Theoretical Statistics. Lecture 26. Peter Bartlett

- 1. Likelihood ratio tests [vdv15].
	- (a) Taylor series.

(b)
$$
\Lambda_n \stackrel{\theta \in \Theta_0}{\leadsto} \chi^2_{k-l}
$$

(c) Asymptotic power function.

.

Recall: Likelihood ratio tests

Suppose we observe X_1, \ldots, X_n , with density p_θ , $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$. NB: composite hypotheses.

Define

$$
\Lambda_n = 2 \log \frac{\sup_{\theta \in \Theta_0 \cup \Theta_1} \prod_{i=1}^n p_{\theta}(X_i)}{\sup_{\theta \in \Theta_0} \prod_{i=1}^n p_{\theta}(X_i)}
$$

=
$$
2 \sum_{i=1}^n \left(\ell_{\hat{\theta}_n}(X_i) - \ell_{\hat{\theta}_{n,0}}(X_i) \right),
$$

where $\hat{\theta}_n$ is the maximum likelihood estimator for θ over $\Theta = \Theta_0 \cup \Theta_1$, and $\hat{\theta}_{n,0}$ is the maximum likelihood estimator over $\Theta_0.$

Likelihood ratio tests

Notice that, for a sufficient statistic T , $p_{\theta}(x)$ depends on x only through $T(x)$:

$$
p_{\theta}(x) = h(x) f_{\theta}(T(x)),
$$

so

$$
\Lambda_n = 2 \log \frac{\sup_{\theta \in \Theta_1} \prod_{i=1}^n h(X_i) f_{\theta}(T(X_i))}{\sup_{\theta \in \Theta_0} \prod_{i=1}^n h(X_i) f_{\theta}(T(X_i))}
$$

$$
= 2 \log \frac{\sup_{\theta \in \Theta_1} \prod_{i=1}^n f_{\theta}(T(X_i))}{\sup_{\theta \in \Theta_0} \prod_{i=1}^n f_{\theta}(T(X_i))},
$$

hence Λ_n depends only on a **minimal** sufficient statistic.

Likelihood ratio tests

We'll focus on cases where $\Theta = \Theta_0 \cup \Theta_1$ is a subset of \mathbb{R}^k , and where Θ and Θ_0 are locally linear spaces. Then under H_0 , we'll see that Λ_n is asymptotically chi-square distributed with m degrees of freedom, where $m = \dim(\Theta) - \dim(\Theta_0)$. So we can get a test that is asymptotically of level α by comparing Λ_n to the upper α -quantile of a chi-square distribution.

Likelihood ratio tests: Taylor series

Under P_{θ} , where $\theta \in \Theta_0$ is in the interior of Θ ,

$$
\Lambda_{n} = 2 \sum_{i=1}^{n} (\ell_{\hat{\theta}_{n}}(X_{i}) - \ell_{\hat{\theta}_{n,0}}(X_{i}))
$$

= $-2 \sum_{i=1}^{n} (\ell_{\hat{\theta}_{n,0}}(X_{i}) - \ell_{\hat{\theta}_{n}}(X_{i}))$
= $-2 (\hat{\theta}_{n,0} - \hat{\theta}_{n})^{T} \sum_{i=1}^{n} \ell_{\hat{\theta}_{n}}(X_{i}) - (\hat{\theta}_{n,0} - \hat{\theta}_{n})^{T} \sum_{i=1}^{n} \ell_{\tilde{\theta}_{n}}(X_{i}) (\hat{\theta}_{n,0} - \hat{\theta}_{n})$,

where $\tilde{\theta}_n$ is between $\hat{\theta}_n$ and $\hat{\theta}_{n,0}$, and we have assumed that, for all x , $\theta \mapsto \ell_{\theta}(x)$ is twice continuously differentiable.

Likelihood ratio tests: Taylor series

$$
\Lambda_n = -\sqrt{n} \left(\hat{\theta}_{n,0} - \hat{\theta}_n \right)^T \frac{1}{n} \sum_{i=1}^n \ddot{\ell}_{\tilde{\theta}_n}(X_i) \sqrt{n} \left(\hat{\theta}_{n,0} - \hat{\theta}_n \right) + o_{P_{\theta}}(1),
$$

because $\hat{\theta}_n$ maximizes $P_n \ell_{\theta}$, and asymptotically this is in the interior of Θ , so $P_n\dot{\ell}_{\hat{\theta}_n}=0.$

$$
\Lambda_n = \sqrt{n} \left(\hat{\theta}_{n,0} - \hat{\theta}_n \right)^T I_\theta \sqrt{n} \left(\hat{\theta}_{n,0} - \hat{\theta}_n \right) + o_{P_\theta}(1),
$$

where we have assumed that the sequence \sqrt{n} $\left(\right)$ $\hat{\theta}_{n,0}$ $-\,\hat{\theta}_n$) is uniformly tight, and that

$$
\frac{1}{n}\sum_{i=1}^n \ddot{\ell}_{\tilde{\theta}_n}(X_i) = -I_{\theta} + o_{P_{\theta}}(1).
$$

