
Theoretical Statistics. Lecture 26.
Peter Bartlett

1. Likelihood ratio tests [vdv15].

(a) Taylor series.

(b) Λn
θ∈Θ0

 χ2
k−l.

(c) Asymptotic power function.
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Recall: Likelihood ratio tests

Suppose we observeX1, . . . , Xn, with densitypθ,

H0 : θ ∈ Θ0 versusH1 : θ ∈ Θ1.

NB: composite hypotheses.

Define

Λn = 2 log
supθ∈Θ0∪Θ1

∏n
i=1 pθ(Xi)

supθ∈Θ0

∏n
i=1 pθ(Xi)

= 2
n∑

i=1

(

ℓθ̂n(Xi)− ℓθ̂n,0
(Xi)

)

,

whereθ̂n is the maximum likelihood estimator forθ overΘ = Θ0 ∪Θ1,

andθ̂n,0 is the maximum likelihood estimator overΘ0.
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Likelihood ratio tests

Notice that, for a sufficient statisticT , pθ(x) depends onx only through

T (x):

pθ(x) = h(x)fθ(T (x)),

so

Λn = 2 log
supθ∈Θ1

∏n
i=1 h(Xi)fθ(T (Xi))

supθ∈Θ0

∏n
i=1 h(Xi)fθ(T (Xi))

= 2 log
supθ∈Θ1

∏n
i=1 fθ(T (Xi))

supθ∈Θ0

∏n
i=1 fθ(T (Xi))

,

henceΛn depends only on aminimal sufficient statistic.
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Likelihood ratio tests

We’ll focus on cases whereΘ = Θ0 ∪Θ1 is a subset ofRk, and whereΘ

andΘ0 are locally linear spaces. Then underH0, we’ll see thatΛn is

asymptotically chi-square distributed withm degrees of freedom, where

m = dim(Θ)− dim(Θ0). So we can get a test that is asymptotically of

levelα by comparingΛn to the upperα-quantile of a chi-square

distribution.
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Likelihood ratio tests: Taylor series

UnderPθ, whereθ ∈ Θ0 is in the interior ofΘ,

Λn = 2

n∑

i=1

(

ℓθ̂n(Xi)− ℓθ̂n,0
(Xi)

)

= −2
n∑

i=1

(

ℓθ̂n,0
(Xi)− ℓθ̂n(Xi)

)

= −2
(

θ̂n,0 − θ̂n

)T n∑

i=1

ℓ̇θ̂n(Xi)

︸ ︷︷ ︸

−
(

θ̂n,0 − θ̂n

)T n∑

i=1

ℓ̈θ̃n(Xi)
(

θ̂n,0 − θ̂n

)

,

whereθ̃n is between̂θn andθ̂n,0, and we have assumed that, for allx,

θ 7→ ℓθ(x) is twice continuously differentiable.
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Likelihood ratio tests: Taylor series

Λn = −
√
n
(

θ̂n,0 − θ̂n

)T 1

n

n∑

i=1

ℓ̈θ̃n(Xi)
√
n
(

θ̂n,0 − θ̂n

)

+ oPθ
(1),

becausêθn maximizesPnℓθ, and asymptotically this is in the interior ofΘ,
soPnℓ̇θ̂n = 0.

Λn =
√
n
(

θ̂n,0 − θ̂n

)T

Iθ
√
n
(

θ̂n,0 − θ̂n

)

+ oPθ
(1),

where we have assumed that the sequence
√
n
(

θ̂n,0 − θ̂n

)

is uniformly

tight, and that
1

n

n∑

i=1

ℓ̈θ̃n(Xi) = −Iθ + oPθ
(1).
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Likelihood ratio tests: Taylor series

(Here,θ ∈ Θ0, that is, under the null, so we haveθ̃n
P→ θ.)

Thus,

Λn =
√
n
(

θ̂n,0 − θ̂n

)T

Iθ
√
n
(

θ̂n,0 − θ̂n

)

+ oPθ
(1)

is a quadratic form defining a squared distance betweenθ̂n,0 andθ̂n.
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Likelihood ratio tests: Simple null

SupposeΘ0 = {θ0} andθ = θ0.

Λn =
√
n
(

θ̂n − θ0

)T

Iθ
√
n
(

θ̂n − θ0

)

+ oPθ
(1).

Under general conditions (we saw them for maximum likelihood

estimators),
√
n
(

θ̂n − θ0

)

 X,

whereX ∼ N
(
0, I−1

θ

)
, so

Λn  XT IθX = ZT I
−1/2
θ IθI

−1/2
θ Z = ZTZ,

whereZ = I
1/2
θ X ∼ N(0, Ik). Thus,Λn  χ2

k.
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Recall: Maximum likelihood

Theorem: Suppose

1. (Pθ : θ ∈ Θ) is QMD atθ with nonsingular Fisher informationIθ,

2. for everyx, θ 7→ log pθ(x) is Lipschitz, and

3. the maximum likelihood estimator̂θn is consistent.

