Theoretical Statistics. Lecture 6. Peter Bartlett

- 1. U-statistics.
- 2. Projections.

Review. *U*-statistics

Definition: A U-statistic of order r with kernel h is

$$U = \frac{1}{\binom{n}{r}} \sum_{i \subseteq [n]} h(X_{i_1}, \dots, X_{i_r}),$$

where h is symmetric in its arguments.

Review. U-statistics: Examples

- s_n^2 is a *U*-statistic of order 2 with kernel $h(x,y) = (1/2)(x-y)^2$.
- Kendall's τ : test for independence.
- Wilcoxon one-sample rank statistic: test for symmetry. Sum of U-statistics.

Review. Properties of U**-statistics**

- "U" for "unbiased": $\mathbf{E}U = \mathbf{E}h(X_1, \dots, X_r)$.
- $Var(U(X_1, ..., X_n)) \le Var(h(X_1, ..., X_r))$ (Rao-Blackwell theorem).
- Concentration: If $|h(X_1, X_2)| \leq B$ a.s., then

$$P(|U - \mathbf{E}U| \ge t) \le 2\exp(-nt^2/(8B^2)).$$

Review. Variance of U-statistics

$$\operatorname{Var}(U) = \frac{1}{\binom{n}{r}} \sum_{c=1}^{r} \binom{r}{c} \binom{n-r}{r-c} \zeta_{c}$$

$$= \sum_{c=1}^{r} \theta(n^{-c}) \zeta_{c},$$

$$\zeta_{c} = \operatorname{Cov}(h(X_{S}), h(X_{S'})) \quad \text{where } |S \cap S'| = c$$

$$= \operatorname{Var}\left(\mathbf{E}\left[h(X_{1}^{r})|X_{1}^{c}\right]\right).$$

So if $\zeta_1 \neq 0$, the first term dominates:

$$n\text{Var}(U) \to \frac{nr!(n-r)!r(n-r)!}{n!(r-1)!(n-2r+1)!}\zeta_1 \to r^2\zeta_1.$$

Variance of U-statistics: Example

Estimator of variance: $h(X_1, X_2) = (1/2)(X_1 - X_2)^2$:

$$\zeta_{1} = \operatorname{Cov}(h(X_{1}, X_{2}), h(X_{1}, X_{3}))
= \operatorname{Var}(\mathbf{E}[h(X_{1}, X_{2})|X_{1}]) + \mathbf{E}[\operatorname{Cov}(h(X_{1}, X_{2}), h(X_{1}, X_{3})|X_{1}])
= \operatorname{Var}(\mathbf{E}[h(X_{1}, X_{2})|X_{1}]) = \operatorname{Var}\left(\mathbf{E}\left[\frac{1}{2}(X_{1} - X_{2})^{2}|X_{1}\right]\right)
= \operatorname{Var}\left(\mathbf{E}\left[\frac{1}{2}(X_{1} - \mu + \mu - X_{2})^{2}|X_{1}\right]\right)
= \operatorname{Var}\left(\frac{1}{2}((X_{1} - \mu)^{2} + \sigma^{2})\right) = \frac{1}{4}(\mu_{4} - \sigma^{4}),$$

where $\mu_4 = \mathbf{E}((X_1 - \mu)^4))$ is the 4th central moment. So $n\text{Var}(U) \to \mu_4 - \sigma^4$.

We'll see that $\sqrt{n}(U-\sigma^2) \rightsquigarrow N(0, \mu_4-\sigma^4)$. (What if $\mu_4-\sigma^4=0$?)

Variance of U-statistics: Example

Recall Kendall's τ : For a random pair $P_1 = (X_1, Y_1), P_2 = (X_2, Y_2)$ of points in the plane, if X, Y are independent and continuous [and P_1P_2 is the line from P_1 to P_2]

$$h(P_1,P_2)=(1[P_1P_2 \text{ has positive slope}]-1[P_1P_2 \text{ has negative slope}])\,,$$

$$\zeta_1=\operatorname{Cov}(h(P_1,P_2),h(P_1,P_3))$$

$$\ldots=1/9$$

so $n\text{Var}(U) \to 4/9$. We'll see that $\sqrt{n}U \leadsto N(0,4/9)$. And this gives a test for independence.

Asymptotic distribution of U-statistics

How do we find the asymptotic distribution of a U-statistic?

We'll appeal to this theorem:

Theorem:

$$X_n \rightsquigarrow X \text{ and } d(X_n, Y_n) \stackrel{P}{\to} 0 \Longrightarrow Y_n \rightsquigarrow X.$$

In particular, we find another sequence \hat{U} such that

- $\sqrt{n}(U-\theta-\hat{U}) \stackrel{P}{\rightarrow} 0$, and
- The asymptotics of \hat{U} are easy to understand.

In this case, we find \hat{U} of the form $\hat{U} = \sum_i f(X_i)$. Then the CLT gives the result.

Asymptotic distribution of U-statistics

- 1. Why do functions of a single variable suffice? Because the interactions are weak.
- 2. How do we find suitable functions? By **projecting**: finding the element of the linear space of functions of single variables that captures most of the variance of U.

This leads us to the idea of **Hájek projections**.

