Theoretical Statistics. Lecture 4.
Peter Bartlett

1. Concentration inequalities.




‘ Outline of today’s Iecture'

We have been looking deviation inequalities i.e., bounds on tail
probabilities likeP(X,, > t) for some statisticX,,.

1. Using moment generating function bounds, for sums ofpeddent
I.V.S:
Chernoff; Hoeffding; sub-Gaussian, sub-exponential oamdariables;
Bernstein.

Today: Johnson-Lindenstrauss.

. Martingale methods:
Hoeffding-Azuma, bounded differences.




Review. Chernoff techniquﬂ

Theorem: Fort > 0:

P(X —EX >1t) < inf e MMy, (N).
>

Theorem: [Hoeffding’s Inequality] For a random variable € [a, b] with
EX = pand) € R,

A2 (b —a)?
2 .

In MX—M(A) S




Review. Sub-Gaussian, Sub-Exponential Random Variabl

Definition: X is sub-Gaussianwith parameter? if, for all A € R,

\2o?

IHMX_M()\) S 9

Definition: X is sub-exponentialwith parametergo?, ) if, for all |\| <
1/b,




‘ Review. Sub-Exponential Random Variablej

Theorem: For X sub-exponential with parametdis?, b),

ex ) if0<t<o2/b,
P(X>pu+t) < () MOS0

20 252
exp (— 57 if t > o2 /b.

e For independenKi, sub-exponential with parameteks?, b; ), the sum
X = X1+ -+ X, Is sub-exponential with parameters

(ZZ o7, max; b )

o Example:X ~ x? is sub-exponential with parameteds 4).




Sub-Exponential Random Variables: Examplﬂ

Theorem: [Johnson-Lindenstrauss] Fet pointsz, ..., z,, from R,

there is a projectiorF : RY — R” that preserves distances in the sens
that, for allz;, z;,

(1 =)z — 23 < |1F (i) — F(z;)13 < (1+0) ||z — 253,

provided that, > (16/5%) log m.

That is, we can embed these point&Rith and approximately maintain their
distance relationships, provided thats not too small. Notice that is

Independent of the ambient dimensidand depends only logarithmically
on the number of pointsa.




\ Johnson-Lindenstrausj

Applications: dimension reduction to simplify computatighearest

neighbor, clustering, image processing, text processing)
Analysis of machine learning methods: separable by a la@gimin high
dimensions implies it’s really a low-dimensional problefterall.




‘Johnson-Lindenstrauss Embedding: Prool

We use a random projection:

F(z) = \/LﬁYm,

whereY € R"*? has independen¥ (0, 1) entries.

LetY; denote theth row, forl < i <n. Ithas aN (0, I) distribution, so
Y x/|z||2 ~ N(0,1). Thus,

n

=3 (¥ /|l2l)” ~ X




‘Johnson-Lindenstrauss Embedding: Prool

SinceZ ~ x? is the sum of: independent sub-exponentidl, 4) random
variables, it is sub-exponenti@dn, 4). And we have that fob < ¢t < n,

P(|Z -1 >t) < 2exp(—t*/(8n)).

Hence, for) < § < 1,

Y 2
P( Yl 1‘ > 5) < 2exp(—né?/8)

n|xz||3

&P (”F(w)”g Z1—5.1+ 5]) < 2exp(—nd?/8).

(Edlp




‘Johnson-Lindenstrauss Embedding: Prool

Applying this to the("}) distinct pairsz = z; — x;, and using the union
bound gives

| F (i — )15
s — ;13

P (32' £ j st

21— 51+ 5]) < z(?) exp(—nd2/8).

Thus, forn > 16/6% log(m), this probability is strictly less thah, so there
exists a suitable mapping.

In fact, we can choose a random projection in this way andrerikat the
probability that it does not satisfy the approximate isagnptoperty is no
more thare for n > 16/6° log(m/e).
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Concentration Bounds for Martingale Difference Sequence

Next, we're going to consider concentration of martingafeecence
sequences. The application is to understand how tails of
f(Xq,...,.X,) —Ef(Xy,...,X,) behave, for some functiofi.

[e.g., iIn the homework, we have thais some measure of the performance
of a kernel density estimator.] If we write

F(X1,.. . X)) —Bf(X,.... X,)

— ZE[f(Xl, X)X LX) - EBIA(X LX) X, X,
1=1

then we have represented this deviation amgingale difference sequence.
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Martingales I

Definition: A sequencé’,, of random variables adapted to a filtratian is
amartingale if, for all n,

E|Y,| < oo

F,, 1s afiltration means these-fields are nestedr,, C F,,11.