Likelihood ratio tests: Taylor series

(Here, $\theta \in \Theta_0$, that is, under the null, so we have $\tilde{\theta}_n$ $\stackrel{P}{\rightarrow} \theta$.) Thus,

$$
\Lambda_n = \sqrt{n} \left(\hat{\theta}_{n,0} - \hat{\theta}_n \right)^T I_\theta \sqrt{n} \left(\hat{\theta}_{n,0} - \hat{\theta}_n \right) + o_{P_\theta}(1)
$$

is a quadratic form defining a squared distance between $\hat{\theta}_{n,0}$ and $\hat{\theta}_{n}.$

Likelihood ratio tests: Simple null

Suppose $\Theta_0 = \{\theta_0\}$ and $\theta = \theta_0$.

$$
\Lambda_n = \sqrt{n} \left(\hat{\theta}_n - \theta_0 \right)^T I_\theta \sqrt{n} \left(\hat{\theta}_n - \theta_0 \right) + o_{P_\theta}(1).
$$

Under general conditions (we saw them for maximum likelihoo d estimators),

$$
\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \rightsquigarrow X,
$$

where $X \sim N(0, I_{\theta}^{-1})$ $\big(\begin{matrix} -1 \ \theta \end{matrix}\big),$ so

$$
\Lambda_n \leadsto X^T I_\theta X = Z^T I_\theta^{-1/2} I_\theta I_\theta^{-1/2} Z = Z^T Z,
$$

where $Z = I_0^{1/2}$ $\frac{d^4l^2}{dt^2}X\sim N(0,I_k).$ Thus, $\Lambda_n\rightsquigarrow \chi^2_k$ $k^{\mathbf{.}}$

Recall: Maximum likelihood

Theorem: Suppose

- 1. $(P_\theta : \theta \in \Theta)$ is QMD at θ with nonsingular Fisher information I_θ ,
- 2. for every $x, \theta \mapsto \log p_{\theta}(x)$ is Lipschitz, and

3. the maximum likelihood estimator $\hat{\theta}_n$ is consistent.

Then

$$
\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{\theta}{\leadsto} N(0, I_{\theta}^{-1}).
$$

What if Θ_0 is a linear subspace (of dimension more than 0)?

We might expect $\sqrt{n}(\hat{\theta}_{n,0} - \theta, \hat{\theta}_n)$ θ) to converge jointly to a normal vector (X_0, X) , in which case

$$
\Lambda_n \leadsto (X - X_0)^T I_\theta(X - X_0).
$$

We'll see that this has a χ^2_k k_{k-l}^2 distribution, where $k = \dim(\Theta)$ and $l = \dim(\Theta_0).$

Write Λ_n in terms of local likelihood ratios, for the true θ in Θ_0 :

$$
\Lambda_n = 2 \log \frac{\sup_{\theta \in \Theta} \prod_{i=1}^n p_{\theta}(X_i)}{\sup_{\theta \in \Theta_0} \prod_{i=1}^n p_{\theta}(X_i)}
$$

\n
$$
= 2 \sup_{h \in H_n} \log \frac{\prod_{i=1}^n p_{\theta+h/\sqrt{n}}(X_i)}{\prod_{i=1}^n p_{\theta}(X_i)}
$$

\n
$$
- 2 \sup_{h \in H_{n,0}} \log \frac{\prod_{i=1}^n p_{\theta+h/\sqrt{n}}(X_i)}{\prod_{i=1}^n p_{\theta}(X_i)},
$$

\nwhere $H_n = \sqrt{n} (\Theta - \theta),$
\n $H_{n,0} = \sqrt{n} (\Theta_0 - \theta)$

are the **local parameter spaces**.

Theorem: Suppose (1) $(P_{\theta} : \theta \in \Theta)$ is QMD at $\theta \in \Theta_0$ with I_{θ} nonsingular, (2) for a function $\dot{\ell}$ with $P_{\theta} \dot{\ell}^2 < \infty$, for every θ_1, θ_2 in a neighborhood of $\theta,$

$$
\left|\log p_{\theta_1}(x) - \log p_{\theta_2}(x)\right| \leq \ell(x) \left\|\theta_1 - \theta_2\right\|,
$$

(3) the estimators $\hat{\theta}_{n,0}$ and $\hat{\theta}_n$ are consistent under P_θ , and (4) the sets $H_{n,0}$ and H_n converge to sets H_0 and $H.$ Then

$$
\Lambda_n\stackrel{\theta+h/\sqrt{n}}{\leadsto}\left\|I_{\theta}^{1/2}X-I_{\theta}^{1/2}H_0\right\|^2-\left\|I_{\theta}^{1/2}X-I_{\theta}^{1/2}H\right\|^2
$$

.

where $X \sim N(h, I_\theta^{-1})$ $\frac{(-1)}{\theta}$).

