Theoretical Statistics. Lecture 4. Peter Bartlett

1. Concentration inequalities.

Outline of today's lecture

We have been looking at **deviation inequalities**, i.e., bounds on tail probabilities like $P(X_n \geq t)$ for some statistic X_n .

1. Using moment generating function bounds, for sums of independent r.v.s:

Chernoff; Hoeffding; sub-Gaussian, sub-exponential random variables; Bernstein.

Today: Johnson-Lindenstrauss.

2. Martingale methods:

Hoeffding-Azuma, bounded differences.

Review. Chernoff technique

Theorem: For $t > 0$:

$$
P(X - \mathbf{E}X \ge t) \le \inf_{\lambda > 0} e^{-\lambda t} M_{X - \mu}(\lambda).
$$

Theorem: [Hoeffding's Inequality] For a random variable $X \in [a, b]$ with $\mathbf{E} X = \mu$ and $\lambda \in \mathbb{R}$,

$$
\ln M_{X-\mu}(\lambda) \le \frac{\lambda^2(b-a)^2}{8}.
$$

Review. Sub-Gaussian, Sub-Exponential Random Variables	
Definition: X is sub-Gaussian with parameter σ^2 if, for all $\lambda \in \mathbb{R}$,	
$\ln M_{X-\mu}(\lambda) \leq \frac{\lambda^2 \sigma^2}{2}$.	
Definition: X is sub-exponential with parameters (σ^2, b) if, for all $ \lambda < 1/b$,	
$1/b$,	$\ln M_{X-\mu}(\lambda) \leq \frac{\lambda^2 \sigma^2}{2}$.

Review. Sub-Exponential Random Variables

Theorem: For X sub-exponential with parameters (σ^2, b) ,

$$
P(X \ge \mu + t) \le \begin{cases} \exp\left(-\frac{t^2}{2\sigma^2}\right) & \text{if } 0 \le t \le \sigma^2/b, \\ \exp\left(-\frac{t}{2b}\right) & \text{if } t > \sigma^2/b. \end{cases}
$$

- For independent X_i , sub-exponential with parameters (σ_i^2, b_i) , the sum $X = X_1 + \cdots + X_n$ is sub-exponential with parameters $\begin{split} \Lambda &= \Lambda \ \left(\sum_i \sigma_i^2 \right) \end{split}$ $i^2, \max_i b_i$). $\left.\rule{-2pt}{10pt}\right)$
- Example: $X \sim \chi_1^2$ is sub-exponential with parameters $(4, 4)$.

Sub-Exponential Random Variables: Example

Theorem: [Johnson-Lindenstrauss] For m points x_1, \ldots, x_m from \mathbb{R}^d , there is a projection $F: \mathbb{R}^d \to \mathbb{R}^n$ that preserves distances in the sense that, for all $x_i, x_j,$

$$
(1 - \delta) \|x_i - x_j\|_2^2 \le \|F(x_i) - F(x_j)\|_2^2 \le (1 + \delta) \|x_i - x_j\|_2^2,
$$

provided that $n>(16/\delta^2)\log m$.

That is, we can embed these points in \mathbb{R}^n and approximately maintain their distance relationships, provided that n is not too small. Notice that n is independent of the ambient dimension d , and depends only logarithmically on the number of points m .

Johnson-Lindenstrauss

Applications: dimension reduction to simplify computation (nearest neighbor, clustering, image processing, text processing). Analysis of machine learning methods: separable by ^a large margin in high dimensions implies it's really ^a low-dimensional problem after all.

Johnson-Lindenstrauss Embedding: Proof

We use ^a random projection:

$$
F(x) = \frac{1}{\sqrt{n}} Yx,
$$

where $Y \in \mathbb{R}^{n \times d}$ has independent $N(0, 1)$ entries.

