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SHARPER BOUNDS FOR GAUSSIAN AND 
EMPIRICAL PROCESSES' 

BY M. TALAGRAND 

University of Paris VI-and Ohio State University 

Under natural conditions on a class 'F of functions on a probability 
space, near optimal bounds are given for the probabilities 

P sup Ef(Xi)-nE(f) ?M4j. 
f(E- 3F i <n 

The method is a variation of this author's method to study the tail 
probability of the supremum of a Gaussian process. 

1. Introduction. Consider a probability space (fQ, X, P), and consider n 
independent identically distributed (i.i.d.) random variables X1, . . ., Xn, valued 
in Ql, of law P. Consider a function f on f. (We make the convention that by 
''function" we mean " measurable function" and by " set" we mean " measura- 
ble set.") For n large, the quantity Ei<n f(Xd) - nEf is approximately 
N(O, F/ (Ef2)1/2). One could say that one of the objectives of empirical process 
theory is to understand how well this approximation holds uniformly over a 
class of functions. Consider such a class of functions 9A. We are interested in 
this paper in the quantity 

sup Ef(Xi) - nEf, 
flSy i~n 

which for simplicity will be denoted by 

>2f(Xi)-nEf 

Observe that this need not be a r.v. (i.e., it might fail to be measurable). 
Measurability questions for empirical processes are, however, well understood, 
and in order not to waste space on these, we will assume once and for all that 
S1 is countable, so that no measurability problem will arise. We are interested 
in bounds for 

(1.1) r5M) = rn,s41M) =P( 2f (Xi) -nEf Mn 
(li<n 11 )- 

This question has been studied in particular by Massart [10] and Alexander 
[1], following classical work by Kiefer [8] and Dvoretzky, Kiefer and Wolfowitz 
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[3]. 
Throughout the paper we will assume that S1 is uniformly bounded. One 

reason for this hypothesis is that it is often desirable, from the point of view of 
statistics, that 9- has good properties independently of the underlying proba- 
bility, in which case 91 has to be uniformly bounded [2], Another reason is 
that we need to have very sharp bounds when 3F consists of just one function 
f, and that, when f is bounded, we can appeal to the work of [7]. Assuming Y 
uniformly bounded, there is then no loss of generality to assume that Y 
consists only of functions f such that 0 < f < 1. This allows us to control the 
contributions of each individual function f to (1.1). It then remains to have 
hypotheses that ensure that S1 is not too large. The hypotheses we will use 
are classical. We first recall two standard notions. 

Consider a metric space (T, d). We denote by N(T, d, X) the smallest 
number of (open) balls of radius 8 needed to cover T. 

Consider now two functions f1, f2 on Q. We define the bracket [ f1, f2] as 

[f1, f2] = {f; f1 <f f2} 

For two sets C1, C2, we define similarly 

[C1, C2] = {C; C1 C C C C2). 

We can now state one typical result, 

THEOREM 1.1. Consider a (countable) class e of (measurable) subsets of 
Q. Assume that there exists a number V 2 1 and a number v 2 1 such that 
either of the following holds. 

(i) Given E > 0 and any probability Q on f that is supported by a finite set, 
we have 

V 

(1.2) N(eq dQ, s < 

where 

(1.3) dQ(C1, C2) = Q(C1 AC2) 

(ii) Given E > 0, e can be covered by at most (V/E)v brackets [C1, C2] for 
which P(C2 \ C1)? < 

Then for all M > 0 we have 

(1.4) Kre(m) < V o.e-2 

where K(V) depends on V only. 
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COMMENT. 

1. An actual (possibly nonoptimal) dependence of K(V) upon V will be carried 
out in the proof. 

2. The condition v ? 1 is assumed for convenience in the computations. 
If one assumes only v > 0, the same proof shows that re(M) < 

2v1-M2 
K(V, v)M2- le -2, where K(V, v) depends on V, v only. 

3. Proving that (1.4) holds for all M > 0 rather than from M not too large 
requires a number of unpleasant uninspiring computations. We have, how- 
ever, decided to perform these to get the seemingly final result. 

