Theoretical Statistics. Lecture 25. Peter Bartlett

- 1. Relative efficiency of tests [vdv14]: Rescaling rates.
- 2. Likelihood ratio tests [vdv15].

Recall: Relative efficiency of tests

Theorem: Suppose that (1) T_n , μ , and σ are such that, for all h and $\theta_n = \theta_0 + h/\sqrt{n}$,

$$\frac{\sqrt{n}\left(T_n - \mu(\theta_n)\right)}{\sigma(\theta_n)} \stackrel{\theta_n}{\rightsquigarrow} N(0, 1),$$

(2) μ is differentiable at 0, (3) σ is continuous at 0. Then a test that rejects $H_0: \theta = \theta_0$ for large values of T_n and is asymptotically of level α satisfies, for all h,

$$\pi_n(\theta_n) \to 1 - \Phi\left(z_\alpha - h\frac{\mu'(\theta_0)}{\sigma(\theta_0)}\right).$$

So the slope $\mu'(\theta_0)/\sigma(\theta_0)$ determines the asymptotic power.

Rescaling rates

So far, we've considered alternatives of the form

$$\theta_n = \theta_0 + \frac{h}{\sqrt{n}}.$$

This corresponds to choosing a sequence θ_n such that the difference, $\theta_n - \theta_0$, when appropriately rescaled, approaches a constant:

$$\sqrt{n}(\theta_n - \theta_0) \to h.$$

This rescaling rate is appropriate for regular cases. But other rates are possible.

Rescaling rates: *L*₁**-distance**

Definition: The L_1 -distance [not total variation] between two distributions P and Q with densities $p = dP/d\mu$ and $q = dQ/d\mu$ is

$$\|P-Q\| = \int |p-q| \, d\mu.$$

Lemma: For a sequence of models $P_{n,\theta}$ with null hypothesis $H_0: \theta = \theta_0$ and alternatives $H_1: \theta = \theta_n$, the power function of any test satisfies

$$\pi_n(\theta_n) - \pi_n(\theta_0) \le \frac{1}{2} \left\| P_{n,\theta_n} - P_{n,\theta_0} \right\|.$$

Furthermore, there is a test for which equality holds.

Rescaling rates: *L*₁**-distance**

Consequences:

- 1. If $||P_{n,\theta_n} P_{n,\theta_0}|| \to 2$: Some sequence of tests is perfect, that is, $\pi_n(\theta_n) \to 1$ and $\pi_n(\theta_0) \to 0$.
- 2. If $||P_{n,\theta_n} P_{n,\theta_0}|| \to 0$: Any sequence of tests is worthless, because $\pi_n(\theta_n) \pi_n(\theta_0) \to 0$.
- 3. If $||P_{n,\theta_n} P_{n,\theta_0}||$ is bounded away from 0 and 2: There is no perfect sequence of tests, but not all tests are worthless.

This result reveals the appropriate rescaling rate: we need θ_n to approach θ_0 at a rate than ensures an intermediate value of $||P_{n,\theta_n} - P_{n,\theta_0}||$.

Rescaling rates: L_1 -distance

Proof: First, for any densities p and q,

$$\begin{aligned} 0 &= \int (p-q) \, d\mu \\ &= \int_{p>q} (p-q) \, d\mu + \int_{pq} |p-q| \, d\mu - \int_{p$$

so [notice relationship with total variation distance]

$$\int |p-q| d\mu = \int_{p>q} |p-q| d\mu + \int_{p
$$= 2 \int_{p>q} |p-q| d\mu.$$$$

Rescaling rates: L_1 -distance

So we have

$$\begin{aligned} \pi_n(\theta_n) - \pi_n(\theta_0) &= \int \mathbb{1}[T_n \in K_n](p_{n,\theta_n} - p_{n,\theta_0}) \, d\mu_n \\ &\leq \int \mathbb{1}[p_{n,\theta_n} > p_{n,\theta_0}](p_{n,\theta_n} - p_{n,\theta_0}) \, d\mu_n \\ &= \int \mathbb{1}[p_{n,\theta_n} > p_{n,\theta_0}]|p_{n,\theta_n} - p_{n,\theta_0}| \, d\mu_n \\ &= \frac{1}{2} \left\| P_{n,\theta_n} - P_{n,\theta_0} \right\|, \end{aligned}$$

where the upper bound is achieved by the test

$$1[T_n \in K_n] = 1[p_{n,\theta_n} > p_{n,\theta_0}].$$

It's convenient to relate the L_1 -distance to Hellinger distance (because then product measures are easy to deal with).

Definition: The **Hellinger distance** between P and Q (which have densities p and q) is

$$h(P,Q) = \left(\frac{1}{2} \int \left(p^{1/2} - q^{1/2}\right)^2 d\mu\right)^{1/2}$$

(The 1/2 ensures $0 \le h(P,Q) \le 1$. It is defined without it in vdV.)