Let Y_i denote the *i*th row, for $1 \leq i \leq n$. It has a $N(0, I)$ distribution, so $Y_i^Tx/\|x\|_2 \sim N(0,1).$ Thus,

$$
Z = \frac{\|Yx\|_2^2}{\|x\|_2^2} = \sum_{i=1}^n (Y_i^T x / \|x\|)^2 \sim \chi_n^2.
$$

Johnson-Lindenstrauss Embedding: Proof

Since $Z \sim \chi^2_n$ is the sum of *n* independent sub-exponential $(4, 4)$ random variables, it is sub-exponential $(4n,4)$. And we have that for $0 < t < n,$

$$
P(|Z - 1| \ge t) \le 2 \exp(-t^2/(8n)).
$$

Hence, for $0 < \delta < 1$, $\, P \,$ $\Big(\left| \frac{\|Yx\|_2^2}{n \|x\|_2^2} \right)$ $\overline{}$ $\overline{}$ $\overline{}$ 2 $n\|x\|_2^2$ 2 $-1\vert \geq \delta$ $\Big) \leq 2 \exp(-n\delta^2/8)$ $\overline{\mathbf{a}}$ $\overline{}$ $\overline{}$ $\left.\rule{0pt}{12pt}\right)$ $\Leftrightarrow P$ $\left($ $||F(x)||_2^2$ 2 $\|x\|_2^2$ 2 $\not\in [1-\delta, 1+\delta]$ $\leq 2 \exp(-n\delta^2/8).$ $\left.\rule{0pt}{12pt}\right)$

Johnson-Lindenstrauss Embedding: Proof

Applying this to the $\binom{m}{2}$ $\binom{m}{2}$ distinct pairs $x = x_i - x_j$, and using the union bound gives

$$
P\left(\exists i \neq j \text{ s.t. } \frac{\|F(x_i - x_j)\|_2^2}{\|x_i - x_j\|_2^2} \notin [1 - \delta, 1 + \delta] \right) \le 2 {m \choose 2} \exp(-n\delta^2/8).
$$

Thus, for $n > 16/\delta^2 \log(m)$, this probability is strictly less than 1, so there exists ^a suitable mapping.

In fact, we can choose ^a random projection in this way and ensure that the probability that it does not satisfy the approximate isometry property is no more than ϵ for $n > 16/\delta^2 \log(m/\epsilon)$.

Concentration Bounds for Martingale Difference Sequences

Next, we're going to consider concentration of martingale difference sequences. The application is to understand how tails of $f(X_1, \ldots, X_n) - \mathbf{E} f(X_1, \ldots, X_n)$ behave, for some function f.

[e.g., in the homework, we have that f is some measure of the performance of ^a kernel density estimator.] If we write

$$
f(X_1, ..., X_n) - \mathbf{E}f(X_1, ..., X_n)
$$

=
$$
\sum_{i=1}^n \mathbf{E}[f(X_1, ..., X_n) | X_1, ..., X_i] - \mathbf{E}[f(X_1, ..., X_n) | X_1, ..., X_{i-1}],
$$

then we have represented this deviation as ^a *martingale difference sequence*.

Martingales

Definition: A sequence Y_n of random variables adapted to a filtration \mathcal{F}_n is ^a **martingale** if, for all ⁿ,

> $\mathbf{E}|Y_n| < \infty$ $\mathbf{E}[Y_{n+1}|\mathcal{F}_n] = Y_n.$

 \mathcal{F}_n is a **filtration** means these σ -fields are nested: $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$.

 Y_n is **adapted to** \mathcal{F}_n means that each Y_n is measurable with respect to \mathcal{F}_n . e.g. $\mathcal{F}_n = \sigma(Y_1, \ldots, Y_n)$, the σ -field generated by the first *n* variables. Then we say Y_n is a martingale sequence.

e.g. $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$. Then Y_n is a martingale sequence wrt X_n .

