Theoretical Statistics. Lecture 26. Peter Bartlett

- 1. Likelihood ratio tests [vdv15].
 - (a) Taylor series.

(b)
$$\Lambda_n \stackrel{\theta \in \Theta_0}{\leadsto} \chi^2_{k-l}$$
.

(c) Asymptotic power function.

Recall: Likelihood ratio tests

Suppose we observe X_1, \ldots, X_n , with density p_{θ} , $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$. NB: composite hypotheses.

Define

$$\Lambda_n = 2 \log \frac{\sup_{\theta \in \Theta_0 \cup \Theta_1} \prod_{i=1}^n p_\theta(X_i)}{\sup_{\theta \in \Theta_0} \prod_{i=1}^n p_\theta(X_i)}$$
$$= 2 \sum_{i=1}^n \left(\ell_{\hat{\theta}_n}(X_i) - \ell_{\hat{\theta}_{n,0}}(X_i) \right),$$

where $\hat{\theta}_n$ is the maximum likelihood estimator for θ over $\Theta = \Theta_0 \cup \Theta_1$, and $\hat{\theta}_{n,0}$ is the maximum likelihood estimator over Θ_0 .

Likelihood ratio tests

Notice that, for a sufficient statistic T, $p_{\theta}(x)$ depends on x only through T(x):

$$p_{\theta}(x) = h(x)f_{\theta}(T(x)),$$

SO

$$\Lambda_n = 2\log \frac{\sup_{\theta \in \Theta_1} \prod_{i=1}^n h(X_i) f_{\theta}(T(X_i))}{\sup_{\theta \in \Theta_0} \prod_{i=1}^n h(X_i) f_{\theta}(T(X_i))}$$
$$= 2\log \frac{\sup_{\theta \in \Theta_1} \prod_{i=1}^n f_{\theta}(T(X_i))}{\sup_{\theta \in \Theta_0} \prod_{i=1}^n f_{\theta}(T(X_i))},$$

hence Λ_n depends only on a **minimal** sufficient statistic.

Likelihood ratio tests

We'll focus on cases where $\Theta = \Theta_0 \cup \Theta_1$ is a subset of \mathbb{R}^k , and where Θ and Θ_0 are locally linear spaces. Then under H_0 , we'll see that Λ_n is asymptotically chi-square distributed with m degrees of freedom, where $m = \dim(\Theta) - \dim(\Theta_0)$. So we can get a test that is asymptotically of level α by comparing Λ_n to the upper α -quantile of a chi-square distribution.

Likelihood ratio tests: Taylor series

Under P_{θ} , where $\theta \in \Theta_0$ is in the interior of Θ ,

$$\Lambda_{n} = 2 \sum_{i=1}^{n} \left(\ell_{\hat{\theta}_{n}}(X_{i}) - \ell_{\hat{\theta}_{n,0}}(X_{i}) \right)$$

= $-2 \sum_{i=1}^{n} \left(\ell_{\hat{\theta}_{n,0}}(X_{i}) - \ell_{\hat{\theta}_{n}}(X_{i}) \right)$
= $-2 \left(\hat{\theta}_{n,0} - \hat{\theta}_{n} \right)^{T} \sum_{i=1}^{n} \dot{\ell}_{\hat{\theta}_{n}}(X_{i}) - \left(\hat{\theta}_{n,0} - \hat{\theta}_{n} \right)^{T} \sum_{i=1}^{n} \ddot{\ell}_{\tilde{\theta}_{n}}(X_{i}) \left(\hat{\theta}_{n,0} - \hat{\theta}_{n} \right)$

where $\hat{\theta}_n$ is between $\hat{\theta}_n$ and $\hat{\theta}_{n,0}$, and we have assumed that, for all x, $\theta \mapsto \ell_{\theta}(x)$ is twice continuously differentiable.

Likelihood ratio tests: Taylor series

$$\Lambda_n = -\sqrt{n} \left(\hat{\theta}_{n,0} - \hat{\theta}_n\right)^T \frac{1}{n} \sum_{i=1}^n \ddot{\ell}_{\tilde{\theta}_n}(X_i) \sqrt{n} \left(\hat{\theta}_{n,0} - \hat{\theta}_n\right) + o_{P_{\theta}}(1),$$

because $\hat{\theta}_n$ maximizes $P_n \ell_{\theta}$, and asymptotically this is in the interior of Θ , so $P_n \dot{\ell}_{\hat{\theta}_n} = 0$.

