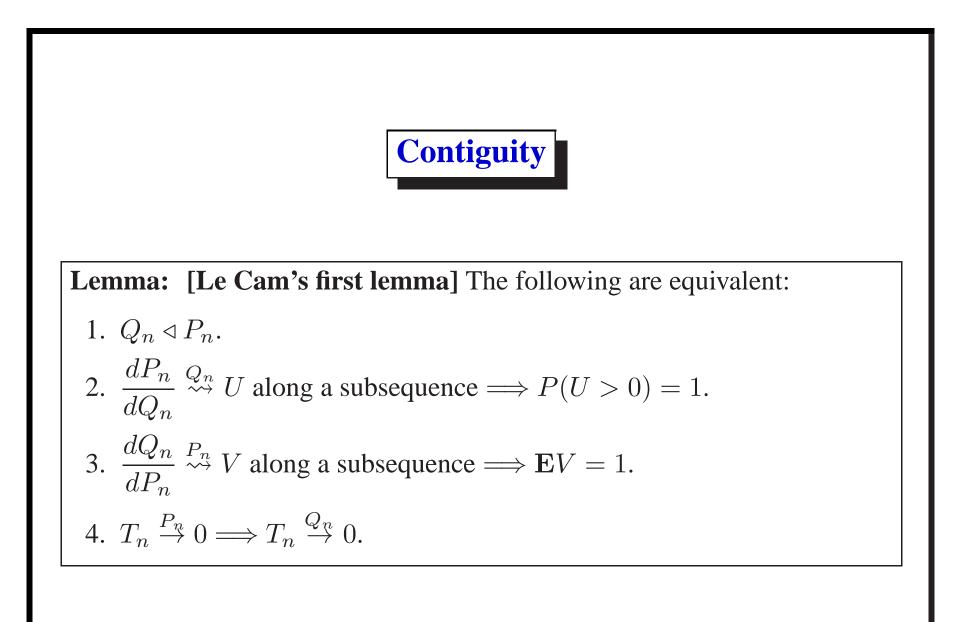
Definition: $Q_n \triangleleft P_n$ (" $\overline{Q_n}$ is contiguous wrt P_n ") means, $\forall A_n$,

$$P_n(A_n) \to 0 \Longrightarrow Q_n(A_n) \to 0.$$

Contiguity: Examples

Example:

- 1. $P_n = N(0, 1), Q_n = N(\mu_n, \sigma^2)$ with $\sigma^2 > 0$ and $\mu_n \to \mu \in \mathbb{R}$. Then $Q_n \triangleleft P_n$ and $P_n \triangleleft Q_n$.
- 2. $P_n = N(0, 1), Q_n = N(\mu_n, \sigma^2)$ with $\sigma^2 > 0$ and $\mu_n \to \infty$. Then $A_n = [\mu_n, \mu_n + 1]$ shows that we do not have $Q_n \triangleleft P_n$. (But notice that we have $Q_n \ll P_n$ for all n.)
- 3. P_n is uniform on [0, 1], Q_n is uniform on [θ⁰_n, θ¹_n], θ⁰_n < θ¹_n, θ⁰_n → 0, θ¹_n → 1.
 Then P_n ⊲ Q_n and Q_n ⊲ P_n.
 (But notice that we have neither P_n ≪ Q_n nor Q_n ≪ P_n.)