Martingale Difference Sequences

Definition: A sequence D_n of random variables adapted to a filtration \mathcal{F}_n is ^a **martingale difference sequence** if, for all n,

> $\mathbf{E}|D_n| < \infty$ $\mathbf{E}[D_{n+1}|\mathcal{F}_n]=0.$

e.g., $D_n = Y_n - Y_{n-1}$.

$$
\mathbf{E}[D_{n+1}|\mathcal{F}_n] = \mathbf{E}[Y_{n+1}|\mathcal{F}_n] - \mathbf{E}[Y_n|\mathcal{F}_n]
$$

$$
= \mathbf{E}[Y_{n+1}|\mathcal{F}_n] - Y_n = 0
$$

(because Y_n is measurable wrt \mathcal{F}_n , and because of the martingale property). (because Y_n is measured Hence, $Y_n - Y_0 = \sum$ \overline{n} $\stackrel{\prime\iota}{_{i=1}}D_i.$

Martingale Difference Sequences: the Doob construction

Define $X=(X_1,\ldots,X_n),$ $X^i_1=(X_1,\ldots,X_i),$ $Y_0 = \mathbf{E} f(X),$ $Y_i = \mathbf{E}[f(X)|X_1^i$ $\left[\begin{smallmatrix} 2 \ 1 \end{smallmatrix}\right].$ Then $f(X) - Ef(X) = Y_n - Y_0 =$ $\sum^n D_i,$ $i-1$

where $D_i = Y_i - Y_{i-1}$. Also, Y_i is a martingale w.r.t. X_i , and hence D_i is a martingale difference sequence. Indeed (because $\mathbf{E} X = \mathbf{E} \mathbf{E}[X|Y],$

$$
\mathbf{E}[Y_{i+1}|X_1^i] = \mathbf{E}\left[\mathbf{E}[f(X)|X_1^{i+1}] | X_1^i\right] = \mathbf{E}[f(X)|X_1^i] = Y_i.
$$

Martingale Difference Sequences: another example

[An aside:] Consider two densities f and g , with g absolutely continuous w.r.t. f. Suppose X_n are drawn i.i.d. from f, and Y_n is the likelihood ratio,

$$
Y_n = \prod_{i=1}^n \frac{g(X_i)}{f(X_i)}.
$$

Then Y_n is a martingale w.r.t. X_n . Indeed,

$$
\mathbf{E}[Y_{n+1}|X_1^n] = \mathbf{E}\left[\prod_{i=1}^{n+1} \frac{g(X_i)}{f(X_i)} \middle| X_1^n\right] = \mathbf{E}\left[\frac{g(X_{n+1})}{f(X_{n+1})}\right] \prod_{i=1}^n \frac{g(X_i)}{f(X_i)}
$$

$$
= \prod_{i=1}^n \frac{g(X_i)}{f(X_i)} = Y_n,
$$

because $\mathbf{E}[g(X_{n+1})/f(X_{n+1})] = 1.$

Concentration Bounds for Martingale Difference Sequences

Theorem: Consider a martingale difference sequence D_n (adapted to a filtration \mathcal{F}_n) that satisfies

for
$$
|\lambda| \le 1/b_n
$$
 a.s., **E** $[\exp(\lambda D_n)|\mathcal{F}_{n-1}] \le \exp(\lambda^2 \sigma_n^2/2)$.

Then \sum \overline{n} $\sum_{i=1}^{n} D_i$ is sub-exponential, with $(\sigma^2, b) = (\sum_{i=1}^{n} D_i)$ \overline{n} $_{i=1}^{n}\,\sigma_{i}^{2}$ $_i^2, \max_i b_i).$

$$
P\left(\left|\sum_{i} D_{i}\right| \geq t\right) \leq \begin{cases} 2\exp(-t^{2}/(2\sigma^{2})) & \text{if } 0 \leq t \leq \sigma^{2}/b\\ 2\exp(-t/(2b)) & \text{if } t > \sigma^{2}/b. \end{cases}
$$

Concentration Bounds for Martingale Difference Sequences

Proof:

$$
\mathbf{E} \exp\left(\lambda \sum_{i} D_{i}\right) = \mathbf{E} \left[\exp\left(\lambda \sum_{i=1}^{n-1} D_{i}\right) \mathbf{E} \left[\exp(\lambda D_{n}) | \mathcal{F}_{n-1}\right] \right]
$$

$$
\leq \mathbf{E} \left[\exp\left(\lambda \sum_{i=1}^{n-1} D_{i}\right) \right] \exp(\lambda^{2} \sigma_{n}^{2}/2),
$$

provided $|\lambda| < b$. Iterating shows that $\sum_i D_i$ is sub-exponential.

