
Theoretical Statistics. Lecture 22.
Peter Bartlett

1. Recall: Asymptotic testing.

2. Quadratic mean differentiability.

3. Local asymptotic normality. [vdv7]
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Recall: Asymptotic testing

Consider the asymptotics of a test. We have

• A parametric modelPθ for θ ∈ Θ.

• A null hypothesisθ = θ0.

• An alternative hypothesisθ = θ0 + hn.

Test: compute the log likelihood ratio,

λ = log
n
∏

i=1

dPθ0+hn

dPθ0

(Xi),

and reject the null hypothesis if it is sufficiently large.
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Recall: Asymptotic testing

For example, supposePθ = N(θ, σ2). Then we saw that

λ =
nhn
σ2

(X̄ − θ0)−
nh2n
2σ2

θ0∼ N

(

−nh
2
n

2σ2
,
nh2n
σ2

)

.

For
√
nhn → h 6= 0, the normal parameters approach(−h2/(2σ2), h2/σ2).
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Recall: Asymptotic testing

Another example. The exponential family with sufficient statistic T :

pθ(x) = exp (T (x)θ −A(θ)). We have

λ = log
n
∏

i=1

dPθ0+hn

dPθ0

(Xi)

= hn

n
∑

i=1

(T (Xi)− Pθ0T (Xi))−
n

2
A′′(θ0)h

2
n + o(nh2n)

θ0
 N

(

−h
2 varθ0(T (X1))

2
, h2 var

θ0
(T (X1))

)

,

for hn = h/
√
n.
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Local asymptotic normality: Taylor series

Suppose that we have a densitypθ wrt some measure, and the log
likelihood,ℓθ(x) = log pθ(x) is twice differentiable wrtθ, and can be
approximated by its second order Taylor series,

ℓθ+h(x) = ℓθ(x) + hT ℓ̇θ(x) +
1

2
hT ℓ̈θ(x)h+ o(‖h‖2).

Then

λ = log

n
∏

i=1

dPθ+hn

dPθ
(Xi)

=
n
∑

i=1

(log pθ+hn
(Xi)− log pθ(Xi))

= hTn

n
∑

i=1

ℓ̇θ(Xi) +
1

2
hTn

n
∑

i=1

ℓ̈θ(Xi)hn + o(n‖hn‖2).
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Score functions

Consider the log likelihood functionℓθ(x) = log pθ(x). Its derivativeℓ̇θ is

called the score function. ForX ∼ Pθ (and forℓθ satisfying regularity

conditions), we have

1. The score function has mean zero:Pθ ℓ̇θ = 0,

2. The mean curvature of the log likelihood is the negative Fisher

information:Pθ ℓ̈θ = −Iθ, whereIθ = Pθ ℓ̇θ ℓ̇
T
θ .
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Score functions: Proof

Notice that
∫

pθ(x) dµ(x) = 1 implies

∫

ṗθ(x) dµ(x) = 0,

∫

p̈θ(x) dµ(x) = 0.

But

Pθ ℓ̇θ =

∫

ℓ̇θ dpθ =

∫

ṗθ
pθ
pθ dµ =

∫

ṗθ dµ = 0

and

Pθ ℓ̈θ =

∫

ℓ̈θpθ dµ =

∫
(

p̈θ
pθ

− ṗθṗ
T
θ

p2θ

)

pθ dµ = −
∫

ℓ̇θ ℓ̇
T
θ pθ dµ = −Iθ.
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Local asymptotic normality: Taylor series

Thus,

1

n1/2

n
∑

i=1

ℓ̇θ(Xi)
Pθ

 N(0, Iθ),

1

n

n
∑

i=1

ℓ̈θ(Xi)
Pθ→ −Iθ.

So if
√
nhn → h,

λ = hTn

n
∑

i=1

ℓ̇θ(Xi) +
1

2
hTn

n
∑

i=1

ℓ̈θ(Xi)hn + o(n‖hn‖2)

Pθ

 N

(

−1

2
hT Iθh, h

T Iθh

)

.

This behavior is known aslocal asymptotic normality.
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Quadratic mean differentiability

What conditions make this argument rigorous? A weaker condition than

twice differentiability suffices:θ 7→ √
p
θ

differentiable for mostx.

Definition: The root densityθ 7→ √
pθ (for θ ∈ R

k) is differentiable
in quadratic mean at θ if there exists a vector-valued measurable function

ℓ̇θ : X → R
k such that, forh→ 0,
∫ (

√
pθ+h −√

pθ −
1

2
hT ℓ̇θ

√
pθ

)2

dµ = o(‖h‖2).
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Quadratic mean differentiability

Why the strange notation? Ifθ 7→ pθ is differentiable, then

∇θ
√
pθ =

1

2

∇θpθ√
p
θ

=
1

2

√
pθ

∇θpθ
pθ

=
1

2

√
pθ∇θℓθ =

1

2

√
pθ ℓ̇θ.