Notice that $\frac{dP_n}{dQ_n}$, $\frac{dQ_n}{dP_n}$ are non-negative and

$$\mathbf{E}_{P_n} \frac{dQ_n}{dP_n} \le 1, \qquad \mathbf{E}_{Q_n} \frac{dP_n}{dQ_n} \le 1.$$

So the likelihood ratios are uniformly tight, and therefore have a weakly converging subsequence (Prohorov's theorem). Le Cam's first lemma shows that the limits characterize contiguity. These characterizations are analogous to the characterizations we saw for absolute continuity:

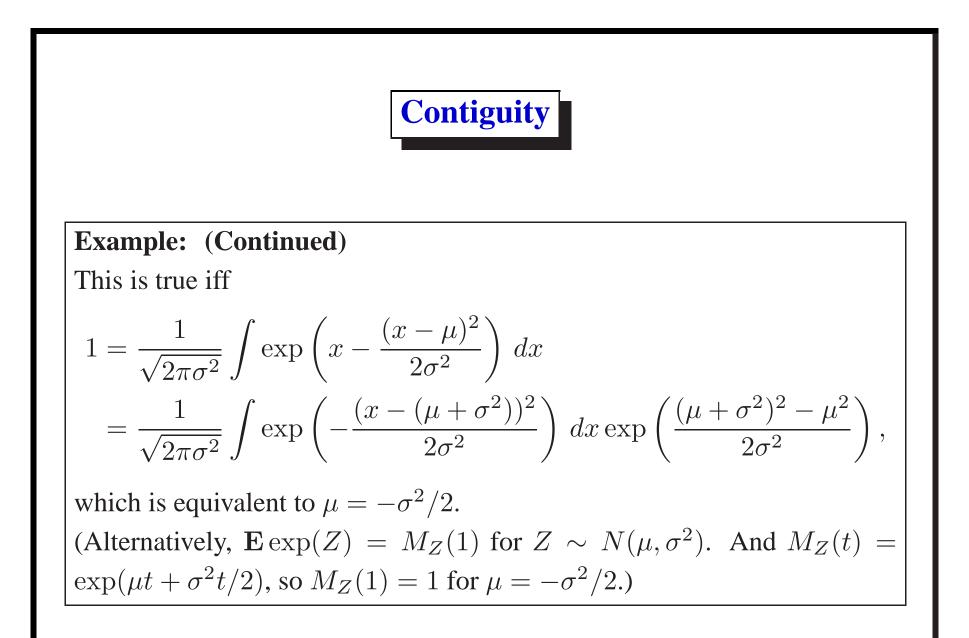
$$Q \ll P \Leftrightarrow Q\left(\frac{dP}{dQ}=0\right) = 0 \Leftrightarrow \mathbf{E}_P \frac{dQ}{dP} = 1.$$

Aside: Recall normal asymptotic testing

For $P_{\theta} = N(\theta, \sigma^2)$, $\lambda = \log \prod_{i=1}^{n} \frac{dP_{\theta_0 + h_n}(X_i)}{dP_{\theta_0}(X_i)}$ $= \frac{nh_n}{\sigma^2} (\bar{X} - \theta_0) - \frac{nh_n^2}{2\sigma^2}$ $\stackrel{\theta_0}{\sim} N\left(-\frac{nh_n^2}{2\sigma^2}, \frac{nh_n^2}{\sigma^2}\right).$ And for $\sqrt{n}h_n \to h \neq 0$, its parameters approach $(-h^2/(2\sigma^2), h^2/\sigma^2).$

Here is an important example. **Local asymptotic normality**: log likelihood ratio of local alternative to true parameter is asymptotically normal.

Example: Suppose $\log \frac{dP_n}{dQ_n} \stackrel{Q_n}{\rightsquigarrow} N(\mu, \sigma^2).$ Then $\frac{dP_n}{dQ_n} \stackrel{Q_n}{\rightsquigarrow} U$ implies $U = \exp(N(\mu, \sigma^2)) > 0$, so part (2) of the lemma shows that $Q_n \triangleleft P_n$. Conversely, part (3) of the lemma shows that $P_n \triangleleft Q_n$ iff $\mathbf{E} \exp(N(\mu, \sigma^2)) = 1$.