$$\Lambda_n = \sqrt{n} \left(\hat{\theta}_{n,0} - \hat{\theta}_n\right)^T I_{\theta} \sqrt{n} \left(\hat{\theta}_{n,0} - \hat{\theta}_n\right) + o_{P_{\theta}}(1),$$

where we have assumed that the sequence $\sqrt{n} \left(\hat{\theta}_{n,0} - \hat{\theta}_n \right)$ is uniformly tight, and that

$$\frac{1}{n}\sum_{i=1}^{n}\ddot{\ell}_{\tilde{\theta}_n}(X_i) = -I_{\theta} + o_{P_{\theta}}(1).$$

Likelihood ratio tests: Taylor series

(Here, $\theta \in \Theta_0$, that is, under the null, so we have $\tilde{\theta}_n \xrightarrow{P} \theta$.) Thus,

$$\Lambda_n = \sqrt{n} \left(\hat{\theta}_{n,0} - \hat{\theta}_n\right)^T I_{\theta} \sqrt{n} \left(\hat{\theta}_{n,0} - \hat{\theta}_n\right) + o_{P_{\theta}}(1)$$

is a quadratic form defining a squared distance between $\hat{\theta}_{n,0}$ and $\hat{\theta}_n$.

Likelihood ratio tests: Simple null

Suppose $\Theta_0 = \{\theta_0\}$ and $\theta = \theta_0$.

$$\Lambda_n = \sqrt{n} \left(\hat{\theta}_n - \theta_0\right)^T I_\theta \sqrt{n} \left(\hat{\theta}_n - \theta_0\right) + o_{P_\theta}(1).$$

Under general conditions (we saw them for maximum likelihood estimators),

$$\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \rightsquigarrow X,$$

where $X \sim N(0, I_{\theta}^{-1})$, so

$$\Lambda_n \rightsquigarrow X^T I_\theta X = Z^T I_\theta^{-1/2} I_\theta I_\theta^{-1/2} Z = Z^T Z,$$

where $Z = I_{\theta}^{1/2} X \sim N(0, I_k)$. Thus, $\Lambda_n \rightsquigarrow \chi_k^2$.

Recall: Maximum likelihood

Theorem: Suppose

- 1. $(P_{\theta} : \theta \in \Theta)$ is QMD at θ with nonsingular Fisher information I_{θ} ,
- 2. for every $x, \theta \mapsto \log p_{\theta}(x)$ is Lipschitz, and

3. the maximum likelihood estimator $\hat{\theta}_n$ is consistent.

Then

$$\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{\theta}{\rightsquigarrow} N(0, I_{\theta}^{-1}).$$

What if Θ_0 is a linear subspace (of dimension more than 0)?

We might expect $\sqrt{n}(\hat{\theta}_{n,0} - \theta, \hat{\theta}_n - \theta)$ to converge jointly to a normal vector (X_0, X) , in which case

$$\Lambda_n \rightsquigarrow (X - X_0)^T I_{\theta} (X - X_0).$$

We'll see that this has a χ^2_{k-l} distribution, where $k = \dim(\Theta)$ and $l = \dim(\Theta_0)$.

Write Λ_n in terms of local likelihood ratios, for the true θ in Θ_0 :

$$\begin{split} \Lambda_n &= 2\log \frac{\sup_{\theta \in \Theta} \prod_{i=1}^n p_{\theta}(X_i)}{\sup_{\theta \in \Theta_0} \prod_{i=1}^n p_{\theta}(X_i)} \\ &= 2\sup_{h \in H_n} \log \frac{\prod_{i=1}^n p_{\theta+h/\sqrt{n}}(X_i)}{\prod_{i=1}^n p_{\theta}(X_i)} \\ &\quad -2\sup_{h \in H_{n,0}} \log \frac{\prod_{i=1}^n p_{\theta+h/\sqrt{n}}(X_i)}{\prod_{i=1}^n p_{\theta}(X_i)}, \end{split}$$
where $H_n &= \sqrt{n} \left(\Theta - \theta\right),$
 $H_{n,0} &= \sqrt{n} \left(\Theta_0 - \theta\right)$

are the local parameter spaces.

Theorem: Suppose (1) $(P_{\theta} : \theta \in \Theta)$ is QMD at $\theta \in \Theta_0$ with I_{θ} nonsingular, (2) for a function $\dot{\ell}$ with $P_{\theta}\dot{\ell}^2 < \infty$, for every θ_1, θ_2 in a neighborhood of θ ,

$$\left|\log p_{\theta_1}(x) - \log p_{\theta_2}(x)\right| \le \dot{\ell}(x) \left\|\theta_1 - \theta_2\right\|,$$

(3) the estimators $\hat{\theta}_{n,0}$ and $\hat{\theta}_n$ are consistent under P_{θ} , and (4) the sets $H_{n,0}$ and H_n converge to sets H_0 and H. Then

$$\Lambda_n \stackrel{\theta+h/\sqrt{n}}{\leadsto} \left\| I_{\theta}^{1/2} X - I_{\theta}^{1/2} H_0 \right\|^2 - \left\| I_{\theta}^{1/2} X - I_{\theta}^{1/2} H \right\|^2$$

where $X \sim N(h, I_{\theta}^{-1})$.