Theorem:

$$nh^{2}(P_{\theta_{n}}, P_{\theta_{0}}) \to \infty \qquad \Rightarrow \qquad \|P_{\theta_{n}}^{n} - P_{\theta_{0}}^{n}\| \to 2,$$
$$nh^{2}(P_{\theta_{n}}, P_{\theta_{0}}) \to 0 \qquad \Rightarrow \qquad \|P_{\theta_{n}}^{n} - P_{\theta_{0}}^{n}\| \to 0,$$
$$h^{2}(P_{\theta_{n}}, P_{\theta_{0}}) = \Theta\left(\frac{1}{n}\right) \qquad \Rightarrow \qquad \|P_{\theta_{n}}^{n} - P_{\theta_{0}}^{n}\| \neq \{0, 2\}.$$

Proof:

Useful properties:

$$2h^2(P,Q) \le \|P-Q\| \le 2\sqrt{2}h(P,Q).$$

Also, $A(P^n,Q^n) = A^n(P,Q),$

Where

$$A(P,Q) = 1 - h^2(p,q) = \int p^{1/2} q^{1/2} \, d\mu$$

is the **Hellinger affinity**.

Proof (continued):

 $nh^{2}(P_{\theta_{n}}, P_{\theta_{0}}) \to \infty$ $A(P_{\theta_{n}}, P_{\theta_{0}}) = 1 - \omega \left(\frac{1}{n}\right)$ $A(P_{\theta_{n}}^{n}, P_{\theta_{0}}^{n}) \to 0$ $A(P_{\theta_{n}}^{n}, P_{\theta_{0}}^{n}) \to 0$ $h^{2}(P_{\theta_{n}}^{n}, P_{\theta_{0}}^{n}) \to 1$ $\|P_{\theta_{n}}^{n} - P_{\theta_{0}}^{n}\| \to 2.$

Proof (continued):

$$nh^{2}(P_{\theta_{n}}, P_{\theta_{0}}) \to 0$$

$$\Rightarrow \qquad A(P_{\theta_{n}}, P_{\theta_{0}}) = 1 - o\left(\frac{1}{n}\right)$$

$$\Rightarrow \qquad A(P_{\theta_{n}}^{n}, P_{\theta_{0}}^{n}) \to 1$$

$$\Rightarrow \qquad h^{2}(P_{\theta_{n}}^{n}, P_{\theta_{0}}^{n}) \to 0$$

$$\Rightarrow \qquad \|P_{\theta_{n}}^{n} - P_{\theta_{0}}^{n}\| \to 0.$$

Thus, if $h^2(P_{\theta}, P_{\theta_0}) = \Theta(|\theta - \theta_0|^{\alpha})$, then the critical quantity is the limit of

$$nh^2(P_{\theta_n}, P_{\theta_0}) = \Theta\left(\left(n^{1/\alpha}|\theta_n - \theta_0|\right)^{\alpha}\right).$$

If P_{θ} is QMD at θ_0 , then

$$h^2(P_{\theta}, P_{\theta_0}) = \Theta(|\theta - \theta_0|^2),$$

that is, $\alpha = 2$, so we consider a shrinking alternative with $\sqrt{n}(\theta_n - \theta_0) \rightarrow h$.

Definition: The root density $\theta \mapsto \sqrt{p_{\theta}}$ (for $\theta \in \mathbb{R}^k$) is **differentiable** in quadratic mean at θ if there exists a vector-valued measurable function $\dot{\ell}_{\theta} : \mathcal{X} \to \mathbb{R}^k$ such that, for $h \to 0$,

$$\int \left(\sqrt{p_{\theta+h}} - \sqrt{p_{\theta}} - \frac{1}{2}h^T \dot{\ell}_{\theta} \sqrt{p_{\theta}}\right)^2 d\mu = o(\|h\|^2).$$

Theorem: If P_{θ} is QMD at θ and $I_{\theta} = P_{\theta} \dot{\ell}_{\theta} \dot{\ell}_{\theta}^{T}$ exists, then

$$h^{2}(P_{\theta+h}, P_{\theta}) = \frac{1}{8}h^{T}I_{\theta}h + o(||h||^{2}).$$

Proof:

$$2h^{2}(P_{\theta+h}, P_{\theta}) = \int \left(\sqrt{p_{\theta+h}} - \sqrt{p_{\theta}}\right)^{2} d\mu$$
$$= \left\|\sqrt{p_{\theta+h}} - \sqrt{p_{\theta}}\right\|_{L_{2}(\mu)}^{2}.$$

But QMD implies

$$\left\|\sqrt{p_{\theta+h}} - \sqrt{p_{\theta}} - \frac{1}{2}h^T \dot{\ell}_{\theta} \sqrt{p_{\theta}}\right\|_{L_2(\mu)}^2 = o(\|h\|^2),$$

and
$$\left\|\frac{1}{2}h^T \dot{\ell}_{\theta} \sqrt{p_{\theta}}\right\|_{L_2(\mu)}^2 = \frac{1}{4}h^T P_{\theta} \left(\dot{\ell}_{\theta} \dot{\ell}_{\theta}^T\right) h$$
$$= \frac{1}{4}h^T I_{\theta} h = O(\|h\|^2)$$