An important family of classes of sets are the so-called Vapnik-Cervonenkis 
(VC) classes. Their importance stems from the fact that (modulo measurabil- 
ity) these are the classes of sets that behave well independently of the 
underlying probability [2]. Let us recall that e is called a VC class of index 
(= dimension) v if it does not shatter any subset of fl of cardinality v + 1, but 
does shatter at least a subset of cardinality v. (W shatters {x1, . . ., xnI if given 
a subset I of {1, ..., n), we can find a C E e such that xi E C if and only if 
i E I.) Very recently, Haussler (improving a previous result of Dudley) proved 
that a VC class of index v satisfies (1.2) with V = 4e [6]. Thus, in particular, 
(1.4) holds for such classes, where K(4e) is a universal constant. [This is why 
the dependence of the constant of (1.4) upon V is not a critical issue.] 

How sharp is (1.4)? In particular, what is the correct power of M in the 
right-hand side of (1.4)? Historically, the most important VC classes are the 
classes Qd of sets of the type X + (R+)d(X E0 Rd) in Rd. It is well known that 
Qd has index d. It is known in that case (by looking at the limiting Gaussian 
process) that if P is uniform on [0, j]d, then for n large, TQd(M) is at least 
cM2d-2 e-2M, where c depends on d only [8]. Thus one certainly could not do 
better than the exponent 2v - 2 in (1.4). In the case of Qq, the correct power 
of M is M2d-2, not M2d-1. This is due to the fact that the size of the 
coefficient of e-2M2 in (1.4) is not influenced by the "dimension" of all &, but 
rather by the "dimension" of the subset of e consisting of the sets C E e for 
which P(C) = 1/2. In the example of Qd this subset is genuinely smaller than 
e, and the correct power in (1.4) should be 2v - 2 rather than 2v - 1. It is 
apparently not known whether this phenomenon occurs for all VC classes. But 
we would like to point out that this is a combinatorial question about VC 
classes, except when v = 1, where it is known that 2v - 1 is then the optimal 
power (see [16] and the discussion therein) that is unrelated to the considera- 
tions of the present paper. Our methods do allow us to obtain the correct 
bounds for the usual classes, as is shown by the following result. 

THEOREM 1.2. Consider a class e of sets that satisfies either hypothesis (i) 
or hypothesis (ii) of Theorem 1.1. Assume moreover that for some numbers 
v' 1) v'>w >0 and all ?2E>0, we have 

(15 N~r, d, E) 
7 
V _'SwE71 -o 
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where o = {C E e; IP(C) - ? < 81. Then, for M ? K/w, we have 

i-,(M) < K(v, v', w, V, vi)M2v'-2we-2M2 

where K(v, v', w, V, V') depends only on v, v', w, V, V'. 

COMMENTS. 

1. In the case of 'Qd, P uniform on [0, 11d, it is simple to see that (1.5) holds 
for w = 1, v' = d. 

2. It would not be too hard to carry out an explicit dependence for 
K(v, v', w, V, V') in v, v', w, V, V' (see Proposition 2.8 below). 

Another question of interest is the possibility of obtaining small values of 
the numerical constants involved in (1.4) in the case of VC classes. As will be 
explained later, while (1.4) holds for each M, the reasons for which it holds 
when M >> n1/4 are rather uninteresting. Our proof, as it is written, provides 
unreasonable values of the constants involved; these large values occur out of 
the necessity to control the values of M near n. If one restricted attention to 
the values of M < n1/4, the values of the constants provided by our proof 
would already not be outrageous. But we have written the computations in the 
simplest possible way, without any attempt to get sharp constants, and 
certainly much improvement is possible in that direction. In particular, it must 
be pointed out that while our approach is unlikely ever to yield optimal 
constants, it essentially does not use chaining (that makes the search of sharp 
constants hopeless). We have, however, felt that the search of sharp numerical 
constants is better left to others with the talent and the taste for it. 

Let us now turn to classes of functions. The following result parallels 
Theorem 1.1. 

THEOREM 1.3. Consider a (countable) class S of (measurable) functions f 
such that 0 < f < 1. Assume that either of the following holds, where V, v > 1. 