Here, we say that a sequence H_n of sets converges to a set H if

$$
H = \left\{ \lim_{i \to \infty} h_{n_i} : h_{n_i} \text{ convergent, } h_n \in H_n \right\}.
$$

Also, we write

$$
\left\|I_{\theta}^{1/2}X - I_{\theta}^{1/2}H_0\right\|^2 = \inf_{h \in H_0} \left\|I_{\theta}^{1/2}X - I_{\theta}^{1/2}h\right\|^2
$$

.

Idea of Proof:

 Λ_n is the difference of two rescaled maximum likelihood ratio processes,

$$
2 \sup_{h \in H_n} \log \frac{\prod_{i=1}^n p_{\theta+h/\sqrt{n}}(X_i)}{\prod_{i=1}^n p_{\theta}(X_i)} - 2 \sup_{h \in H_{n,0}} \log \frac{\prod_{i=1}^n p_{\theta+h/\sqrt{n}}(X_i)}{\prod_{i=1}^n p_{\theta}(X_i)}.
$$

Just as we saw for maximum likelihood, this statistic for the local experiment converges to the corresponding asymptotic statistic in the normal experiment,

$$
2 \sup_{h \in H} \log \frac{dN(h, I_{\theta}^{-1})}{dN(0, I_{\theta}^{-1})}(X) - 2 \sup_{h \in H_0} \log \frac{dN(h, I_{\theta}^{-1})}{dN(0, I_{\theta}^{-1})}(X).
$$

where $X \sim N(0, I_{\theta}^{-1})$ \int_{θ}^{-1}). (And under $\theta + g/\sqrt{n}$, Λ_n converges in distribution to the same thing, with $X \sim N(g, I_\theta^{-1})$ $\binom{-1}{\theta}$.)

But this is

$$
2 \sup_{h \in H} \log \frac{dN(h, I_{\theta}^{-1})}{dN(0, I_{\theta}^{-1})}(X) - 2 \sup_{h \in H_0} \log \frac{dN(h, I_{\theta}^{-1})}{dN(0, I_{\theta}^{-1})}(X)
$$

= $\sup_{h \in H} -(X - h)^T I_{\theta}(X - h) - \sup_{h \in H_0} -(X - h)^T I_{\theta}(X - h)$
= $\inf_{h \in H_0} (X - h)^T I_{\theta}(X - h) - \inf_{h \in H} (X - h)^T I_{\theta}(X - h)$
= $\inf_{h \in H_0} ||I_{\theta}^{1/2}(X - h)||^2 - \inf_{h \in H} ||I_{\theta}^{1/2}(X - h)||^2$
= $||I_{\theta}^{1/2}X - I_{\theta}^{1/2}H_0||^2 - ||I_{\theta}^{1/2}X - I_{\theta}^{1/2}H||^2$.

Theorem: $\theta \in \Theta_0$ is an interior point of Θ , then H_n converges to $H=\mathbb{R}^k,$ and

$$
\left\| I_{\theta}^{1/2} X - I_{\theta}^{1/2} H \right\|^2 = 0.
$$

If, in addition, H_0 is a linear subspace of dimension l , then

$$
\Lambda_n \stackrel{\theta}{\leadsto} \left\| I_{\theta}^{1/2} X - I_{\theta}^{1/2} H_0 \right\|^2 \sim \chi_{k-l}^2,
$$

where $X \sim N(0, I_{\theta}^{-1})$ $\frac{-1}{\theta}$).

Proof:

Write $Z = I_0^{1/2}$ $\mathcal{L}_{\theta}^{1/2}X \sim N(0, I_k)$. Write $Z = (Z_1, \ldots, Z_k)$ in a basis where the first *l* basis vectors lie in H_0 . (And notice that, in this basis, it is still a standard normal.) Then the squared distance from Z to H_0 is

$$
||Z - H_0||^2 = \sum_{i=l+1}^k Z_i^2 \sim \chi_{k-l}^2.
$$

Likelihood ratio tests: Examples

Example:

Suppose $\theta = (\mu, \sigma) \in \mathbb{R} \times \mathbb{R}^+$ and

$$
p_{\theta} = \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right),\,
$$

where f is a fixed density on $\mathbb R$.