Y,, iIs adapted to F,, means that eachi, is measurable with respect i,.

e.g.F, =o(Y,...,Y,), theo-field generated by the first variables.
Then we say,, IS a martingale sequence.

e.g.F, =o(X1,...,X,). ThenY,, is a martingale sequence wit,.
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Martingale Difference Sequencel

Definition: A sequenceD,, of random variables adapted to a filtratidi
Is amartingale difference sequencéd, for all n,

E|D,| < o
E[D,.1|F,] =0.

eg.,.D,=Y,—Y, 1.

E[Dn+1|~’rn] E[Yn+1|*’rn] - E[Yn‘fn]

(becausd’,, is measurable wiF,,, and because of the martingale propertyj.
HenceY, — Yo => . | D,.
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Martingale Difference Sequences: the Doob constructio'

Define X =(X1,....,X,),
X = (X1,...,X;),
Yo = Ef(X),
Y; = E[f(X)|X]].

Then F(X) = Ef(X) = Yy —

whereD; =Y, — Y;_1. Also, Y] is a martingale w.r.tX,;, and henced); is a
martingale difference sequence. Indeed (bec#use= EE[ X |Y]),

E[Y;1 | Xi] = E [E[f(X)|X{T| Xi] = E[f(X)|Xi] = V.
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Martingale Difference Sequences: another examplr

[An aside:] Consider two densitigsandg, with g absolutely continuous
w.r.t. f. SupposeX,, are drawn i.i.d. fromf, andY’, is the likelihood ratio,

y — ﬁ g(Xz")

f(Xs)

ThenY,, is a martingale w.r.tX,,. Indeed,
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Concentration Bounds for Martingale Difference Sequence

Theorem: Consider a martingale difference sequeiize (adapted to i
filtration F,,) that satisfies

for [\ < 1/b, a.s.E[exp(AD,,)| Fn_1] < exp(A\02=/2).

Then) " | D, is sub-exponential, witko?,b) = (>, 07, max; b;).

PIY D>t < 2exp(—t2/(202)) if0<t<o?/b
i o= B 2exp(—t/(2b)) if t > 02/[).
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Concentration Bounds for Martingale Difference Sequence

Proof:

E exp <>‘ZD’i> = E |exp <)\ZD> lexp(AD )|~Fn1]]
<E |exp <)\ZD> exp(\2o? /2),

provided|\| < b. Iterating shows tha} . D; is sub-exponential.

17



Concentration Bounds for Martingale Difference Sequence

Theorem: Consider a martingale difference sequentewith |D;| < B;

22
P(ZDZ- >t> < 2exp (_Z BQ).

a.s. Then

Proof:
It suffices to show that

E [exp(AD;)| Fi—1] < exp(A\° B} /2)

But|D;| < B, a.s., so the conditioned variall®;|F; 1) < B; a.s., S0 itis
sub-Gaussian with parametet = B?.
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‘ Bounded Differences Inequalitz/l

Theorem: Supposef : X" — R satisfies the followindoounded differ-
ences inequality
forall zq,...,x,, 2, € X,

|f(5131, .. ,ZEn) — f(ZCl, .. ,ZCi_l,ZE;-,ZIZZ'_Fl, .. ,CCn)| S Bz

P(If(X) — BA(X)| > 1) < 2exp (— 22?32) |
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‘ Bounded Differences Inequalitz/l

Proof: Use the Doob construction.

Y; = B[f(X)|X]],
D; =Y, =Y, 1,

1=1

Di| = |Y; = Yioa| = |E[f( \X] E[f (X)X
= [E [B[f(X)|X{] - f(X)| X1 ]| < Bs.
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Examples: Rademacher Average'

For a setd ¢ R"™, consider

7 = sup(e, a),
acA

wheree = (¢4, ...€,) IS a sequence of i.i.d. uniforgi-1} random
variables. Define thRademacher complexityof A asR(A) = EZ. [This
IS @ measure of the size df.] The bounded differences approach implies
that Z is concentrated arounil( A):

Theorem: Z is sub-Gaussian with paramete} . sup,c 4 a:.

Proof:
Write Z = f(eq, ..., €,), and notice that a change gfcan lead to a
change inZ of no more than3,, = sup,c 4 2|a;|. The result follows.

21



Examples: Empirical Processei

For a clasg of functionsf : X — [0, 1], suppose thak, ..., X,, X are
1.l.d. on X, and consider

1
Z =sup |Ef(X) - — ' Pf—P.f
feF n - ———

emp proc

F

If Z converges t®, this is called ainiform law of large numbers. Here, we
show that” is concentrated aboiit”:

Theorem: Z is sub-Gaussian with parametefn.

Proof:
Write Z = ¢g(X4, ..., X,,), and notice that a change &f, can lead to a
change inZ of no more thamB,, = 1/n. The result follows.
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