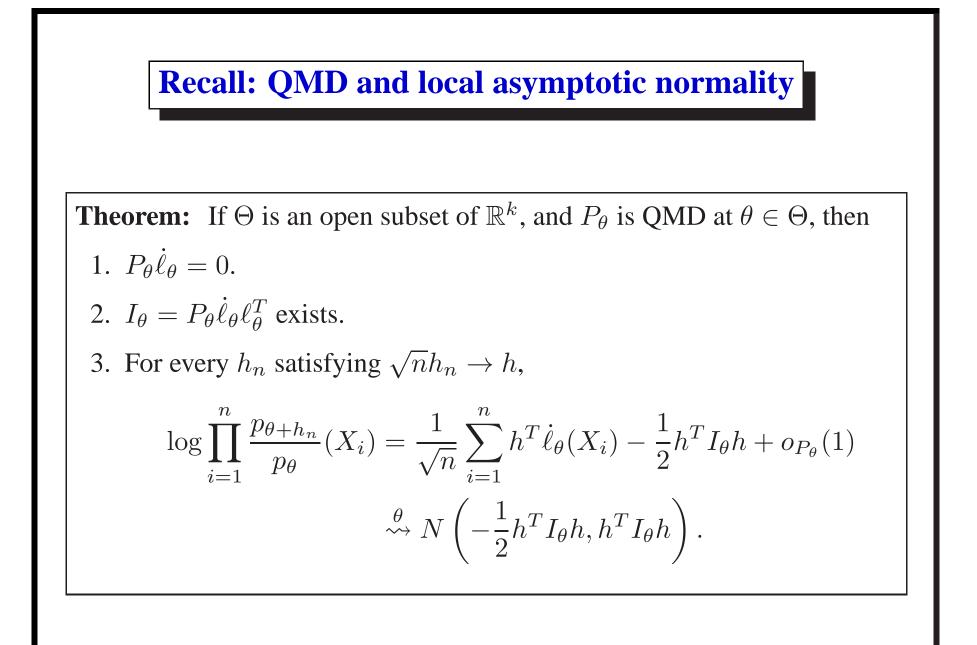
Theoretical Statistics. Lecture 23. Peter Bartlett

- 1. Recall: QMD and local asymptotic normality. [vdv7]
- 2. Convergence of experiments, maximum likelihood.
- 3. Relative efficiency of tests. [vdv14]

Local asymptotic normality

- We've seen that, for a QMD model P_{θ} , the log likelihood ratio, $\log \frac{dP_{\theta_0+h/\sqrt{n}}^n}{dP_{\theta_0}^n}(X_i)$, is asymptotically normal. This is useful for:
 - 1. Comparing null θ_0 and shrinking alternative $\theta_0 + h/\sqrt{n}$ with a likelihood ratio test.
 - 2. Understanding the local behavior of a statistic T_n . If we assume that θ is fixed, and we understand T_n 's asymptotics under P_{θ} , we can use the asymptotics of the log likelihood ratio to understand the asymptotics of T_n in a local neighborhood of θ . The appropriate local scale is typically $1/\sqrt{n}$.



Recall: Quadratic mean differentiability

Definition: The root density $\theta \mapsto \sqrt{p_{\theta}}$ (for $\theta \in \mathbb{R}^k$) is **differentiable** in quadratic mean at θ if there exists a vector-valued measurable function $\dot{\ell}_{\theta} : \mathcal{X} \to \mathbb{R}^k$ such that, for $h \to 0$,

$$\int \left(\sqrt{p_{\theta+h}} - \sqrt{p_{\theta}} - \frac{1}{2}h^T \dot{\ell}_{\theta} \sqrt{p_{\theta}}\right)^2 d\mu = o(\|h\|^2).$$

