Theoretical Statistics. Lecture 5.
Peter Bartlett

1. U-statistics.




‘ Outline of today’s Iecture'

We’'ll look at U-statistics, a family of estimators that indes many
Interesting examples. We'll study their properties: usbd lower variance,

concentration (via an application of the bounded diffeesnaequality),

asymptotic variance, asymptotic distribution. (See Céap? of van der
Vaart.)

First, we’'ll consider the standard unbiased estimate ofmae—a special
case of a U-statistic.




Variance estimates




Variance estimates

This is unbiased for i.1.d. data:

1
Es? = SE (X - X,)*

_ %E (X1 — EX)) — (X5 — EX,))?

— %E ((X1 CEX))? 4 (X — EX2)2>

—E(X; —EX;)>.




\ U -statistics'

Definition: A U-statistic of order » with kernel h is

U — % Z h(Xz'l,...,Xz'r),
() &

whereh is symmetric in its arguments.

If hIs not symmetric in its arguments, we can also average over
permutations.]

“U” for “unbiased.” Introduced by Wassily Hoeffding in thé&40s.




\ U -statistics'

Theorem: [Halmos]6 (parameter, I.e., function defined on a family
distributions) admits an unbiased estimator (ie: for alfisiently largen,
some function of the i.i.d. sample has expectatiprif for somek there is
anh such that

0 = Bh(X1,...,X5).

Necessity is trivial. Sufficiency uses the estimator

A

O(X1,.. ., X)) = h(X1,... ).

U -statistics make better use of the sample than this, simgedte a
symmetric function of the data.




U-statistics: Exampleﬂ

s is aU-statistic of ordeR with kernelh(z,y) = (1/2)(x — y)?.

X, is aU-statistic of ordeil with kernelh(z) = .

The U-statistic with kernek(z,y) = |z — y| estimates thenean
pairwise deviatioror Gini mean difference

[The Gini coefficientG = E| X — Y|/(2EX), is commonly used as a
measure of income inequality.]

Third k-statistic,

ks =

(n—1)(n—2)

1=1

IS aU -statistic that estimates the 3rd cumulant.




U-statistics: Exampleﬂ

o The U-statistic with kernet(z, y) = (v — y)(z — y)! estimates the
variance-covariance matrix.

e Kendall'st: For arandom paiP; = (X1,Y7), P» = (X5, Ys) of
points in the plane,

T = Pr(P; P> has positive slope— Pr( P, P, has negative slope

= E (1[P, P, has positive sloge- 1| P; P, has negative slopg,

whereP; P, is the line fromP; to P. It is a measure of correlation:
T € [-1,1], 7 = 0 for independenX, Y, = +1forY = f(X) for
monotonef. Clearly, can be estimated usingl&statistic of order.




U -statistics: Exampleﬂ

The Wilcoxon one-sample rank statistic:

T = ZRzl[Xz > 0],
1=1
whereR; is the rank (position whepX;|, ..., | X, | are arranged in
ascending order). It's used to test if the distribution is)gyetric about zero.
Assuming the X;| are all distinct, then we can write

Ry =Y 1[1X;| < |Xil],
=1




U-statistics: Exampleﬂ

T = iil[\le < Xi

i=1 j=1

=) X < X+ ) 11X < X +Z (X; > 0]

1<J 1<J

Hence

=) 1[X;+ X; > 0] +21X > (]

1<J

— | Z(Q)I[Xz‘—l—Xj >O]—|—EZTL1[X2>O]

1<J

th X, X;) + — Zhl

1<J
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U -statistics: Exampleﬂ

ho(X;, X;) = (

hi(X;) =

So it's a sum of U-statistics.

[Why is it not a U-statistic?]
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Properties of U -statistics'

“U” for “unbiased”: U is an unbiased estimator f@h(X,..., X, ):
EU = Eh(Xq,..., X,).

U is a lower variance estimate thanX, ..., X,.), becauséd/ is an
average over permutations. Indeed, sifices an average over
permutationsr of A(X (1), ..., X)), We can write

U(X1s.., Xn) = E [R(X1, ., X)Xy Xy

where(X ), ..., X)) is the data in some sorted order. Thus, for
EU = 0, we can write the variance as:
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Properties of U -statistics'

2
. ,XT) - 9|X(1), c e 7X(n)])
LX) =07 Xy, X

by Jensen’s inequality (for a convex functipnwe have
¢(EX) < E¢(X)).
This is the Rao-Blackwell theorem: the mean squared errtreoéstimator

h(X1,...,X,)isreduced by replacing it by its conditional expectation,
given the sufficient statistiCX q), ..., X(,)).
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‘ Recall: Bounded Differences Inequalitﬂ

Theorem: Supposef : X" — R satisfies the followindoounded differ-
ences inequality
forall zq,...,x,, 2, € X,

|f(5131, .. ,ZEn) — f(ZCl, .. ,iCi_l,ZCfL-,ZCi+1, .. ,CCn)| S Bz

P(If(X) — BA(X)| > 1) < 2exp (— 22?32) |
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‘ Bounded Differences Inequalitz/l

Consider a U-statistic of order 2.

1<j

Theorem: If |h(X1, X2)| < B a.s., then

P(|lU —EU| > t) < 2exp(—nt*/(8B?)).
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‘ Bounded Differences Inequalitz/l
Proof:

For X, X’ differing in a single coordinate, we have

U—U'| < =) |h(Xi, X5) — h(X], X))

L
(5) 5
2B(n—1)
<
(3)
»

The bounded differences inequality implies the result.
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Variance of U-statistics'

Now we’ll compute the asymptotic variance of a U-statisiRecall the

definition:
Zh i X)),

So [lettingS, S’ range over subsets ot, ..., n} of sizer]:

Var(U > ) Cov(h(Xs),h(Xs))

n2
r S 5

ORI

where(") (") ("_") is the number of ways of choosirffjand.S” with an

r—

Intersection of size (first chooseS, then choose the intersection fratn
then choose the non-intersection for the restof
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Variance of U-statistics'

Also, (. = Cov(h(Xgs), h(Xgs/)) depends only oa = |S N S’|. To see this,
suppose that N S’ = I with |I| = ¢,

= Cov(h(Xs), h(Xs))
= COV(h(X[,X ) (X]XS/ ))
)

= Cov(h(X{, X[} 1), h(X{X2°
= Cov (E [h(X{, X1)| X{], E [h(X{X279)] X1])
+ECov [ h(X{, X! 1), h(X{X211°)| X7]

r—+1
= Var (E [h(X{, X 1)| X7]).

)

Clearly,(y = 0.
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Variance of U-statistics.




Variance of U-statistics.

Soif(; # 0, the first term dominates:

nri(n —r)lr(n —r)!
n!(r —1)l(n—2r+1)!

nVar(U) —

C1 —>T251-

If »2¢; = 0, we say thaty is degenerate.
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