Consider $H_0: \mu = 0$ versus $H_1: \mu \neq 0$. Fix $\theta = (0, \sigma)$.

$$
\Theta_0 = \{0\} \times (0, \infty),
$$

\n
$$
H_{n,0} = \sqrt{n}(\Theta_0 - \theta) = \{0\} \times (-\sqrt{n}\sigma, \infty) \to \{0\} \times \mathbb{R} = H_0.
$$

So $\dim(H_0)=1,\dim(H)=2.$ For suitably regular $f,$ the likelihood ratio statistic is asymptotically $\chi_1^2.$ [PICTURE]

Likelihood ratio tests: Examples

Consider $H_0: \mu \leq 0$ versus $H_1: \mu > 0$. Fix $\theta = (\mu, \sigma)$ with $\mu < 0$.

$$
\Theta_0 = (-\infty, 0] \times (0, \infty),
$$

\n
$$
H_{n,0} = \sqrt{n}(\Theta_0 - \theta) \to \mathbb{R} \times \mathbb{R} = H_0.
$$

So $\dim(H_0) = 2 = \dim(H)$. For suitably regular f, the likelihood ratio statistic is asymptotically 0.

Likelihood ratio tests: Examples

Consider $H_0: \mu \leq 0$ versus $H_1: \mu > 0$. Fix $\theta = (0, \sigma)$.

$$
\Theta_0 = (-\infty, 0] \times (0, \infty),
$$

\n
$$
H_{n,0} = \sqrt{n}(\Theta_0 - \theta) \to (-\infty, 0] \times \mathbb{R} = H_0.
$$

The weak limit is

$$
\left\|Z - I_{\theta}^{1/2} H_0\right\|^2.
$$

Notice that $I_0^{1/2}$ $\theta_{\theta}^{1/2}H_0$ is a half-space. [PICTURE] So this asymptotic distribution is the distribution of $(Z_1 \vee 0)^2$, where $Z_1 \sim N(0, 1)$. Because $Pr((Z_1 \vee 0)^2 > c) = (1/2) Pr(Z_1^2 > c)$, we can set the critical value as the upper 2α -quantile of a χ_1^2 variable.

If $\theta \in \Theta_0$ is an interior point of Θ , we have seen that

$$
\Lambda_n \stackrel{\theta + h/\sqrt{n}}{\leadsto} \left\| I_{\theta}^{1/2} X - I_{\theta}^{1/2} H_0 \right\|^2,
$$

where $X \sim N(h, I_\theta^{-1})$ $\frac{(-1)}{\theta}$).

If H_0 is a linear subspace of dimension l, then under the null ($h=0$), this is χ^2_k $k-l$.

Setting the critical value χ^2_k $_{k-l,\alpha}^2,$ we have

$$
\pi_n \left(\theta + \frac{h}{\sqrt{n}} \right) = P_{\theta + h/\sqrt{n}} \left(\Lambda_n > \chi_{k-l,\alpha}^2 \right)
$$

$$
\to P_{N(h, I_\theta^{-1})} \left(\left\| I_\theta^{1/2} X - I_\theta^{1/2} H_0 \right\|^2 > \chi_{k-l,\alpha}^2 \right)
$$

$$
= P_{N(0,I)} \left(\left\| X - I_\theta^{1/2} (-h + H_0) \right\|^2 > \chi_{k-l,\alpha}^2 \right)
$$

$$
= P \left(\chi_{k-l}^2 \left(\left\| I_\theta^{1/2} (h - H_0) \right\| \right) > \chi_{k-l,\alpha}^2 \right),
$$

where χ^2_k $\chi_{k-l}^2(\delta)$ is a random variable with a noncentral chi-squared distribution with noncentrality parameter $\delta...$

That is, χ^2_k $\mu_{k-l}^2(\delta)$ has the distribution of the squared distance between a standard normal in \mathbb{R}^k and an affine subspace of dimension l that is distance δ from the origin.

$$
P\left(\chi_{k-l}^2\left(\left\|I_{\theta}^{1/2}(h-H_0)\right\|\right) > \chi_{k-l,\alpha}^2\right)
$$

is an increasing function of $\overline{\mathbf{u}}$ $\left\|I_{\theta}^{1/2}\right\|$ $\frac{1}{\theta}^{\prime \, 2}(h-H_0)$ $\overline{\mathbf{u}}$ \parallel \parallel , and hence of $\Vert h \Vert$.

First, think of $H_0 = \{0\}$:

$$
\left\|I_{\theta}^{1/2}(h - H_0)\right\| = \sqrt{h^T I_{\theta} h}.
$$

Decomposing I_{θ} into outer products of its eigenvectors, we have

$$
h^T I_{\theta} h = \sum_{i=1}^k \lambda_i (e_i^T h)^2.
$$

So we get highest power in the directions that align with eigenvectors e_i that have largest eigenvalues $\lambda_i.$ If the log likelihood is twice differentiable, these are the directions with ^a large second derivative: the variance of the score function is large in these directions.

And if H_0 is a subspace, replace h here with the difference between h and its projection on H_0 , which is in the space orthogonal to H_0 .