Theoretical Statistics. Lecture 22.
Peter Bartlett

1. Recall: Asymptotic testing.

2. Quadratic mean differentiability.

3. Local asymptotic normality. [vdv7]




Recall: Asymptotic testing'

Consider the asymptotics of a test. We have
A parametric modeF; for 6 € ©.
A null hypothesig) = 6,.
An alternative hypothesis = 0y + h.,.

Test: compute the log likelihood ratio,

dPQo—Hl
= log H iPy,

and reject the null hypothesis if it is sufficiently large.




Recall: Asymptotic testing'

For example, suppose, = N (6, 0?). Then we saw that

2
A= n (% gy - 2
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For/nh, — h # 0, the normal parameters approdehi?/(20?), h?/o?).




Recall: Asymptotic testing'

Another example. The exponential family with sufficienttistzc 7
po(z) = exp (T(x)0 — A(6)). We have




‘ Local asymptotic normality: Taylor series'

Suppose that we have a dengigywrt some measure, and the log
likelihood, ¢y () = log pg(x) is twice differentiable wrt), and can be
approximated by its second order Taylor series,

losn(z) = o(x) + hTlg(x) + %h%@)h +o([2]|?).




\ Score functions.

Consider the log likelihood functiofy(z) = log py(z). Its derivatively is
called the score function. Fof ~ P, (and for{y satisfying regularity
conditions), we have

1. The score function has mean ze}?@fg = 0,

2. The mean curvature of the log likelihood is the negatiahér
information: Pyly = —Iy, wherely = Pylol} .




Score functions: Proof'

Notice that = 1 implies




‘ Local asymptotic normality: Taylor series'

So if\/nh,, — h,

= hZZ€9<XZ) 260
1=1

1
N (—§thgh, thgh) .

This behavior is known ascal asymptotic normality.




‘Quadratic mean differentiability I

What conditions make this argument rigorous? A weaker ¢mmdihan
twice differentiability sufficest — ,/p, differentiable for most.

Definition:  The root densityy) — /pg (for 6 € R*) is differentiable
In quadratic mean at ¢ if there exists a vector-valued measurable funcfi
/g : X — RF such that, forh — 0,

[ (Vi o i) = olinl®)




‘Quadratic mean differentiability I

Why the strange notation? #f— py Is differentiable, then

1 Vgpg 1 Vopeg 1

1 .
Vo/Do = 5 N p e 5\/]_99V0€0 = 5\/]_9959-

Notice that we do not need differentiability at evaryRather, the.o(u)
(average—under—squared) error should be small.
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QMD and local asymptotic normality I

Theorem: If © is an open subset @*, andP, is QMD até € O, then
1. Pyly = 0.
2. Iy = P@é@fg exists.

3. For everyh,, satisfying/nh,, — h,

- Po+h., 1« T ; 1 7
log | | (Xi)=—= > h"ly(X;) — =h"Ish + op,(1)
1=1 Po \/ﬁ 1=1 2

1
4N (—§hTIQh, hngh) .

QMD of /pg is elegant:[(,/p)? du = 1; we can use inner prods i ().
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QMD sufficient conditions'

Theorem: If
1. © is an open subset @t".
2. 0 — /pe(x) is continuously differentiable at-almost allz.
3. Iy = [ pepj /pe dp is continuous irg.

Then,/pg is QMD atd, with £y = pg /pe.
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QMD Examples'

Exponential families are QMD. (See earlier example).

Location families.

po(x) = flz —90),

wheref is positive, continuously differentiable, with
f’(w))2
1 :/( x)dr < oo,
’ fo)) 1)

are QMD. (Note that, because we can shifiy 0, Iy does not depend
oné.)
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QMD Examples'

o Laplace location model is QMD:

po() = 5 exp (~|z —])

Notice that, /pg Is not differentiable. But it is QMD (because the singl
point of non-differentiabilityf, has measure zero).

e Uniform distributionpy on [0, 6] is not QMD. Indeed, QMD requires

o) = [ (e i - 2WTiovpa) s

O0+h 2
1 ...
2/ (\/p0+ —\/Pe—§hT€9\/Pe) dp
o

which iIs a contradiction.
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‘ Recall: Contiguity'

Theorem: For

0g = ~3 N (p,07),

Qn < P, iff 4 =—0?/2. (Also, P, <Q,, foranypu, c?.)

]

But for QMD families, if h,, satisfies,/nh,, — h,

i 1 < 1
log [T 2= (x;) = = > WTle(X:) = ShTIsh + op, (1)
i—1 Do (L

1
4N (—§hTIQh, hTIQh) .

n n
S0P, <Py
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Recall: Contiguity and change of measuri

Lemma: [Le Cam’s Third Lemma] Suppose, forX,, € R,

(Xn, log

dQn P
SN
i)

ThenX, %2 N(u+,%).
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‘ Asymptotically linear statistics I

Suppose the modélP, : § € ©} is QMD, and a statisti@’;, satisfies

where Py = 0 and Pyvpeyp) = X. Then forh,, satisfyingy/nh,, — h, the
sequence of log likelihood ratios satisfies

dPg"
n (X
AP} (X1,

: 1
(X;) — §hTIQh +op,(1).

log
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‘ Asymptotically linear statistics I

Thus, the central limit theorem implies

d P} 0 >
(ﬁ(Tn ~ o) log 9*’%) %N , 7

ary “InTrh | \7T KTIgh
wherer = P@@D@hTé@.

Then\/ﬁ(Tn — ,u@) Q—tizn N (P9¢9hTéQ, E)
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