Recall: Asymptotically linear statistics

Suppose the model $\{P_{\theta} : \theta \in \Theta\}$ is QMD, and a statistic T_n satisfies

$$\sqrt{n}\left(T_n - \mu_\theta\right) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \psi_\theta(X_i) + o_{P_\theta}(1),$$

where $P_{\theta}\psi_{\theta} = 0$ and $P_{\theta}\psi_{\theta}\psi_{\theta}^{T} = \Sigma$. Then for $\sqrt{n}h_n \to h$,

$$\left(\sqrt{n}\left(T_n - \mu_{\theta}\right), \log \frac{dP_{\theta+h_n}^n}{dP_{\theta}^n}\right) \stackrel{\theta}{\rightsquigarrow} N\left(\left(\begin{array}{cc}0\\-\frac{1}{2}h^T I_{\theta}h\end{array}\right), \begin{pmatrix}\Sigma & \tau\\\tau^T & h^T I_{\theta}h\end{array}\right)\right),$$

where $\tau = P_{\theta}\psi_{\theta}h^T \dot{\ell}_{\theta}$. So $\sqrt{n}(T_n - \mu_{\theta}) \stackrel{\theta + h_n}{\rightsquigarrow} N\left(P_{\theta}\psi_{\theta}h^T \dot{\ell}_{\theta}, \Sigma\right)$.

Asymptotically linear statistics

That is, we know that under θ ,

$$\sqrt{n} (T_n - \mu_\theta) \stackrel{\theta}{\rightsquigarrow} N(0, \Sigma).$$

And we can use the asymptotics of the log likelihood ratio to determine the asymptotics of this statistic under the shrinking alternative $\theta + h/\sqrt{n}$:

$$\sqrt{n}(T_n - \mu_{\theta}) \xrightarrow{\theta + h/\sqrt{n}} N\left(P_{\theta}\psi_{\theta}h^T\dot{\ell}_{\theta}, \Sigma\right).$$

Location families:

Suppose that

$$p_{\theta}(x) = f(x - \theta),$$

where f is positive, continuously differentiable, and satisfies

$$\mu = \int x f(x) \, dx = 0,$$

$$\sigma^2 = \int x^2 f(x) \, dx < \infty,$$

$$I_{\theta} = \int \left(\frac{f'(x)}{f(x)}\right)^2 f(x) \, dx < \infty.$$

This family is QMD.

1. Consider the *t*-statistic for the null hypothesis $\theta = 0$,

$$T_n = \frac{1}{n} \sum_{i=1}^n \frac{X_i}{S_n}$$
$$\sqrt{n} T_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{X_i}{\sigma} + o_{P_0}(1).$$

Thus, T_n is an asymptotically linear statistic, with

$$\psi_{\theta}(x) = \frac{x}{\sigma},$$
$$\dot{\ell}_{\theta}(x) = -\frac{f'(x-\theta)}{f(x-\theta)}$$

Hence, for h_n satisfying $\sqrt{n}h_n \to h$, $\sqrt{n}T_n \stackrel{h_n}{\rightsquigarrow} N\left(P_0\psi_0h\dot{\ell}_0, P_0\psi_0^2\right),$ $P_0\psi_0h\dot{\ell}_0 = -P_0\frac{X}{\sigma}\frac{f'(X)}{f(X)}h = -\frac{h}{\sigma}\int xf'(x)\,dx = \frac{h}{\sigma}\int f(x)\,dx = \frac{h}{\sigma}.$ $P_0\psi_0^2 = \frac{1}{\sigma^2}P_0X^2 = 1.$ $\sqrt{n}T_n \stackrel{h_n}{\rightsquigarrow} N\left(\frac{h}{\sigma}, 1\right).$

2. Suppose that $P_0(X > 0) = 1/2$ and consider the sign statistic for the null hypothesis $\theta = 0$,

$$s_n = \frac{1}{n} \sum_{i=1}^n \left(1[X_i > 0] - \frac{1}{2} \right).$$

Thus, s_n is an asymptotically linear statistic, with

$$\psi_{\theta}(x) = 1[x > 0] - P_{\theta}(X > 0)$$
$$\dot{\ell}_{\theta}(x) = -\frac{f'(x - \theta)}{f(x - \theta)}.$$

