
Theoretical Statistics. Lecture 4.
Peter Bartlett

1. Concentration inequalities.
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Outline of today’s lecture

We have been looking atdeviation inequalities, i.e., bounds on tail

probabilities likeP (Xn ≥ t) for some statisticXn.

1. Using moment generating function bounds, for sums of independent

r.v.s:

Chernoff; Hoeffding; sub-Gaussian, sub-exponential random variables;

Bernstein.

Today: Johnson-Lindenstrauss.

2. Martingale methods:

Hoeffding-Azuma, bounded differences.
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Review. Chernoff technique

Theorem: For t > 0:

P (X −EX ≥ t) ≤ inf
λ>0

e−λtMX−µ(λ).

Theorem: [Hoeffding’s Inequality] For a random variableX ∈ [a, b] with

EX = µ andλ ∈ R,

lnMX−µ(λ) ≤
λ2(b− a)2

8
.
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Review. Sub-Gaussian, Sub-Exponential Random Variables

Definition: X is sub-Gaussianwith parameterσ2 if, for all λ ∈ R,

lnMX−µ(λ) ≤
λ2σ2

2
.

Definition: X is sub-exponentialwith parameters(σ2, b) if, for all |λ| <
1/b,

lnMX−µ(λ) ≤
λ2σ2

2
.
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Review. Sub-Exponential Random Variables

Theorem: ForX sub-exponential with parameters(σ2, b),

P (X ≥ µ+ t) ≤







exp
(

− t2

2σ2

)

if 0 ≤ t ≤ σ2/b,

exp
(
− t

2b

)
if t > σ2/b.

• For independentXi, sub-exponential with parameters(σ2
i , bi), the sum

X = X1 + · · ·+Xn is sub-exponential with parameters
(∑

i σ
2
i ,maxi bi

)
.

• Example:X ∼ χ2
1 is sub-exponential with parameters(4, 4).
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Sub-Exponential Random Variables: Example

Theorem: [Johnson-Lindenstrauss] Form pointsx1, . . . , xm from R
d,

there is a projectionF : Rd → R
n that preserves distances in the sense

that, for allxi, xj ,

(1− δ)‖xi − xj‖22 ≤ ‖F (xi)− F (xj)‖22 ≤ (1 + δ)‖xi − xj‖22,

provided thatn > (16/δ2) logm.

That is, we can embed these points inR
n and approximately maintain their

distance relationships, provided thatn is not too small. Notice thatn is

independent of the ambient dimensiond, and depends only logarithmically

on the number of pointsm.
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Johnson-Lindenstrauss

Applications: dimension reduction to simplify computation (nearest

neighbor, clustering, image processing, text processing).

Analysis of machine learning methods: separable by a large margin in high

dimensions implies it’s really a low-dimensional problem after all.
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Johnson-Lindenstrauss Embedding: Proof

We use a random projection:

F (x) =
1√
n
Y x,

whereY ∈ R
n×d has independentN(0, 1) entries.

Let Yi denote theith row, for1 ≤ i ≤ n. It has aN(0, I) distribution, so

Y T
i x/‖x‖2 ∼ N(0, 1). Thus,

Z =
‖Y x‖22
‖x‖22

=
n∑

i=1

(
Y T
i x/‖x‖

)2 ∼ χ2
n.
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Johnson-Lindenstrauss Embedding: Proof

SinceZ ∼ χ2
n is the sum ofn independent sub-exponential(4, 4) random

variables, it is sub-exponential(4n, 4). And we have that for0 < t < n,

P (|Z − 1| ≥ t) ≤ 2 exp(−t2/(8n)).

Hence, for0 < δ < 1,

P

(∣
∣
∣
∣

‖Y x‖22
n‖x‖22

− 1

∣
∣
∣
∣
≥ δ

)

≤ 2 exp(−nδ2/8)

⇔P

(‖F (x)‖22
‖x‖22

6∈ [1− δ, 1 + δ]

)

≤ 2 exp(−nδ2/8).
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Johnson-Lindenstrauss Embedding: Proof

Applying this to the
(
m
2

)
distinct pairsx = xi − xj , and using the union

bound gives

P

(

∃i 6= j s.t.
‖F (xi − xj)‖22
‖xi − xj‖22

6∈ [1− δ, 1 + δ]

)

≤ 2

(
m

2

)

exp(−nδ2/8).