Here, we say that a sequence H_n of sets converges to a set H if

$$H = \left\{ \lim_{i \to \infty} h_{n_i} : h_{n_i} \text{ convergent, } h_n \in H_n \right\}.$$

Also, we write

$$\left\| I_{\theta}^{1/2} X - I_{\theta}^{1/2} H_0 \right\|^2 = \inf_{h \in H_0} \left\| I_{\theta}^{1/2} X - I_{\theta}^{1/2} h \right\|^2$$

Idea of Proof:

 Λ_n is the difference of two rescaled maximum likelihood ratio processes,

$$2 \sup_{h \in H_n} \log \frac{\prod_{i=1}^n p_{\theta+h/\sqrt{n}}(X_i)}{\prod_{i=1}^n p_{\theta}(X_i)} - 2 \sup_{h \in H_{n,0}} \log \frac{\prod_{i=1}^n p_{\theta+h/\sqrt{n}}(X_i)}{\prod_{i=1}^n p_{\theta}(X_i)}.$$

Just as we saw for maximum likelihood, this statistic for the local experiment converges to the corresponding asymptotic statistic in the normal experiment,

$$2\sup_{h\in H} \log \frac{dN(h, I_{\theta}^{-1})}{dN(0, I_{\theta}^{-1})}(X) - 2\sup_{h\in H_0} \log \frac{dN(h, I_{\theta}^{-1})}{dN(0, I_{\theta}^{-1})}(X).$$

where $X \sim N(0, I_{\theta}^{-1})$. (And under $\theta + g/\sqrt{n}$, Λ_n converges in distribution to the same thing, with $X \sim N(g, I_{\theta}^{-1})$.)

But this is

$$2 \sup_{h \in H} \log \frac{dN(h, I_{\theta}^{-1})}{dN(0, I_{\theta}^{-1})} (X) - 2 \sup_{h \in H_{0}} \log \frac{dN(h, I_{\theta}^{-1})}{dN(0, I_{\theta}^{-1})} (X)$$

=
$$\sup_{h \in H} -(X - h)^{T} I_{\theta} (X - h) - \sup_{h \in H_{0}} -(X - h)^{T} I_{\theta} (X - h)$$

=
$$\inf_{h \in H_{0}} (X - h)^{T} I_{\theta} (X - h) - \inf_{h \in H} (X - h)^{T} I_{\theta} (X - h)$$

=
$$\inf_{h \in H_{0}} \left\| I_{\theta}^{1/2} (X - h) \right\|^{2} - \inf_{h \in H} \left\| I_{\theta}^{1/2} (X - h) \right\|^{2}$$

=
$$\left\| I_{\theta}^{1/2} X - I_{\theta}^{1/2} H_{0} \right\|^{2} - \left\| I_{\theta}^{1/2} X - I_{\theta}^{1/2} H \right\|^{2}.$$

Theorem: If $\theta \in \Theta_0$ is an interior point of Θ , then H_n converges to $H = \mathbb{R}^k$, and

$$\left\| I_{\theta}^{1/2} X - I_{\theta}^{1/2} H \right\|^2 = 0.$$

If, in addition, H_0 is a linear subspace of dimension l, then

$$\Lambda_n \stackrel{\theta}{\rightsquigarrow} \left\| I_{\theta}^{1/2} X - I_{\theta}^{1/2} H_0 \right\|^2 \sim \chi_{k-l}^2,$$

where $X \sim N(0, I_{\theta}^{-1})$.

Proof:

Write $Z = I_{\theta}^{1/2} X \sim N(0, I_k)$. Write $Z = (Z_1, \dots, Z_k)$ in a basis where the first *l* basis vectors lie in H_0 . (And notice that, in this basis, it is still a standard normal.) Then the squared distance from Z to H_0 is

$$||Z - H_0||^2 = \sum_{i=l+1}^k Z_i^2 \sim \chi_{k-l}^2.$$

Likelihood ratio tests: Examples

Example:

Suppose $\theta = (\mu, \sigma) \in \mathbb{R} \times \mathbb{R}^+$ and

$$p_{\theta} = \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right),$$

where f is a fixed density on \mathbb{R} .