Then √
n(θ̂n − θ)

θ
 N(0, I−1

θ ).
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Likelihood ratio tests: Composite null

What ifΘ0 is a linear subspace (of dimension more than 0)?

We might expect
√
n(θ̂n,0 − θ, θ̂n − θ) to converge jointly to a normal

vector(X0, X), in which case

Λn  (X −X0)
T Iθ(X −X0).

We’ll see that this has aχ2
k−l distribution, wherek = dim(Θ) and

l = dim(Θ0).
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Likelihood ratio tests: Composite null

WriteΛn in terms of local likelihood ratios, for the trueθ in Θ0:

Λn = 2 log
supθ∈Θ

∏n
i=1 pθ(Xi)

supθ∈Θ0

∏n
i=1 pθ(Xi)

= 2 sup
h∈Hn

log

∏n
i=1 pθ+h/

√
n(Xi)

∏n
i=1 pθ(Xi)

− 2 sup
h∈Hn,0

log

∏n
i=1 pθ+h/

√
n(Xi)

∏n
i=1 pθ(Xi)

,

where Hn =
√
n (Θ− θ) ,

Hn,0 =
√
n (Θ0 − θ)

are thelocal parameter spaces.
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Likelihood ratio tests: Composite null

Theorem: Suppose (1)(Pθ : θ ∈ Θ) is QMD at θ ∈ Θ0 with Iθ non-

singular, (2) for a functioṅℓ with Pθ ℓ̇
2 < ∞, for everyθ1, θ2 in a neigh-

borhood ofθ,

|log pθ1(x)− log pθ2(x)| ≤ ℓ̇(x) ‖θ1 − θ2‖ ,

(3) the estimatorŝθn,0 andθ̂n are consistent underPθ, and (4) the setsHn,0

andHn converge to setsH0 andH. Then

Λn
θ+h/

√
n

 

∥
∥
∥I

1/2
θ X − I

1/2
θ H0

∥
∥
∥

2

−
∥
∥
∥I

1/2
θ X − I

1/2
θ H

∥
∥
∥

2

.

whereX ∼ N(h, I−1
θ ).
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Likelihood ratio tests: Composite null

Here, we say that a sequenceHn of sets converges to a setH if

H =
{

lim
i→∞

hni
: hni

convergent,hn ∈ Hn

}

.

Also, we write
∥
∥
∥I

1/2
θ X − I

1/2
θ H0

∥
∥
∥

2

= inf
h∈H0

∥
∥
∥I

1/2
θ X − I

1/2
θ h

∥
∥
∥

2

.
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Likelihood ratio tests: Composite null

Idea of Proof:
Λn is the difference of two rescaled maximum likelihood ratio processes,

2 sup
h∈Hn

log

∏n
i=1 pθ+h/

√
n(Xi)

∏n
i=1 pθ(Xi)

− 2 sup
h∈Hn,0

log

∏n
i=1 pθ+h/

√
n(Xi)

∏n
i=1 pθ(Xi)

.

Just as we saw for maximum likelihood, this statistic for thelocal
experiment converges to the corresponding asymptotic statistic in the
normal experiment,

2 sup
h∈H

log
dN(h, I−1

θ )

dN(0, I−1
θ )

(X)− 2 sup
h∈H0

log
dN(h, I−1

θ )

dN(0, I−1
θ )

(X).

whereX ∼ N(0, I−1
θ ). (And underθ+ g/

√
n, Λn converges in distribution

to the same thing, withX ∼ N(g, I−1
θ ).)
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Likelihood ratio tests: Composite null

But this is

2 sup
h∈H

log
dN(h, I−1

θ )

dN(0, I−1
θ )

(X)− 2 sup
h∈H0

log
dN(h, I−1

θ )

dN(0, I−1
θ )

(X)

= sup
h∈H

−(X − h)T Iθ(X − h)− sup
h∈H0

−(X − h)T Iθ(X − h)

= inf
h∈H0

(X − h)T Iθ(X − h)− inf
h∈H

(X − h)T Iθ(X − h)

= inf
h∈H0

∥
∥
∥I

1/2
θ (X − h)

∥
∥
∥

2

− inf
h∈H

∥
∥
∥I

1/2
θ (X − h)

∥
∥
∥

2

=
∥
∥
∥I

1/2
θ X − I

1/2
θ H0

∥
∥
∥

2

−
∥
∥
∥I

1/2
θ X − I

1/2
θ H

∥
∥
∥

2

.
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Likelihood ratio tests: Composite null

Theorem: If θ ∈ Θ0 is an interior point ofΘ, thenHn converges to

H = R
k, and

∥
∥
∥I

1/2
θ X − I

1/2
θ H

∥
∥
∥

2

= 0.