,

Hence, for h_n satisfying $\sqrt{n}h_n \to h$,

$$\sqrt{n}s_n \stackrel{h_n}{\rightsquigarrow} N\left(P_0\psi_0h\dot{\ell}_0, P_0\psi_0^2\right)$$

$$P_{0}\psi_{0}h\dot{\ell}_{0} = -P_{0}\left(1[X>0] - \frac{1}{2}\right)\frac{f'(X)}{f(X)}h$$

$$= -h\int\left(1[x>0] - \frac{1}{2}\right)f'(x)\,dx$$

$$= \frac{h}{2}\left(\int_{-\infty}^{0} f'(x)\,dx - \int_{0}^{\infty} f'(x)\,dx\right) = hf(0)$$

$$P_{0}\psi_{0}^{2} = \frac{1}{4}.$$

$$\sqrt{n}s_{n} \stackrel{h_{n}}{\leadsto} N\left(hf(0), \frac{1}{4}\right).$$

Convergence of local statistical experiments

Theorem: If $(P_{\theta} : \theta \in \Theta \subseteq \mathbb{R}^k)$ is QMD at θ with nonsingular Fisher information I_{θ} , T_n are statistics in the local experiments $(P_{\theta+h/\sqrt{n}} : h \in \mathbb{R}^k)$, and for every h there is a law L_h s.t. $T_n \stackrel{h}{\rightsquigarrow} L_h$. Then there is a randomized statistic T in the experiment $(N(h, I_{\theta}^{-1}) : h \in \mathbb{R}^k)$ such that for each $h, T_n \stackrel{h}{\rightsquigarrow} T$.

The proof uses the Le Cam lemmas (change of measure via the asymptotically normal log-likelihood ratio)

Convergence of local statistical experiments

For the local statistical experiment,

$$\left(P_{\theta+h/\sqrt{n}}^n:h\in\mathbb{R}^k\right),$$

think of θ as a particular parameter value, and $\theta + h/\sqrt{n}$ as a nearby value. We are interested in the asymptotic behavior of statistics when the parameter is near the value θ .

Motivation:

- If T_n defines a test, then the power P_h(T_n > c) depends on the law of T_n, so we can study its asymptotics via statistics in a normal experiment.
- If T_n is an estimator, then we can study the asymptotics of the expected squared error $\mathbf{E}_h(T_n h)^2$ via statistics in a normal experiment.

Maximum likelihood

Consider the maximum likelihood estimator $T_n = \hat{h}_n$ for the local experiment

$$\left(P^n_{\theta+h/\sqrt{n}}:h\in\mathbb{R}^k\right)$$

(Notice that $\hat{h}_n = \sqrt{n}(\hat{\theta}_n - \theta)$.) Typically, the matching asymptotic statistic in the limit experiment is the maximum likelihood estimator $T = X \sim N(h, I_{\theta}^{-1})$. So we expect the asymptotic distribution of $\sqrt{n}(\hat{\theta}_n - \theta)$ to be $N(0, I_{\theta}^{-1})$ under θ .

Note that the previous theorem does not imply that this particular statistic in the limit experiment (the maximum likelihood estimator) is the weak limit of the T_n . This needs some additional conditions.

Maximum likelihood

Theorem: Suppose

- 1. $(P_{\theta} : \theta \in \Theta)$ is QMD at θ with nonsingular Fisher information I_{θ} ,
- 2. for every $x, \theta \mapsto \log p_{\theta}(x)$ is Lipschitz, and

3. the maximum likelihood estimator $\hat{\theta}_n$ is consistent.

Then

$$\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{\theta}{\rightsquigarrow} N(0, I_{\theta}^{-1}).$$

Example: Suppose $X_1, \ldots, X_n \sim P_{\theta}$, where

- 1. P_{θ} has density $f(x \theta)$ on \mathbb{R} ,
- 2. *f* is symmetric about zero (so the mean=median of P_{θ} is θ),
- 3. f has a unique median $(f(0) \neq 0)$,
- 4. *f* has a finite variance.

We wish to test $H_0: \theta = 0$ versus $H_1: \theta > 0$.

Example: Candidate tests:

1. Sign test:
$$S_n = \frac{1}{n} \sum_{i=1}^n 1[X_i > 0].$$

2. t-test: $T_n = \frac{1}{n} \sum_{i=1}^n \frac{X_i}{S_n}.$

Which is better?