Thus, forn > 16/δ2 log(m), this probability is strictly less than1, so there

exists a suitable mapping.

In fact, we can choose a random projection in this way and ensure that the

probability that it does not satisfy the approximate isometry property is no

more thanǫ for n > 16/δ2 log(m/ǫ).
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Concentration Bounds for Martingale Difference Sequences

Next, we’re going to consider concentration of martingale difference

sequences. The application is to understand how tails of

f(X1, . . . , Xn)−Ef(X1, . . . , Xn) behave, for some functionf .

[e.g., in the homework, we have thatf is some measure of the performance

of a kernel density estimator.] If we write

f(X1, . . . , Xn)−Ef(X1, . . . , Xn)

=
n∑

i=1

E[f(X1, . . . , Xn)|X1, . . . , Xi]−E[f(X1, . . . , Xn)|X1, . . . , Xi−1],

then we have represented this deviation as amartingale difference sequence.
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Martingales

Definition: A sequenceYn of random variables adapted to a filtrationFn is

a martingale if, for all n,

E|Yn| < ∞
E[Yn+1|Fn] = Yn.

Fn is afiltration means theseσ-fields are nested:Fn ⊆ Fn+1.

Yn is adapted toFn means that eachYn is measurable with respect toFn.

e.g.Fn = σ(Y1, . . . , Yn), theσ-field generated by the firstn variables.
Then we sayYn is a martingale sequence.

e.g.Fn = σ(X1, . . . , Xn). ThenYn is a martingale sequence wrtXn.

12



Martingale Difference Sequences

Definition: A sequenceDn of random variables adapted to a filtrationFn

is amartingale difference sequenceif, for all n,

E|Dn| < ∞
E[Dn+1|Fn] = 0.

e.g.,Dn = Yn − Yn−1.

E[Dn+1|Fn] = E[Yn+1|Fn]−E[Yn|Fn]

= E[Yn+1|Fn]− Yn = 0

(becauseYn is measurable wrtFn, and because of the martingale property).
Hence,Yn − Y0 =

∑n
i=1

Di.
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Martingale Difference Sequences: the Doob construction

Define X = (X1, . . . , Xn),

Xi
1 = (X1, . . . , Xi),

Y0 = Ef(X),

Yi = E[f(X)|Xi
1].

Then f(X)−Ef(X) = Yn − Y0 =

n∑

i=1

Di,

whereDi = Yi − Yi−1. Also,Yi is a martingale w.r.t.Xi, and henceDi is a
martingale difference sequence. Indeed (becauseEX = EE[X |Y ]),

E[Yi+1|Xi
1] = E

[
E[f(X)|Xi+1

1 ]
∣
∣Xi

1

]
= E[f(X)|Xi

1] = Yi.
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Martingale Difference Sequences: another example

[An aside:] Consider two densitiesf andg, with g absolutely continuous

w.r.t. f . SupposeXn are drawn i.i.d. fromf , andYn is the likelihood ratio,

Yn =
n∏

i=1

g(Xi)

f(Xi)
.

ThenYn is a martingale w.r.t.Xn. Indeed,

E[Yn+1|Xn
1 ] = E

[
n+1∏

i=1

g(Xi)

f(Xi)

∣
∣
∣
∣
∣
Xn

1

]

= E

[
g(Xn+1)

f(Xn+1)

] n∏

i=1

g(Xi)

f(Xi)

=

n∏

i=1

g(Xi)

f(Xi)
= Yn,

becauseE[g(Xn+1)/f(Xn+1)] = 1.
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Concentration Bounds for Martingale Difference Sequences

Theorem: Consider a martingale difference sequenceDn (adapted to a

filtration Fn) that satisfies

for |λ| ≤ 1/bn a.s.,E [ exp(λDn)| Fn−1] ≤ exp(λ2σ2
n/2).