(i) Given ? > 0 and any probability Q on fl that is supported by a finite set, 
we have 

1Vv 

( 1.6) N( Az, dQ dE ) < l 

where 

(1.7) dQ( f, g) = ((f g)2 dQ) 

(ii) Given ? > 0, Y1- can be covered by at most (V/ )V brackets [fl, f2] for 
which E( f - f )2 <?2 
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Then, for all M > 0, we have 

(1.8) rs9(M) < (K(V) Ad e-M 

COMMENT. Due to a different definition of distances [there is no square 
root in the right-hand side of (1.3)], one should replace v by 2v to compare this 
statement with Theorem 1.1. One then realizes that exactly one power of M 
has been lost in (1.8) versus (1.4). 

There is a large number of possible variations on the theme of this work. As 
exemplified by previous work in this area, one of the challenges is to obtain 
clean results through clean computations. We have given only results where 
this could be reasonably well achieved. We have, however, tried to make the 
basic steps of the proof stand out in sufficient generality that many variations 
could be carried out with limited effort. One obvious such variation would be a 
result that would be to Theorem 1.3 what Theorem 1.2 is to Theorem 1.1. 
Other possibilities are suggested in Section 2 or in the course of the paper. One 
interesting case, in the situation of Theorem 1.3, is when one has more control 
of 

(1.9) o-(SF) = sup (E( f - Ef)2)1/2 
fa 

While our approach does lead to progress in that case over the previous work 
of [1] and [10], we have not succeeded to produce there a clean result that could 
be considered as more or less the final word. Thus we will discuss only two 
reasonably simple results, with somewhat sketchy proofs. 

We now discuss the methods and the organization of this paper. The basic 
idea was invented in the paper [19], where I study the tails of the supremum of 
a Gaussian process with unique point of maximal variance. The idea is simply 
that the main contribution to P(supte T Xt > u) should come from the vari- 
able X. where variance is maximal. This is expressed by conditioning with 
respect to X, and using the "concentration of measure phenomenon" on the 
conditioned process, in the form of the Gaussian isoperimeteric inequality. As 
it turns out, this method gives optimal order bounds for the tails of the 
supremum of a Gaussian process in all known cases. Unfortunately, the 
subsequent uses of this approach (in particular [15]) leave room for improve- 
ments. So, our first task is to spell out the basic principle in the case of 
Gaussian processes (Theorem 2.3) and to demonstrate how to use it. This is 
the object of Section 2. The advantage of working in the Gaussian setting is 
that there are much fewer technical difficulties, so that the ideas stand out 
more. 

The program is then to follow the same overall approach in the case of 
empirical processes. The techniques to achieve that have been well under 
control for some time. First, one has to find a substitute for the Gaussian 
isoperimetric inequality. What one needs is only of fast decay of Tr( M) for 
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certain classes E. The inequalities proved in [1] and [10] would be (almost) 
sufficient for this purpose, but we find it much simpler to use the isoperimetric 
inequalities of [20], [21], and [23] that apparently take care once and for all of 
this class of problems, in the most general situation and in an optimal way. 
This is the purpose of Section 3. 

In Section 4 we prove (variations of) classical estimates on the tails of the 
binomial law. These are obtained by brute force through Stirling's formulas. 

In Section 5 we use these ingredients to mimic the proof of Theorem 2.3 and 
to obtain the basic inequality in the case of classes of sets. The proofs of 
Theorems 1.1 and 1.2 are then completed in Section 6. 

In Section 7 we consider the case of classes of functions. The main difficulty 
there is that, in contrast with the case of sets, it is a priori not obvious how to 
work conditionally on the event {Ei~ f(Xi) - nEf ? u}. But, fortunately, 
there is an almost miraculous way to go around the problem (Theorem 7.1) 
using moment generating functions and an extreme point argument. This 
method, however, gives no hope of reducing the power of M in (1.7) to v - 1. 

Finally, in Section 8 we discuss the case of classes of functions for which one 
controls the quantity of a(F) considered in (1.9). 

Throughout the paper, K denotes a universal constant that may vary at 
each occurrence. Specific constants are denoted by K1, K2, and so forth. 

2. Gaussian processes and partitioning lemma. First, we recall the 
following result, due essentially to R. M. Dudley, and which we will use many 
times. 

PROPOSITION 2.1 (Metric entropy bound). Consider a centered process 
(yt)t E To Suppose that there is a distance d on T such that, for all u > 0, we 
have 

Vs st E T. P(IX, - XtI > u d(s, t)) < 2 exp( - u2). 
Then 

(2.1) EsupYt < K logN(Td,E)d. 