Projection Theorem

Consider a random variable T and a linear space S of random variables, with $\mathbf{E}S^2 < \infty$ for all $S \in S$ and $\mathbf{E}T^2 < \infty$. [Write $T \in L_2(P)$, $S \subset L_2(P)$, the Hilbert space of finite variance random variables defined on a probability space.] A **projection** \hat{S} of T on S is a minimizer over S of $\mathbf{E}(T-S)^2$. [Picture]

Theorem: \hat{S} is a **projection** of T on S iff $\hat{S} \in S$ and, for all $S \in S$, the error $T - \hat{S}$ is orthogonal to S, that is,

$$\mathbf{E}(T - \hat{S})S = 0.$$

If \hat{S}_1 and \hat{S}_2 are projections of T onto S, then $\hat{S}_1 = \hat{S}_2$ a.s.

Projection Theorem

Notice that if $\mathcal S$ contains constants, then $S=1\in\mathcal S$ shows that

$$\mathbf{E}(T - \hat{S}) = 0,$$
 i.e., $\mathbf{E}T = \mathbf{E}\hat{S}.$

Also, for all $S \in \mathcal{S}$, $S - \mathbf{E}S \in \mathcal{S}$, so

$$Cov(T - \hat{S}, S) = \mathbf{E}((T - \hat{S})(S - \mathbf{E}S)) = 0.$$

Projection Theorem Proof

Theorem: 1. $\hat{S} \in \mathcal{S}$ is a **projection** of T on \mathcal{S} (minimizes $\mathbf{E}(T-S)^2$) iff, for all $S \in \mathcal{S}$, $\mathbf{E}(T-\hat{S})S = 0$.

2. If \hat{S}_1 and \hat{S}_2 are projections of T onto S, then $\hat{S}_1 = \hat{S}_2$ a.s.

We can write the criterion, for any $S \in \mathcal{S}$ as

$$\mathbf{E}(T-S)^{2} = \mathbf{E}(T-\hat{S}+\hat{S}-S)^{2}$$

$$= \mathbf{E}(T-\hat{S})^{2} + 2\mathbf{E}((T-\hat{S})(\hat{S}-S)) + (\hat{S}-S)^{2}.$$

If $\mathbf{E}(T-\hat{S})S=0$, then this is $\mathbf{E}(T-\hat{S})^2+(\hat{S}-S)^2$, which is minimized for $S=\hat{S}$, and strictly minimized unless $\mathbf{E}(\hat{S}-S)^2=0$, so \hat{S} is unique.

Projection Theorem Proof

If \hat{S} is a projection, then

$$\mathbf{E}(T - \hat{S} - \alpha S)^2 = \mathbf{E}(T - \hat{S})^2 - 2\alpha \mathbf{E}(T - \hat{S})S + \alpha^2 \mathbf{E}S^2$$

is at least $\mathbf{E}(T-\hat{S})^2$ for any $S\in\mathcal{S}$ and any α . And this implies that $\mathbf{E}(T-\hat{S})S=0$.

Projection Theorem

- Pythagoras theorem: $\mathbf{E}(T)^2 = \mathbf{E}(T \hat{S} + \hat{S})^2 = \mathbf{E}(T \hat{S})^2 + \mathbf{E}(\hat{S})^2$.
- If S contains constants, $\mathbf{E}(T) = \mathbf{E}(\hat{S})$ and $\mathrm{Var}(T) = \mathrm{Var}(T \hat{S}) + \mathrm{Var}(\hat{S})$.
- So if $\mathcal S$ contains constants and $\hat S$ and T have the same variance, then $\hat S = T$ a.s.
- A similar property holds asymptotically...

Projections and Asymptotics

Consider S_n a sequence of linear spaces of random variables that contain the constants and that have finite second moments.

Theorem: For T_n with projections \hat{S}_n on S_n ,

$$\frac{\operatorname{Var}(T_n)}{\operatorname{Var}(\hat{S}_n)} \to 1 \qquad \Longrightarrow \qquad \frac{T_n - \mathbf{E}T_n}{\sqrt{\operatorname{Var}(T_n)}} - \frac{\hat{S}_n - \mathbf{E}\hat{S}_n}{\sqrt{\operatorname{Var}(\hat{S}_n)}} \overset{P}{\to} 0.$$

Projections and Asymptotics: Proof

Define

$$Z_n = \frac{T_n - \mathbf{E}T_n}{\sqrt{\operatorname{Var}(T_n)}} - \frac{\hat{S}_n - \mathbf{E}\hat{S}_n}{\sqrt{\operatorname{Var}(\hat{S}_n)}}.$$

Clearly, $\mathbf{E}Z_n = 0$.

$$Var(Z_n) = 2 - 2 \frac{Cov(T_n, \hat{S}_n)}{\sqrt{Var(T_n)}} \sqrt{Var(\hat{S}_n)}$$
$$= 2 - 2 \frac{\sqrt{Var(\hat{S}_n)}}{\sqrt{Var(T_n)}}$$
$$\to 0,$$

where the second equality is because S contains constants, so $Cov(T_n - \hat{S}_n, \hat{S}_n) = 0$, hence $Cov(T_n, \hat{S}_n) = Var(\hat{S}_n)$.