Then
∑n

i=1
Di is sub-exponential, with(σ2, b) = (

∑n
i=1

σ2
i ,maxi bi).

P

(∣
∣
∣
∣
∣

∑

i

Di

∣
∣
∣
∣
∣
≥ t

)

≤







2 exp(−t2/(2σ2)) if 0 ≤ t ≤ σ2/b

2 exp(−t/(2b)) if t > σ2/b.
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Concentration Bounds for Martingale Difference Sequences

Proof:

E exp

(

λ
∑

i

Di

)

= E

[

exp

(

λ
n−1∑

i=1

Di

)

E [ exp(λDn)| Fn−1]

]

≤ E

[

exp

(

λ
n−1∑

i=1

Di

)]

exp(λ2σ2
n/2),

provided|λ| < b. Iterating shows that
∑

i Di is sub-exponential.
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Concentration Bounds for Martingale Difference Sequences

Theorem: Consider a martingale difference sequenceDi with |Di| ≤ Bi

a.s. Then

P

(∣
∣
∣
∣
∣

∑

i

Di

∣
∣
∣
∣
∣
≥ t

)

≤ 2 exp

(

− 2t2
∑

i B
2
i

)

.

Proof:
It suffices to show that

E [ exp(λDi)| Fi−1] ≤ exp(λ2B2
i /2)

But |Di| ≤ Bi a.s., so the conditioned variable(Di|Fi−1) ≤ Bi a.s., so it is
sub-Gaussian with parameterσ2

i = B2
i .
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Bounded Differences Inequality

Theorem: Supposef : Xn → R satisfies the followingbounded differ-
ences inequality:
for all x1, . . . , xn, x

′

i ∈ X ,

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′

i, xi+1, . . . , xn)| ≤ Bi.

Then

P (|f(X)−Ef(X)| ≥ t) ≤ 2 exp

(

− 2t2
∑

i B
2
i

)

.
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Bounded Differences Inequality

Proof: Use the Doob construction.

Yi = E[f(X)|Xi
1],

Di = Yi − Yi−1,

f(X)−Ef(X) =
n∑

i=1

Di.

Then

|Di| = |Yi − Yi−1| =
∣
∣E[f(X)|Xi

1]−E[f(X)|Xi−1

1 ]
∣
∣

=
∣
∣E
[
E[f(X)|Xi

1]− f(X)
∣
∣Xi−1

1

]∣
∣ ≤ Bi.
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Examples: Rademacher Averages

For a setA ⊂ R
n, consider

Z = sup
a∈A

〈ǫ, a〉,

whereǫ = (ǫ1, . . . ǫn) is a sequence of i.i.d. uniform{±1} random
variables. Define theRademacher complexityof A asR(A) = EZ. [This
is a measure of the size ofA.] The bounded differences approach implies
thatZ is concentrated aroundR(A):

Theorem: Z is sub-Gaussian with parameter4
∑

i supa∈A a2i .

Proof:
WriteZ = f(ǫ1, . . . , ǫn), and notice that a change ofǫi can lead to a
change inZ of no more thanBn = supa∈A 2|ai|. The result follows.
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Examples: Empirical Processes

For a classF of functionsf : X → [0, 1], suppose thatX1, . . . , Xn, X are
i.i.d. onX , and consider

Z = sup
f∈F

∣
∣
∣
∣
∣
Ef(X)− 1

n

n∑

i=1

f(Xi)

∣
∣
∣
∣
∣
=

∥
∥
∥
∥
∥
∥
∥

Pf − Pnf
︸ ︷︷ ︸

emp proc

∥
∥
∥
∥
∥
∥
∥
F

.

If Z converges to0, this is called auniform law of large numbers. Here, we
show thatZ is concentrated aboutEZ:

Theorem: Z is sub-Gaussian with parameter1/n.

Proof:
WriteZ = g(X1, . . . , Xn), and notice that a change ofXi can lead to a
change inZ of no more thanBn = 1/n. The result follows.
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