If, in addition,H0 is a linear subspace of dimensionl, then

Λn
θ
 

∥
∥
∥I

1/2
θ X − I

1/2
θ H0

∥
∥
∥

2

∼ χ2
k−l,

whereX ∼ N(0, I−1
θ ).
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Likelihood ratio tests: Composite null

Proof:
WriteZ = I

1/2
θ X ∼ N(0, Ik). WriteZ = (Z1, . . . , Zk) in a basis where

the firstl basis vectors lie inH0. (And notice that, in this basis, it is still a

standard normal.) Then the squared distance fromZ toH0 is

‖Z −H0‖2 =
k∑

i=l+1

Z2
i ∼ χ2

k−l.
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Likelihood ratio tests: Examples

Example:
Supposeθ = (µ, σ) ∈ R× R

+ and

pθ =
1

σ
f

(
x− µ

σ

)

,

wheref is a fixed density onR.

ConsiderH0 : µ = 0 versusH1 : µ 6= 0. Fix θ = (0, σ).

Θ0 = {0} × (0,∞),

Hn,0 =
√
n(Θ0 − θ) = {0} × (−

√
nσ,∞) → {0} × R = H0.

Sodim(H0) = 1, dim(H) = 2. For suitably regularf , the likelihood ratio

statistic is asymptoticallyχ2
1. [PICTURE]
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Likelihood ratio tests: Examples

ConsiderH0 : µ ≤ 0 versusH1 : µ > 0. Fix θ = (µ, σ) with µ < 0.

Θ0 = (−∞, 0]× (0,∞),

Hn,0 =
√
n(Θ0 − θ) → R× R = H0.

Sodim(H0) = 2 = dim(H). For suitably regularf , the likelihood ratio

statistic is asymptotically0.
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Likelihood ratio tests: Examples

ConsiderH0 : µ ≤ 0 versusH1 : µ > 0. Fix θ = (0, σ).

Θ0 = (−∞, 0]× (0,∞),

Hn,0 =
√
n(Θ0 − θ) → (−∞, 0]× R = H0.

The weak limit is
∥
∥
∥Z − I

1/2
θ H0

∥
∥
∥

2

.

Notice thatI1/2θ H0 is a half-space. [PICTURE] So this asymptotic

distribution is the distribution of(Z1 ∨ 0)2, whereZ1 ∼ N(0, 1). Because

Pr((Z1 ∨ 0)2 > c) = (1/2) Pr(Z2
1 > c), we can set the critical value as the

upper2α-quantile of aχ2
1 variable.
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Likelihood ratio tests: Asymptotic power function

If θ ∈ Θ0 is an interior point ofΘ, we have seen that

Λn
θ+h/

√
n

 

∥
∥
∥I

1/2
θ X − I

1/2
θ H0

∥
∥
∥

2

,

whereX ∼ N(h, I−1
θ ).

If H0 is a linear subspace of dimensionl, then under the null (h = 0), this is

χ2
k−l.
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Likelihood ratio tests: Asymptotic power function

Setting the critical valueχ2
k−l,α, we have

πn

(

θ +
h√
n

)

= Pθ+h/
√
n

(
Λn > χ2

k−l,α

)

→ PN(h,I−1

θ
)

(∥
∥
∥I

1/2
θ X − I

1/2
θ H0

∥
∥
∥

2

> χ2
k−l,α

)

= PN(0,I)

(∥
∥
∥X − I

1/2
θ (−h+H0)

∥
∥
∥

2

> χ2
k−l,α

)

= P
(

χ2
k−l

(∥
∥
∥I

1/2
θ (h−H0)

∥
∥
∥

)

> χ2
k−l,α

)

,

whereχ2
k−l(δ) is a random variable with a noncentral chi-squared

distribution with noncentrality parameterδ...
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Likelihood ratio tests: Asymptotic power function

That is,χ2
k−l(δ) has the distribution of the squared distance between a

standard normal inRk and an affine subspace of dimensionl that is distance

δ from the origin.

P
(

χ2
k−l

(∥
∥
∥I

1/2
θ (h−H0)

∥
∥
∥

)

> χ2
k−l,α

)

is an increasing function of
∥
∥
∥I

1/2
θ (h−H0)

∥
∥
∥, and hence of‖h‖.
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Likelihood ratio tests: Asymptotic power function

First, think ofH0 = {0}:
∥
∥
∥I

1/2
θ (h−H0)

∥
∥
∥ =

√

hT Iθh.

DecomposingIθ into outer products of its eigenvectors, we have

hT Iθh =

k∑

i=1

λi(e
T
i h)

2.

So we get highest power in the directions that align with eigenvectorsei that
have largest eigenvaluesλi. If the log likelihood is twice differentiable,
these are the directions with a large second derivative: thevariance of the
score function is large in these directions.

And if H0 is a subspace, replaceh here with the difference betweenh and
its projection onH0, which is in the space orthogonal toH0.
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