Concentration Bounds for Martingale Difference Sequences Theorem: Consider a martingale difference sequence D_i with $|D_i| \leq B_i$ a.s. Then $\, P \,$ $\left(\left|\sum_{i}\right|$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\it i$ $|D_i|\geq t \mid \ \leq 2 \exp(i)$ $\overline{}$! $\left(\right)$ − $\frac{2t^2}{\sum_i B_i^2}$ $\it i$ $\left.\rule{0pt}{12pt}\right)$. Proof:

It suffices to show that

$$
\mathbf{E}\left[\left(\exp(\lambda D_i)\right)\mathcal{F}_{i-1}\right] \leq \exp(\lambda^2 B_i^2/2)
$$

But $|D_i| \leq B_i$ a.s., so the conditioned variable $(D_i | \mathcal{F}_{i-1}) \leq B_i$ a.s., so it is sub-Gaussian with parameter $\sigma_i^2 = B_i^2$ i .

Bounded Differences Inequality

Theorem: Suppose $f: \mathcal{X}^n \to \mathbb{R}$ satisfies the following **bounded differences inequality**:

for all $x_1,\ldots,x_n,x_i'\in\mathcal{X},$

$$
|f(x_1,...,x_n)-f(x_1,...,x_{i-1},x'_i,x_{i+1},...,x_n)| \leq B_i.
$$

Then

$$
P(|f(X) - \mathbf{E}f(X)| \ge t) \le 2 \exp\left(-\frac{2t^2}{\sum_i B_i^2}\right).
$$

Bounded Differences Inequality

Proof: Use the Doob construction.

$$
Y_i = \mathbf{E}[f(X)|X_1^i],
$$

\n
$$
D_i = Y_i - Y_{i-1},
$$

\n
$$
f(X) - \mathbf{E}f(X) = \sum_{i=1}^n D_i.
$$

Then

$$
|D_i| = |Y_i - Y_{i-1}| = |\mathbf{E}[f(X)|X_1^i] - \mathbf{E}[f(X)|X_1^{i-1}]|
$$

= $|\mathbf{E}[\mathbf{E}[f(X)|X_1^i] - f(X) | X_1^{i-1}]| \le B_i.$

Examples: Rademacher Averages

For a set $A\subset \mathbb{R}^n,$ consider

$$
Z = \sup_{a \in A} \langle \epsilon, a \rangle,
$$

where $\epsilon = (\epsilon_1, \dots \epsilon_n)$ is a sequence of i.i.d. uniform $\{\pm 1\}$ random variables. Define the Rademacher complexity of A as $R(A) = \mathbf{E} Z$. [This is ^a measure of the size of A.] The bounded differences approach implies that Z is concentrated around $R(A)$:

Theorem: Z is sub-Gaussian with parameter $4 \sum_i \sup_{a \in A} a_i^2$ i .

Proof:

Write $Z = f(\epsilon_1, \ldots, \epsilon_n)$, and notice that a change of ϵ_i can lead to a change in Z of no more than $B_n = \sup_{a \in A} 2|a_i|$. The result follows.

Examples: Empirical Processes

For a class F of functions $f: \mathcal{X} \to [0,1]$, suppose that X_1, \ldots, X_n, X are i.i.d. on X , and consider

$$
Z = \sup_{f \in F} \left| \mathbf{E}f(X) - \frac{1}{n} \sum_{i=1}^{n} f(X_i) \right| = \left\| \underbrace{Pf - P_nf}_{\text{emp proc}} \right\|_F
$$

.

If Z converges to 0, this is called ^a *uniform law of large numbers*. Here, we show that Z is concentrated about $EZ\colon$

Theorem: Z is sub-Gaussian with parameter $1/n$.

Proof:

Write $Z = g(X_1, \ldots, X_n)$, and notice that a change of X_i can lead to a change in Z of no more than $B_n = 1/n$. The result follows.