Consider $H_0: \mu = 0$ versus $H_1: \mu \neq 0$. Fix $\theta = (0, \sigma)$.

$$\Theta_0 = \{0\} \times (0, \infty),$$

$$H_{n,0} = \sqrt{n}(\Theta_0 - \theta) = \{0\} \times (-\sqrt{n}\sigma, \infty) \to \{0\} \times \mathbb{R} = H_0.$$

So dim $(H_0) = 1$, dim(H) = 2. For suitably regular f, the likelihood ratio statistic is asymptotically χ_1^2 . [PICTURE]

Likelihood ratio tests: Examples

Consider $H_0: \mu \leq 0$ versus $H_1: \mu > 0$. Fix $\theta = (\mu, \sigma)$ with $\mu < 0$.

$$\Theta_0 = (-\infty, 0] \times (0, \infty),$$
$$H_{n,0} = \sqrt{n}(\Theta_0 - \theta) \to \mathbb{R} \times \mathbb{R} = H_0.$$

So $\dim(H_0) = 2 = \dim(H)$. For suitably regular f, the likelihood ratio statistic is asymptotically 0.

Likelihood ratio tests: Examples

Consider $H_0: \mu \leq 0$ versus $H_1: \mu > 0$. Fix $\theta = (0, \sigma)$.

$$\Theta_0 = (-\infty, 0] \times (0, \infty),$$
$$H_{n,0} = \sqrt{n}(\Theta_0 - \theta) \to (-\infty, 0] \times \mathbb{R} = H_0.$$

The weak limit is

$$\left\| Z - I_{\theta}^{1/2} H_0 \right\|^2$$

Notice that $I_{\theta}^{1/2}H_0$ is a half-space. [PICTURE] So this asymptotic distribution is the distribution of $(Z_1 \vee 0)^2$, where $Z_1 \sim N(0, 1)$. Because $\Pr((Z_1 \vee 0)^2 > c) = (1/2) \Pr(Z_1^2 > c)$, we can set the critical value as the upper 2α -quantile of a χ_1^2 variable.

If $\theta \in \Theta_0$ is an interior point of Θ , we have seen that

$$\Lambda_n \stackrel{\theta+h/\sqrt{n}}{\leadsto} \left\| I_{\theta}^{1/2} X - I_{\theta}^{1/2} H_0 \right\|^2,$$

where $X \sim N(h, I_{\theta}^{-1})$.

If H_0 is a linear subspace of dimension l, then under the null (h = 0), this is χ^2_{k-l} .

Setting the critical value $\chi^2_{k-l,\alpha}$, we have

$$\pi_n \left(\theta + \frac{h}{\sqrt{n}} \right) = P_{\theta+h/\sqrt{n}} \left(\Lambda_n > \chi_{k-l,\alpha}^2 \right)$$
$$\rightarrow P_{N(h,I_{\theta}^{-1})} \left(\left\| I_{\theta}^{1/2} X - I_{\theta}^{1/2} H_0 \right\|^2 > \chi_{k-l,\alpha}^2 \right)$$
$$= P_{N(0,I)} \left(\left\| X - I_{\theta}^{1/2} (-h + H_0) \right\|^2 > \chi_{k-l,\alpha}^2 \right)$$
$$= P \left(\chi_{k-l}^2 \left(\left\| I_{\theta}^{1/2} (h - H_0) \right\| \right) > \chi_{k-l,\alpha}^2 \right),$$

where $\chi^2_{k-l}(\delta)$ is a random variable with a noncentral chi-squared distribution with noncentrality parameter δ ...

That is, $\chi^2_{k-l}(\delta)$ has the distribution of the squared distance between a standard normal in \mathbb{R}^k and an affine subspace of dimension l that is distance δ from the origin.

$$P\left(\chi_{k-l}^{2}\left(\left\|I_{\theta}^{1/2}(h-H_{0})\right\|\right) > \chi_{k-l,\alpha}^{2}\right)$$

is an increasing function of $\left\|I_{\theta}^{1/2}(h-H_0)\right\|$, and hence of $\|h\|$.

First, think of $H_0 = \{0\}$:

$$\left\|I_{\theta}^{1/2}(h-H_0)\right\| = \sqrt{h^T I_{\theta} h}.$$

Decomposing I_{θ} into outer products of its eigenvectors, we have

$$h^T I_{\theta} h = \sum_{i=1}^k \lambda_i (e_i^T h)^2.$$

So we get highest power in the directions that align with eigenvectors e_i that have largest eigenvalues λ_i . If the log likelihood is twice differentiable, these are the directions with a large second derivative: the variance of the score function is large in these directions.

And if H_0 is a subspace, replace h here with the difference between h and its projection on H_0 , which is in the space orthogonal to H_0 .