Theoretical Statistics. Lecture 23. Peter Bartlett

- 1. Recall: QMD and local asymptotic normality. [vdv7]
- 2. Convergence of experiments, maximum likelihood.
- 3. Relative efficiency of tests. [vdv14]

Local asymptotic normality

- We've seen that, for a QMD model P_{θ} , the log likelihood ratio, log dP^n θ_0 + h / \sqrt{n} dP_{α}^n θ 0 (X_i) , is asymptotically normal. This is useful for:
	- 1. Comparing null θ_0 and shrinking alternative $\theta_0 + h/\sqrt{n}$ with a likelihood ratio test.
	- 2. Understanding the local behavior of a statistic $T_n.$ If we assume that θ is fixed, and we understand T_n 's asymptotics under P_{θ} , we can use the asymptotics of the log likelihood ratio to understand the asymptotics of T_n in a local neighborhood of θ . The appropriate local scale is typically $1/\sqrt{n}$.

Recall: Quadratic mean differentiability

Definition: The root density $\theta \mapsto \sqrt{p_{\theta}}$ (for $\theta \in \mathbb{R}^{k}$) is **differentiable in quadratic mean** at θ if there exists ^a vector-valued measurable function $\dot{\ell}_{\theta}: \mathcal{X} \rightarrow \mathbb{R}^{k}$ such that, for $h \rightarrow 0,$

$$
\int \left(\sqrt{p_{\theta+h}} - \sqrt{p_{\theta}} - \frac{1}{2}h^T \dot{\ell}_{\theta} \sqrt{p_{\theta}}\right)^2 d\mu = o(||h||^2).
$$

Recall: Asymptotically linear statistics

Suppose the model $\{P_\theta : \theta \in \Theta\}$ is QMD, and a statistic T_n satisfies

$$
\sqrt{n} (T_n - \mu_{\theta}) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \psi_{\theta}(X_i) + o_{P_{\theta}}(1),
$$

where $P_{\theta}\psi_{\theta} = 0$ and $P_{\theta}\psi_{\theta}\psi_{\theta}^{T} = \Sigma$. Then for $\sqrt{n}h_n \to h$,

$$
\left(\sqrt{n}\left(T_n-\mu_{\theta}\right),\log\frac{dP_{\theta+h_n}^n}{dP_{\theta}^n}\right) \stackrel{\theta}{\leadsto} N\left(\begin{pmatrix}0\\-\frac{1}{2}h^T I_{\theta}h\end{pmatrix},\begin{pmatrix}\Sigma&\tau\\ \tau^T&h^T I_{\theta}h\end{pmatrix}\right),
$$

where $\tau = P_{\theta} \psi_{\theta} h^T \dot{\ell}_{\theta}$. So $\sqrt{n}(T_n - \mu_\theta) \stackrel{\theta + h_n}{\leadsto} N$ $\left(\right)$ $P_\theta \psi_\theta h^T \dot{\ell}_\theta, \Sigma$). $\left.\rule{0pt}{12pt}\right)$

Asymptotically linear statistics

That is, we know that under θ ,

$$
\sqrt{n} (T_n - \mu_{\theta}) \stackrel{\theta}{\rightsquigarrow} N(0, \Sigma).
$$

And we can use the asymptotics of the log likelihood ratio to determine the asymptotics of this statistic under the shrinking alternative $\theta + h/\sqrt{n}$:

$$
\sqrt{n}(T_n - \mu_\theta) \stackrel{\theta + h/\sqrt{n}}{\leadsto} N\left(P_\theta \psi_\theta h^T \dot{\ell}_\theta, \Sigma\right).
$$

Location families:

Suppose that

$$
p_{\theta}(x) = f(x - \theta),
$$

where f is positive, continuously differentiable, and satisfies

$$
\mu = \int x f(x) dx = 0,
$$

$$
\sigma^2 = \int x^2 f(x) dx < \infty,
$$

$$
I_{\theta} = \int \left(\frac{f'(x)}{f(x)}\right)^2 f(x) dx < \infty.
$$

This family is QMD.

1. Consider the *t*-statistic for the null hypothesis $\theta = 0$,

$$
T_n = \frac{1}{n} \sum_{i=1}^n \frac{X_i}{S_n}
$$

$$
\sqrt{n}T_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{X_i}{\sigma} + o_{P_0}(1).
$$

Thus, T_n is an asymptotically linear statistic, with

$$
\psi_{\theta}(x) = \frac{x}{\sigma},
$$

$$
\dot{\ell}_{\theta}(x) = -\frac{f'(x-\theta)}{f(x-\theta)}.
$$

Hence, for h_n satisfying $\sqrt{n}h_n \to h$, $\sqrt{n}T_n\overset{h_n}{\leadsto}N$ $\left(\right)$ $P_0\psi_0 h\dot{\ell}_0, P_0\psi_0^2$ 0) $,$ $\left.\rule{0pt}{12pt}\right)$ $P_0\psi_0 h\dot{\ell}_0 = -P_0$ \overline{X} σ $f'(X)$ $f(X)$ $h= \,h$ $rac{h}{\sigma} \int x f$ $\prime(x) dx =$ $\,h$ $\frac{h}{\sigma}$ $f(x) dx =$ $\,h$ σ . $P_0\psi_0^2$ 0 = 1 $\frac{1}{\sigma^2} P_0 X^2 = 1.$ $\sqrt{n}T_n\stackrel{h_n}{\leadsto}N$ $\left(\right)$ $h_{\rm }$ σ $, 1$). $\left.\rule{0pt}{12pt}\right)$