Concentrations of measure properties are essential in the understanding of 
Gaussian processes. The following convenient inequality is one of the many 
forms of these properties and is closely related to the Gaussian isoperimetric 
inequality. It is due to Maurey and Pisier [13]. (For our purposes, -it is 
essentially irrelevant to have the best constant in the exponent; the proof then 
becomes simpler.) 

PROPOSITION 2.2. Consider a bounded Gaussian process (Xt)t e T. Then, 
setting a2 = SUpt E T EXt, we have, for all u > 0, 

(2.2) P (sup Xt - E sup Xt > u) < exp 
t E=T t El \ 2o-J 
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We now turn to the basic inequality. 

THEOREM 2.3. Consider a Gaussian process (Xt)t, e T and set H = 

E SUPt E T Xt Consider a r.v. Y such that the family {Y, X1, t e T} is jointly 
Gaussian. Assume that 

(2.3) V t E T, E(Y(Xt - Y)) < 0. 
Set o = (Ey2)1/2, a = supteT(E(Xt - y)2)1/2. 

Then, if a < o-, u > H, we have 

?u?= x( (uj- H)2) P supXt >u < -exp, 2a 

(2.4) 2 

exp- Va2 + o2 2(o2 + a2) ) 

where 1D(u) = f,(1/ 2 )eS 2/2 ds. 
If, moreover, we have u ? 2H, u > H + u, then we have 

u au 1 au 2 2uH 
(2.5) P(supX, ? u) < (I?)(i + K2 exp ( E)2)exp 2uH 

teT O ' 

where K is universal. 

COMMENT. Observe that (2.3) holds in particular if EY2 SUpt eT EXt. 

PROOF. For t E T, we set 

E((Xt - Y)Y) E(XtY) - ff 
at = 2 2 < 0. 

We set 
Zt =Xt - (1 + at)Y, 

so that E(ZtY) = 0. Simple algebra now shows that 

V s, t E- T. E(ZS _ Zt) 2 -< E(Xs - Xt) 2 

Thus it follows by the Sudakov-Fernique [4] inequality that 

(2.6) EsupZt < H. 
teT 

(We should also mention here that there is a more elementary argument that 
yields E SUPt e T Zt < 2H.) 

Now, we write 

P supxt ? UTY= W) =P sup(Xt - Y) ? u - w(Y =w 
teT teT 

Psup (Z t + atY) ? u - wIY = W 
t E=T 
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For w > 0 since a, < 0, we have 

sup (Z, + a, w) < supZ,. 
tET teT 

Since E(ZtY) = 0 for all t E T, the process (Zt)t, T is independent of Y. 
Also, EZ2 < E(Zt + a Y)2 = E(Xt - y)2 < a2. Thus, from (2.6) and (2.2), we 
get, for w < u - H w> 02 that 

(2.7) P supXt 2 ulY= w) < exp (i 

For w < 0 since 

I E((Xt - Y)Y) a 
latI 2 _ 1, 

we have 

sup(Zt + atw) < Iwi + supZt = -w + supZt, 
teT teT teT 

and thus, for u > H. by (2.2) again 

P( sup (Zt + atY) ? u - wIY = w < P( supZt ? ui) 
t E=T te T 

(2.8) ((u -H)2 

?exp- 2a2 

We have 

P( supxt ?) f P (supxt uIY exp(-j- dw 
t E=T teTuir \ J 

f0 +f 10 f +12+3 

By (2.8), we have 

1 (U - H)2 
I1,< -expt- 2a2fr 

By (2.7), we have, setting u - H = s, by a routine computation, 

x 1 (s- -w)2 w2 f2 IeXp 2I2 2a2 J dW 

- 
exp 2 2a2 +o~~ (a 2 +o2) - 2_ Va2 +-2 2a(a O- 2 

a s s2 

- 2 _ 2 2(p1-2 + a2 
Tai+p rv2(a +a4 

, 
This proves (2.4). 
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We now turn to the proof of (2.5). First, we observe that 

(U - H)2 (U - H)2 (U _ H)2a2 

exp 2a2 =exp 2(a2 + 02 |xp 2ae(a -+ a )| 

Now, since u a + H, a < o-, we have 

u (- H )2al_2 a2j Ka 
exP-2 2(2 2)) ?exP(-4 2) < - 

so that the sum of the first two terms of the right-hand side of (2.4) is at most 