Notice that we do not need differentiability at everyx. Rather, theL2(µ)

(average—underµ—squared) error should be small.
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QMD and local asymptotic normality

Theorem: If Θ is an open subset ofRk, andPθ is QMD atθ ∈ Θ, then

1. Pθ ℓ̇θ = 0.

2. Iθ = Pθ ℓ̇θℓ
T
θ exists.

3. For everyhn satisfying
√
nhn → h,

log
n
∏

i=1

pθ+hn

pθ
(Xi) =

1√
n

n
∑

i=1

hT ℓ̇θ(Xi)−
1

2
hT Iθh+ oPθ

(1)

θ
 N

(

−1

2
hT Iθh, h

T Iθh

)

.

QMD of
√
pθ is elegant:

∫

(
√
p)2 dµ = 1; we can use inner prods inL2(µ).
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QMD sufficient conditions

Theorem: If

1. Θ is an open subset ofRk.

2. θ 7→
√

pθ(x) is continuously differentiable atµ-almost allx.

3. Iθ =
∫

ṗθṗ
T
θ /pθ dµ is continuous inθ.

Then
√
pθ is QMD atθ, with ℓ̇θ = ṗθ/pθ.
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QMD Examples

• Exponential families are QMD. (See earlier example).

• Location families.

pθ(x) = f(x− θ),

wheref is positive, continuously differentiable, with

Iθ =

∫ (

f ′(x)

f(x)

)2

f(x) dx <∞,

are QMD. (Note that, because we can shiftx by θ, Iθ does not depend

onθ.)
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QMD Examples

• Laplace location model is QMD:

pθ(x) =
1

2
exp (−|x− θ|) .

Notice that
√
pθ is not differentiable. But it is QMD (because the single

point of non-differentiability,θ, has measure zero).

• Uniform distributionpθ on [0, θ] is not QMD. Indeed, QMD requires

o(‖h‖2) =
∫ (

√
pθ+h −√

pθ −
1

2
hT ℓ̇θ

√
pθ

)2

dµ

≥
∫ θ+h

θ

(

√
pθ+h −√

pθ −
1

2
hT ℓ̇θ

√
pθ

)2

dµ

=
h

θ + h
, which is a contradiction.
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Recall: Contiguity

Theorem: For

log
dQn

dPn

Pn

 N(µ, σ2),

Qn ⊳ Pn iff µ = −σ2/2. (Also,Pn ⊳ Qn for anyµ, σ2.)

But for QMD families, ifhn satisfies
√
nhn → h,

log

n
∏

i=1

pθ+hn

pθ
(Xi) =

1√
n

n
∑

i=1

hT ℓ̇θ(Xi)−
1

2
hT Iθh+ oPθ

(1)

θ
 N

(

−1

2
hT Iθh, h

T Iθh

)

.

SoPn
θ+hn

⊳ ⊲Pn
θ .
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Recall: Contiguity and change of measure

Lemma: [Le Cam’s Third Lemma] Suppose, forXn ∈ R
k,

(

Xn, log
dQn

dPn

)

Pn

 N









µ

−σ2

2



 ,





Σ τ

τT σ2







 .

ThenXn
Qn

 N(µ+ τ,Σ).
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Asymptotically linear statistics

Suppose the model{Pθ : θ ∈ Θ} is QMD, and a statisticTn satisfies

√
n (Tn − µθ) =

1√
n

n
∑

i=1

ψθ(Xi) + oPθ
(1),

wherePθψθ = 0 andPθψθψ
T
θ = Σ. Then forhn satisfying

√
nhn → h, the

sequence of log likelihood ratios satisfies

log
dPn

θ+hn

dPn
θ

(X1, . . . , Xn) =
1√
n

n
∑

i=1

hT ℓ̇θ(Xi)−
1

2
hT Iθh+ oPθ

(1).
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Asymptotically linear statistics

Thus, the central limit theorem implies

(√
n (Tn − µθ) , log

dPn
θ+hn

dPn
θ

)

θ
 N









0

− 1

2
hT Iθh



 ,





Σ τ

τT hT Iθh







 ,

whereτ = Pθψθh
T ℓ̇θ.

Then
√
n(Tn − µθ)

θ+hn

 N
(

Pθψθh
T ℓ̇θ,Σ

)

.
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