2. Suppose that $P_0(X > 0) = 1/2$ and consider the sign statistic for the null hypothesis $\theta=0,$

$$
s_n = \frac{1}{n} \sum_{i=1}^n \left(1[X_i > 0] - \frac{1}{2} \right).
$$

Thus, s_n is an asymptotically linear statistic, with

$$
\psi_{\theta}(x) = 1[x > 0] - P_{\theta}(X > 0),
$$

$$
\dot{\ell}_{\theta}(x) = -\frac{f'(x - \theta)}{f(x - \theta)}.
$$

Hence, for h_n satisfying $\sqrt{n}h_n \to h$,

$$
\sqrt{n}s_n \stackrel{h_n}{\leadsto} N\left(P_0\psi_0 h\dot{\ell}_0, P_0\psi_0^2\right)
$$

$$
P_0 \psi_0 h \dot{\ell}_0 = -P_0 \left(1[X > 0] - \frac{1}{2} \right) \frac{f'(X)}{f(X)} h
$$

= $-h \int \left(1[x > 0] - \frac{1}{2} \right) f'(x) dx$
= $\frac{h}{2} \left(\int_{-\infty}^0 f'(x) dx - \int_0^{\infty} f'(x) dx \right) = hf(0).$
 $P_0 \psi_0^2 = \frac{1}{4}.$
 $\sqrt{n} s_n \stackrel{h_n}{\leadsto} N \left(hf(0), \frac{1}{4} \right).$

Convergence of local statistical experiments

Theorem: $(P_{\theta} : \theta \in \Theta \subseteq \mathbb{R}^k)$) is QMD at θ with nonsingular Fisher information I_{θ} , T_n are statistics in the local experiments $(P_{\theta+h/\sqrt{n}} : h \in \mathbb{R}^k)$, and for every h there is a law L_h s.t. $T_n \stackrel{h}{\leadsto} L_h$. Then there is a randomized statistic T in the experiment $(N(h, I_\theta^{-1}))$ $\left(\begin{smallmatrix} -1\ \theta \end{smallmatrix} \right) : h \in \mathbb{R}^k$ $\left.\rule{0pt}{12pt}\right)$ $\left.\rule{-2pt}{10pt}\right)$ such that for each $h, T_n \overset{h}{\leadsto} T.$

The proof uses the Le Cam lemmas (change of measure via the asymptotically normal log-likelihood ratio)

Convergence of local statistical experiments

For the local statistical experiment,

$$
\left(P_{\theta+h/\sqrt{n}}^n : h \in \mathbb{R}^k\right),\
$$

think of θ as a particular parameter value, and $\theta + h/\sqrt{n}$ as a nearby value. We are interested in the asymptotic behavior of statistics when the parameter is near the value θ .

Motivation:

- If T_n defines a test, then the power $P_h(T_n > c)$ depends on the law of T_n , so we can study its asymptotics via statistics in a normal experiment.
- If T_n is an estimator, then we can study the asymptotics of the expected squared error $\mathbf{E}_{h}(T_{n}-h)^{2}$ via statistics in a normal experiment.

Maximum likelihood

Consider the maximum likelihood estimator $T_n = \hat{h}_n$ for the local experiment

$$
\left(P_{\theta+h/\sqrt{n}}^n : h \in \mathbb{R}^k\right).
$$

(Notice that $\hat{h}_n = \sqrt{n}(\hat{\theta}_n - \theta)$.) Typically, the matching asymptotic statistic in the limit experiment is the maximum likelihood estimator $T = X \sim N(h, I_\theta^{-1})$. So we expect the asymptotic distribution of $\sqrt{n}(\hat{\theta}$ $\hat{\theta}_n - \theta$) to be $N(0, I_{\theta}^{-1})$ under θ .

Note that the previous theorem does not imply that this particular statistic in the limit experiment (the maximum likelihood estimator) is the weak limit of the T_n . This needs some additional conditions.

Maximum likelihood

Theorem: Suppose

- 1. $(P_\theta : \theta \in \Theta)$ is QMD at θ with nonsingular Fisher information I_θ ,
- 2. for every $x, \theta \mapsto \log p_{\theta}(x)$ is Lipschitz, and

3. the maximum likelihood estimator $\hat{\theta}_n$ is consistent.