Ka ( - H)(2u 
exp- 2 

a. 2(cr + a ) 

Since 
1 1 a2 
2 2?24 

O2 + 2 2 2 - 4 
c+ a 0. 

this is at most, setting 6 = ua/o2 

Ka -(e - 22 + u2a2\ Ka c2 (U - H)2 
(2.9 - 

exp2 +24 < U~ 6exp -exp- 2 Ka ( 
2(u-H)2 - 224 

u 
epex~ 2u2 

If we recall the well-known fact that, for x > 1 
1 x2\ 

(2.10) ?D(x) 2 exp 2--) 
2 x v/2 

- 
\2 

we see since u - H 2 a that the right-hand side of (2.9) is at most 

2 {u-H Kf exP-'4( JH) 

To conclude, we observe that 

F((x - y) < e2xyF( X) 

if x 2 1, y > 0. Indeed the function 

f (y) = e2XYF(X) - F(x - y) 

satisfies f(O) = 0, 

f'(y) = 2xe2xYI( x) - e- (X-y)2/2 
2i7 

so that f'(y) 2 0 by (2.10). O 

As it turns out, Theorem 2.3 seems to be a universal tool to get proper 
bounds on the supremum of a Gaussian process, by breaking the index set into 
suitable pieces to which one applies the basic inequality. We first consider a 
simple case that is closely connected to our further results on empiricals. We 
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will then sketch out several applications of Theorem 2.3 that demonstrate its 
power and that also have versions for empirical processes. The following is (an 
improvement of) a result of Samarodnitsky [15]. (It should be recalled that the 
results of [15] were actually obtained after this author pointed out the relevence 
of the approach of [19]). 

THEOREM 2.4. Consider a Gaussian process (Xt)tET. Let -2 = SUPt E TEXj2. 
Consider the canonical distance d on T given by d(s, t)2 = E(XS - Xt)2. As- 
sume that for some constant A > o-, some v > 0 and some 0 < Eo < o- we have 

{A v 

C< o0 N(Td,) . ( 
E 

Then for u ? o-2[(1 + rV)/o0] we have 

(2.11) P( supXt? 2 KA ) ( 

where K is universal. 

COMMENTS. If E0 = uJ, the condition on u is u ? o-(1 + v). It is not 
restrictive as we cannot expect an interesting bound unless u is of order at 
least E SUpteT Xt, which can be of order as large as oW log( eA/fo) . 

The method of proof is as follows. Consider a < a and H > 0. We partition 
T in N pieces (T)i < N, each of diameter < a < o-, and for each of which 
E supe T Xt < H. By (2.5) we get, when a < a, u > H + o, u > 2H, 

( u \( au 1 au 2 22uH 
(2.12) P( supXt > u N I - 1 + K-r exp 2 -JIJexpI 2( 

t E=T ~ o'! 2 a /\o / 

As it turns out, the only way the term e2,Hla2 does not have a catastrophic 
influence is if uH/uf2 is bounded independently of u. If we brutally partition 
T in N < (A/a)v sets Tj of diameter 2a, by Proposition 2.1, we get only 

2a~~~~~~~ A1/2 H < | Vlog(A/6)v de < Kax/(log- 

Then one has to take a of order u - 1(log u) - 1/2, and then N gets too large [an 
extra term in (log u)v/2 appears]. To get around this difficulty (which will 
creep up again in the proof of Theorem 1.1), we need an (essentially well 
known) partitioning lemma (see [12]; considerably more subtle results are 
obtained in [22]). 

LEMMA 2.5. Consider a metric space (T, d) and p, q E Z, p < q. Consider 
a partition Iq of T. such that each set of 9q has diameter < 4'l. Consider 
integers k 1, p < I < q. Then one can find an increasing sequence (lp < I < q of 
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partitions of T with the following properties: 

(2.13) Each set of A, has diameter less than or equal to 4l+1l 

(2.14) Each atom of WIj contains at most kI atoms of WIj . 