So

$$2h^{2}(P_{\theta+h}, P_{\theta}) = \left\| \sqrt{p_{\theta+h}} - \sqrt{p_{\theta}} \right\|_{L_{2}(\mu)}^{2}$$

$$= \left\| \frac{1}{2}h^{T}\dot{\ell}_{\theta}\sqrt{p_{\theta}} + \left(\sqrt{p_{\theta+h}} - \sqrt{p_{\theta}} - \frac{1}{2}h^{T}\dot{\ell}_{\theta}\sqrt{p_{\theta}}\right) \right\|_{L_{2}(\mu)}^{2}$$

$$= \frac{1}{4}h^{T}I_{\theta}h + o\left(\|h\|^{2}\right) + \left(o(\|h\|^{2})O(\|h\|^{2})\right)^{1/2} \quad (Cauchy-Schwarz)$$

$$= \frac{1}{4}h^{T}I_{\theta}h + o\left(\|h\|^{2}\right).$$

Consider P_{θ} uniform on $[0, \theta]$. Recall that this model is not QMD. A straightforward calculation shows that

$$h^2(P_{\theta}, P_{\theta_0}) = \frac{|\theta - \theta_0|}{\theta \lor \theta_0}$$

So the appropriate shrinking alternative has $n(\theta_n - \theta_0) \rightarrow h$.

Suppose we observe X_1, \ldots, X_n , with density p_{θ} , $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$.

For $\Theta_0 = \{\theta_0\}$ and $\Theta_1 = \{\theta_1\}$, the optimal test statistic is

$$\log \prod_{i=1}^{n} \frac{p_{\theta_1}(X_i)}{p_{\theta_0}(X_i)}.$$

If we have composite hypotheses, we could instead use

$$\tilde{\Lambda}_n = \log \frac{\sup_{\theta \in \Theta_1} \prod_{i=1}^n p_{\theta}(X_i)}{\sup_{\theta \in \Theta_0} \prod_{i=1}^n p_{\theta}(X_i)}.$$

Notice that, for a minimal sufficient statistic T, we can write

$$\tilde{\Lambda}_n = \log \frac{\sup_{\theta \in \Theta_1} \prod_{i=1}^n h(X_i) f_{\theta}(T(X_i))}{\sup_{\theta \in \Theta_0} \prod_{i=1}^n h(X_i) f_{\theta}(T(X_i))} \\ = \log \frac{\sup_{\theta \in \Theta_1} \prod_{i=1}^n f_{\theta}(T(X_i))}{\sup_{\theta \in \Theta_0} \prod_{i=1}^n f_{\theta}(T(X_i))},$$

so $\tilde{\Lambda}_n$ depends only on the minimal sufficient statistic.

Since the critical value will be positive, it will not change the test if we replace this statistic by $\tilde{\Lambda}_n \vee 0$. We will also scale it by a factor of 2. (We'll see that this gives a neater test.)

Define

$$\begin{split} \Lambda_n &= 2(\tilde{\Lambda}_n \vee 0) \\ &= 2 \log \frac{\left(\sup_{\theta \in \Theta_1} \prod_{i=1}^n p_{\theta}(X_i) \right) \vee \left(\sup_{\theta \in \Theta_0} \prod_{i=1}^n p_{\theta}(X_i) \right)}{\sup_{\theta \in \Theta_0} \prod_{i=1}^n p_{\theta}(X_i)} \\ &= 2 \log \frac{\sup_{\theta \in \Theta_0 \cup \Theta_1} \prod_{i=1}^n p_{\theta}(X_i)}{\sup_{\theta \in \Theta_0} \prod_{i=1}^n p_{\theta}(X_i)} \\ &= 2 \sum_{i=1}^n \left(\ell_{\hat{\theta}_n}(X_i) - \ell_{\hat{\theta}_{n,0}}(X_i) \right), \end{split}$$

where $\hat{\theta}_n$ is the maximum likelihood estimator for θ over $\Theta = \Theta_0 \cup \Theta_1$, and $\hat{\theta}_{n,0}$ is the maximum likelihood estimator over Θ_0 .

We'll focus on cases where $\Theta = \Theta_0 \cup \Theta_1$ is a subset of \mathbb{R}^k , and where Θ and Θ_0 are locally linear spaces. Then under H_0 , we'll see that Λ_n is asymptotically chi-square distributed with m degrees of freedom, where $m = \dim(\Theta) - \dim(\Theta_0)$. So we can get a test that is asymptotically of level α by comparing Λ_n to the upper α -quantile of a chi-square distribution.