Then

$$
\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{\theta}{\leadsto} N(0, I_{\theta}^{-1}).
$$

Example: Suppose $X_1, \ldots, X_n \sim P_\theta$, where

- 1. P_{θ} has density $f(x \theta)$ on \mathbb{R} ,
- 2. f is symmetric about zero (so the mean=median of P_θ is θ),
- 3. f has a unique median $(f(0) \neq 0)$,
- 4. f has ^a finite variance.

We wish to test H_0 : $\theta = 0$ versus H_1 : $\theta > 0$.

Example: Candidate tests:

1. Sign test:
$$
S_n = \frac{1}{n} \sum_{i=1}^{n} 1[X_i > 0].
$$

2. t-test: $T_n = \frac{1}{n} \sum_{i=1}^{n} \frac{X_i}{S_n}.$

Which is better?

Relative efficiency of tests: sign test

$$
S_n = \frac{1}{n} \sum_{i=1}^n 1[X_i > 0].
$$

$$
\frac{\sqrt{n}}{\sigma(\theta)} (S_n - \mu(\theta)) \rightsquigarrow N(0, 1),
$$
where
$$
\mu(\theta) = 1 - F(-\theta),
$$

$$
\sigma^2(\theta) = (1 - F(-\theta))F(-\theta).
$$
Thus,
$$
2\sqrt{n} \left(S_n - \frac{1}{2}\right) \stackrel{0}{\rightsquigarrow} N(0, 1).
$$

Reject H_0 if $2\sqrt{n}(S_n - 1/2) > z_\alpha$.

Relative efficiency of tests: sign test

Definition: The power function of a test that rejects the null hypothesis when the statistic T_n falls in the critical region K_n is

$$
\pi_n(\theta) = P_{\theta}(T_n \in K_n).
$$

For the sign test,

$$
\pi_n(\theta) = P_{\theta} \left(\sqrt{n} \left(S_n - \mu(0) \right) > \sigma(0) z_{\alpha_n} \right)
$$

=
$$
P_{\theta} \left(\frac{\sqrt{n}}{\sigma(\theta)} \left(S_n - \mu(\theta) \right) > \frac{\sigma(0) z_{\alpha_n} + \sqrt{n} \left(\mu(0) - \mu(\theta) \right)}{\sigma(\theta)} \right)
$$

=
$$
1 - \Phi \left(\frac{\sigma(0) z_{\alpha_n} + \sqrt{n} \left(\mu(0) - \mu(\theta) \right)}{\sigma(\theta)} \right) + o(1).
$$

Relative efficiency of tests: sign test

For
$$
\theta = 0
$$
, we have $\pi_n(0) = 1 - \Phi(z_{\alpha_n}) = \alpha_n$.

For $\theta > 0$, $\mu(0) - \mu(\theta) = F(-\theta) - F(0) < 0$.

Provided $\alpha_n \to 0$ sufficiently slowly,

$$
\pi_n(\theta) = 1 - \Phi\left(\frac{\sigma(0)z_{\alpha_n} + \sqrt{n}(\mu(0) - \mu(\theta))}{\sigma(\theta)}\right) + o(1)
$$

$$
\to \begin{cases} 0 & \text{if } \theta = 0, \\ 1 & \text{if } \theta > 0. \end{cases}
$$

So the limiting power function is perfect.

This is typical: any reasonable test can distinguish ^a fixed alternative, given unlimited data.

So how do we compare tests? We need to make the problem of discriminating between the null and the alternative more difficult as n increases. It is natural to consider ^a **shrinking alternative**, that converges to the null.

Recall our example:

We wish to test $H_0: \theta = 0$ versus $H_1: \theta_n > 0$, with $\theta_n \to 0$.

For the sign test,

$$
\pi_n(\theta_n) = 1 - \Phi\left(\frac{\sigma(0)z_\alpha + \sqrt{n}(\mu(0) - \mu(\theta_n))}{\sigma(\theta_n)}\right) + o(1).
$$

The level of the test converges:

$$
\pi_n(0) = 1 - \Phi(z_\alpha) + o(1) \to \alpha.
$$

What about the power?

It depends on the asymptotics of $\sqrt{n} (\mu(0) - \mu(\theta_n))$. Since F is differentiable at 0,

$$
\sqrt{n}(\mu(0) - \mu(\theta_n)) = \sqrt{n}(F(-\theta_n) - F(0)) = -\sqrt{n}\theta_n f(0) + o(\sqrt{n}\theta_n).
$$

If $\theta_n \to \theta$ faster than $1/\sqrt{n}, \sqrt{n} (\mu(0) - \mu(\theta_n)) \to 0$, so $\pi_n(\theta_n) \to \alpha$. The test fails: these alternatives are too hard.

For $\theta_n \to \theta$ slower than $1/\sqrt{n}, \sqrt{n} (\mu(0) - \mu(\theta_n)) \to -\infty$, so $\pi_n(\theta_n) \to 1$. These slowly shrinking alternatives are too easy.

Consider an intermediate rate:

 $\sqrt{n}\theta_n \to h.$