-1 card '~j 
(2.15) V I < q, card 0 < N(T, d 4') + 

PROOF. The partitions 94 are constructed by decreasing induction over 1. 
We show how to construct 60 once 6 +1 has been obtained. Set N = 
N(T, d, 4-1). Consider points (ti)i < N of T such that each point of T is within 
distance 4-1 of at least one point ti, i < N. For i < N, define Ai as the union 
of all the sets of 6?+1 that intersect the ball centered at ti of radius 4-l. 
Thus, since each set of WP+j has diameter < 4-1, Ai has diameter at most 

2 i 4-' + 2 i 4-l = 4-1+1. 

Define now Ci = Ai \ U j < iAj. These form a partition Q for T, that is coarser 
than 9 +1. Certain atoms of Q might contain more than k, atoms of KY',+1. 
Any such atom can be in turn partitioned in sets, all of which except one are 
the union of exactly k, atoms of 60+1, the exceptional set being the union of 
at most k, sets of 9 +1. This constructs 91, and (2.15) is obvious. E 

COROLLARY 2.6. Suppose that in the preceding lemma we have N(T, d, 4-') 
< (A41)v for 1 p and card q < (A44Y). Then, if k, 2 2 * 4v for all 1, we 
have card 60, < 2(A41)v. 

PROOF. By decreasing induction over 1, 

2(A4'+1)vv 
(A41)v+ k, ?2A).E 

We go back to the proof of Theorem 2.4 and we show how to partition T to 
deduce (2.11) from (2.12). There is no loss of generality to assume T finite. We 
consider q large enough that s, t E T d(s, t) ? 4q. We use Corollary 2.6 
with k, = [2 4 4v] + 1 < 3 * 4v, and, for each I < q, with 4-' < E0, we find a 
partition of T in N < 2(A4-1)v sets (Ti)i <N such that, for m > 1, we have, 
for all i ? N, 

N(Ti, d, 4-m+ 1) < (3 . 4v)m- 

Using Proposition 2.1, we have by a simple calculation 

(2.16) EsupXt < K14-1. 
tETi 

We now take for I the smallest integer such that 4'- < l o-2/4Ku, where 
K is the constant of (2.16). Thus, assuming, as we may, K > 1, we have 
4- &< E provided u ? vu2/oE. We have N < (16KAu/ VIV2)v, since 
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4-1 > /rI2/16Ku. Also we have 

H < vo-2/4u, a < 4-1+1 < 

Observe that, since u> 2 o, we have H < ? < u/4, and we have a < a-, so 
that the result follows by (2.12). m 

Our next application is an improvement of another result of Samarodnitsky 
[15] that is related to Theorem 1.2. 

PROPOSITION 2.7. Consider a Gaussian process (X)t e T and denote by d 
the distance induced by the process on T. Set - = SUPt eT(EXt2)112, and, for 
8 > 0, set 

T, = {t E T; E(Xt2) > -2 - 2}. 

Consider numbers v 2 w ? 1 and assume that for all 8 > 0, E > 0, E < 
8(1 + Wv )/ Vw, we have 

(2.17) N(T6, d, 8) < AVw-uv 

Then, for u -2 2o-?r, we have 

Aww/2 U -w U 
(2.18) P(supXt ? u) ? - /2 KV+W F t). 

PROOF. We set 60 = 0, 81 = x/To-.2/u, and, for k > 1, we set 8k = 2k-131. 
For k > 1, we set Uk = T6k \ T^kl. Setting 8O = 81(1 + Cv )/ Iwh, we have 

+ 
O21 ) )< _ 

2 
, 

80 81 

and thus, setting a-^2 = a2 - 52- 1 and applying Theorem 2.4 to Uk, we get 

P sup Xt u) < Aw .(_ 4) 
E Uk ~ ~ k 

Denote by ko the largest integer such that 5ko-1 < o-/2. Since u ? 2r/ 0-, we 
have ko ? 2 and kok-1 o-/4. For k < ko, we have ok2 2 3a-2/4, so that 

Pt sup Xt 2 u) < A6w ( 0 exp -2(2 2) teC-Uk u)<8<K 

Since we have 
1 1 a2- 

2 > a^2_ 1 2- + a-4 

we see that 

( sup Xt 2 u )< Ak exp _ ) ) 
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Now, we have 

k?1( u28~k-) =8j+ k? ( -1i E dexpt 20')= 1+ aw expt 0 

< 8i (1 + E 2wk expw22k-3)) 
k?2 

< (K51)w. 