Example: (Continued)

That is, for

$$\log \frac{dP_n}{dQ_n} \stackrel{Q_n}{\rightsquigarrow} N(\mu, \sigma^2),$$

 $P_n \triangleleft Q_n \text{ iff } \mu = -\sigma^2/2.$

Contiguity and change of measure

Recall that, if $Q \ll P$ then we can write the Q-law of X in terms of the P-law of the pair (X, dQ/dP).

Le Cam's third lemma shows an asymptotic version:

If Q_n is contiguous wrt P_n , then we can write the limit of the Q_n -law of a weakly converging random variable X_n in terms of the limit of the P_n -law of the pair $(X_n, dQ_n/dP_n)$.

Contiguity and change of measure

Theorem: [Le Cam's third lemma] If $Q_n \triangleleft P_n$ and

$$\left(X_n, \frac{dQ_n}{dP_n}\right) \stackrel{P_n}{\rightsquigarrow} (X, V),$$

then we can write $X_n \stackrel{Q_n}{\leadsto} L$ where the distribution L satisfies

$$\mathbf{E}_L f = \mathbf{E} f(X) V,$$
$$L(X \in A) = \mathbf{E} \left[1[X \in A] V \right] = \int_{A \times \mathbb{R}} v \, dP_{X,V}(x, v)$$

Contiguity and change of measure

Corollary: Suppose, for $X_n \in \mathbb{R}^k$,

$$\left(X_n, \log \frac{dQ_n}{dP_n}\right) \stackrel{P_n}{\rightsquigarrow} N\left(\begin{pmatrix} \mu \\ -\frac{\sigma^2}{2} \end{pmatrix}, \begin{pmatrix} \Sigma & \tau \\ \tau^T & \sigma^2 \end{pmatrix} \right)$$

Then $X_n \stackrel{Q_n}{\leadsto} N(\mu + \tau, \Sigma)$.

Think of X_n as some test statistic, which approaches a normal under P_n . Think of Q_n as an alternative distribution, for which the asymptotic distribution of the log likelihood ratio is normal, with $\mu = -\sigma^2/2$. Under the alternative distribution Q_n , the asymptotic distribution of the statistic X_n also approaches a normal, but with the variance shifted by the limiting covariance between X_n and $\log(dQ_n/dP_n)$ under P_n .

Contiguity and change of measure: Proof

Let (X, Z) have the limiting distribution, so

$$\left(X_n, \log \frac{dQ_n}{dP_n}\right) \stackrel{P_n}{\rightsquigarrow} (X, Z),$$

hence

$$\left(X_n, \frac{dQ_n}{dP_n}\right) \stackrel{P_n}{\rightsquigarrow} (X, \exp(Z)).$$

Because $Z \sim N(-\sigma^2/2, \sigma^2)$, $Q_n \triangleleft P_n$. By Le Cam's lemma, $X_n \stackrel{Q_n}{\rightsquigarrow} L$, where $\int f(x)L(dx) = \mathbf{E}f(X)\exp(Z)$.

Contiguity and change of measure: Proof

Thus, the characteristic function of L is

$$\phi_L(t) = \mathbf{E} \exp(it^T X + Z)$$
$$= \phi_{X,Z} \left(\begin{pmatrix} t \\ -i \end{pmatrix} \right),$$

But the normal distribution of (X, Z) implies its characteristic function is

$$\phi_{X,Z}\left(\begin{pmatrix}t\\u\end{pmatrix}\right) = \exp\left(it^{T}\mu - \frac{iu\sigma^{2}}{2} - \frac{1}{2}\begin{pmatrix}t^{T} & u\end{pmatrix}\begin{pmatrix}\Sigma & \tau\\\tau^{T} & \sigma^{2}\end{pmatrix}\begin{pmatrix}t\\u\end{pmatrix}\right)$$

Contiguity and change of measure: Proof

Substituting gives

$$\phi_L(t) = \exp\left(it^T(\mu + \tau) - \frac{1}{2}t^T\Sigma t\right),\,$$

which implies that L is $N(\mu + \tau, \Sigma)$.