Relative efficiency of tests: sign test

$$S_n = \frac{1}{n} \sum_{i=1}^n \mathbb{1}[X_i > 0].$$

$$\frac{\sqrt{n}}{\sigma(\theta)} (S_n - \mu(\theta)) \rightsquigarrow N(0, 1),$$

where $\mu(\theta) = 1 - F(-\theta),$
 $\sigma^2(\theta) = (1 - F(-\theta))F(-\theta).$
Thus, $2\sqrt{n} \left(S_n - \frac{1}{2}\right) \stackrel{0}{\rightsquigarrow} N(0, 1).$

Reject H_0 if $2\sqrt{n}(S_n - 1/2) > z_{\alpha}$.

Relative efficiency of tests: sign test

Definition: The power function of a test that rejects the null hypothesis when the statistic T_n falls in the critical region K_n is

$$\pi_n(\theta) = P_\theta(T_n \in K_n).$$

For the sign test,

$$\pi_n(\theta) = P_\theta \left(\sqrt{n} \left(S_n - \mu(0) \right) > \sigma(0) z_{\alpha_n} \right)$$
$$= P_\theta \left(\frac{\sqrt{n}}{\sigma(\theta)} \left(S_n - \mu(\theta) \right) > \frac{\sigma(0) z_{\alpha_n} + \sqrt{n} \left(\mu(0) - \mu(\theta) \right)}{\sigma(\theta)} \right)$$
$$= 1 - \Phi \left(\frac{\sigma(0) z_{\alpha_n} + \sqrt{n} \left(\mu(0) - \mu(\theta) \right)}{\sigma(\theta)} \right) + o(1).$$

Relative efficiency of tests: sign test

For
$$\theta = 0$$
, we have $\pi_n(0) = 1 - \Phi(z_{\alpha_n}) = \alpha_n$.

For $\theta > 0$, $\mu(0) - \mu(\theta) = F(-\theta) - F(0) < 0$.

Provided $\alpha_n \to 0$ sufficiently slowly,

$$\pi_n(\theta) = 1 - \Phi\left(\frac{\sigma(0)z_{\alpha_n} + \sqrt{n}\left(\mu(0) - \mu(\theta)\right)}{\sigma(\theta)}\right) + o(1)$$
$$\rightarrow \begin{cases} 0 & \text{if } \theta = 0, \\ 1 & \text{if } \theta > 0. \end{cases}$$

So the limiting power function is perfect.

This is typical: any reasonable test can distinguish a fixed alternative, given unlimited data.

So how do we compare tests? We need to make the problem of discriminating between the null and the alternative more difficult as *n* increases. It is natural to consider a **shrinking alternative**, that converges to the null.

Recall our example:

We wish to test $H_0: \theta = 0$ versus $H_1: \theta_n > 0$, with $\theta_n \to 0$.

For the sign test,

$$\pi_n(\theta_n) = 1 - \Phi\left(\frac{\sigma(0)z_\alpha + \sqrt{n}\left(\mu(0) - \mu(\theta_n)\right)}{\sigma(\theta_n)}\right) + o(1).$$

The level of the test converges:

$$\pi_n(0) = 1 - \Phi(z_\alpha) + o(1) \to \alpha.$$

What about the power?

It depends on the asymptotics of $\sqrt{n} (\mu(0) - \mu(\theta_n))$. Since *F* is differentiable at 0,

$$\sqrt{n}\left(\mu(0) - \mu(\theta_n)\right) = \sqrt{n}\left(F(-\theta_n) - F(0)\right) = -\sqrt{n}\theta_n f(0) + o(\sqrt{n}\theta_n).$$

If $\theta_n \to \theta$ faster than $1/\sqrt{n}$, $\sqrt{n} (\mu(0) - \mu(\theta_n)) \to 0$, so $\pi_n(\theta_n) \to \alpha$. The test fails: these alternatives are too hard.

For $\theta_n \to \theta$ slower than $1/\sqrt{n}$, $\sqrt{n} (\mu(0) - \mu(\theta_n)) \to -\infty$, so $\pi_n(\theta_n) \to 1$. These slowly shrinking alternatives are too easy.

Consider an intermediate rate:

 $\sqrt{n}\theta_n \to h.$