Thus, if we set T' = U k < k0 Uk, we have, recalling the value of 81, that 

(2.19) KwET'4 (2 . 1) ( su~pXt 2u ) _A v2 K ((J2 ) a J 

For t 4 T', we have 

E(Xt2) < ? 2-52 0-1 < 02 -_ 2/16 = 150-2/16. 

Thus, if we use (2.17) for 8 = o- and we apply Theorem 2.4, we see that for 
u > crywe have 

(2.20) P( sup Xt2u) ? AoJW( o 2 ) 1- 

To conclude, it suffices to check that for x > ? we have 4F(4x/ 15) < 
(Kw)w/2x-wFD(x), so that the left-hand side of (2.20) is dominated by the 
left-hand side of (2.18). [1 

COMMENT. If we suppose w > 0 rather that w > 1, the only difference lies 
in the dependence in w of the right-hand side of (2.18). 

We finish this section with two more applications of Theorem 2.3. The 
following was proved in [17] using also the concentration of measure phe- 
nomenon, but in a different way. 

PROPOSITION 2.8. Consider a Gaussian process (Xt)t E T. We assume that T 
is compact for the natural distance d and that the process (Xd)t T is continu- 
ous for d (see, e.g., [19] for complete definitions). Let v. = suptET(EX~t2)12. 
Then, given E > 0, we can find u(s) such that 

u ? u(s) P supXt2u) - expu 2.2 )2 

SKETCH OF PROOF. Since the process is continuous, we have 

limE sup IXs - Xt0 = . 
8'- d(s, t)<8 
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Fix E > 0 and pick 8 > 0 such that 

E sup IX, - X'I < Eao2/8. 
d(s, t)<8 

Set a = o.2 8/4u. By (2.5) we get, for u large enough that a < 8, that 

teT 4 4 

K(T, d, )4?u) ( exp ) 

Now, by Sudakov minorization, for all 77 > 0, we have 

N(T, d, a) < exp 2 

for a small enough. Thus, taking 77 = o-4E2/8, we have N(T, d, a) < exp eu/2 
for a small enough (i.e., u large enough). This completes the proof. 5 

COMMENT. 

1. In [17] a result of the same nature is proved when the process (XI), T is 
only assumed to be bounded; but this does not seem to follow from 
Theorem 2.3. 

2. It should be pointed out that, instead of (2.5), one could use the cruder 
inequality 

P(supXt 2 u) < 2exp( 2(-2 ) 

which follows immediately from (2.2). 

We now turn to the main result of [19]. 

PROPOSITION 2.9. Consider a Gaussian process (Xd)tE- T; suppose that T is 
compact for the canonical distance d. Suppose that there is a unique point 
s E T for which 

EXS = sup EXt2 . 
teT 

For h > 0, set Th = {t E T; EXtXS >2 - h2}. 
Assume that E SUpte T Xt < ?? and that 

liE SUPtE Th Xt 
h-0oo h 

Then 

P(suptET Xt ? u) 
u-0 (u/cr) = 1. 
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PROOF. Consider 1 > 'q > 0. Consider ho such that 

(2.20) h < 2ho = E sup Xt <?q2h. 
t E Th 

We can and do assume h0o < 0-72. Since we have assumed that T is compact, 
we have 

sup EXt <o 2, 
teTho 

since otherwise there would be s' 4 Tho (so that s' # s) for which EXS = 

and this contradicts the hypothesis that there is a unique point of maximal 
variance. 

By Proposition 2.8 we see that it suffices to prove that for some universal 
constant K we have 

(su Xt ? ? <( (1 + Kyq) 

for u large enough. We fix u and we set a = o-2/q7u. We set V1 = 0. For 
k > 0 we set 

Vk = T2ka Uk = Vk \ Vkl- 1 

Consider the smallest integer p such that 2Pa 2 ho. We have 

Tho c U Uk. 
O<k<p 

Setting Hk = E suptEVk Xt, we see by (2.20) that for k < p we have Hk < 

4 a7722k. Setting 

bk = sup (EIXt-x )l 
t E Vk 

we see (since s E Vk) that 

(2.21) bk < KHk ? Ka722k. 

By (2.5) we have 

P supXt U ?()( + K77 exp K772)exp2,q 

ua (1 + K7). 

To estimate P(supt EUk Xt u u) for k ? 1, we appeal again to (2.5). We now 
take the r.v. Y of Theorem 2.3 to be Yk = (1 - (a2kD2/o.2)Xs. [It is then a 
simple matter to see that (2.3) holds by definition of Th.] Then we have, since 
k :p and ho <?72, 

(( -X) 2)1/2 kk-1)2/9 < -1 < Y72 (E(Yk X)) =(a2k12q a2 1 qa2. 
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It follows from (2.21) and the triangle inequality that if we set 

ak = sup (EIXt - YkI2) 
t E Vk 

then ak < KY7 2a2k. Thus by (2.5) we get (since Y7 < 1) 

P( supxtu? 
t E- Uk 

( () o-( - (ja2 k-1) 2/cy 2) )(1 + Kj2 keXp(K77222k) )eXp(K 22k) 

( 4 f (1 - (a2 k1) 2/v2 )exp(K72) 

We observe that, for x < 1, we have (1 - x)-1 ? 1 + x, so that 

U U (a2k-1)2U 

o-(i - (a2 k1)2/2) v 2)3 

Also, it is immediate to see that, by a change of variable, 

4F(x + y) < e-xYcF(x) 

for y > 0, so that, recalling the value of a, 

- (a21)2/o2))< 4?) eI )exp( (a2k 4 )2U2) 

Thus we have 

E P sup Xt >u ) < 4 ( ( exp( - ( K1 
1?k~p \t EUkk>'' 1?k~p ~ 4' TJJ 

For 'q sufficiently small, this latter sum is < q. This completes the proof. C 

3. Isoperimetric bounds. We first recall some general tools. Through- 
out the paper, we denote by (&f)j <n an independent Bernoulli sequence [i.e., 
P~Ej = 1) = P(Ej = -1) = 1/2] that is independent of the sequence (X) <n. 
We denote by P6 and E6, respectively, the conditional probability and the 
conditional expectation given (XA < n. -* 
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LEMMA 3.1 (Gine and Zinn [5]). Consider any class F of functions on a 
probability space. Then we have 

(3.1) E F, f (X) )-nE( f) < 2E E: -if(Xi) 
i _- nl i <n 

(3.2)~ ~ /t > 0 P llf(Xi) -nE(f)l 2 4t) 

< 4P(| EEif(Xi) >t 

The following is also an idea from [5]. 

COROLLARY 3.2. Consider a class F of nonnegative functions on a probabil- 
ity space. Then 

E Ef(Xi) ?nsupE(f)+2E Eeif(Xi) 
i<n , S F i<n eF 

PROOF. We observe that, for all f E 1, we have 

E f(Xi) 5Fa f (Xi) nE( f|+ nE( f 
i<n i<n 

E f(Xi) -nE(f) ?+ nsupE(f). 
i <n IF fE S 

To get the result, we take the supremum over f on the left-hand side, we take 
expectations, and we use (3.1). L 

LEMMA 3.3 (Ledoux and Talagrand [9], Theorem 4.12). Consider a class F 
of functions such that -1 < f < 1 for f E . Then 

E E _i f 2(Xi) < 4E E 8i f( Xi) 

Combining Lemma 3.3 and Corollary 3.2, we get the following result. 

COROLLARY 3.4. Consider a class 9 of functions on a probability space and 
assume that - 1 < f < 1 for all f E . Seto2 = SUPf E 9 E( f2). Then 

(3.3) E , f 2(Xi) < no-2 + 8E |Ei f(Xi) 
i <n . i <n .-F 
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Throughout the paper we will use the following notation: We consider for 
L,S > 0, the function fpLs(t) defined for t > 0 by 

(PL,S(t) = L2S if t<LS, 

t I et 1/2 

(PL,S(t) = L tlog LS if t ? LS. 

We observe that fPL, S(t)/t increases. 
We now come to the following absolutely general principle. 

THEOREM 3.5. Consider a class F of functions on a probability space. 
Assume that 0 < f < 1 for all f c . Set 

H = E| I Ei f(Xi) | o= sup(EE(f-Ef )2)l/2 
i~n -Ff EY-- 

Then, setting S = n o2 + H, for some universal constant K1, we have 

t 2 KiH P |,f ( Xi )- nE(ff) ||> t )< exp( - SK,, SM )) 

REMARK. The author hopes that the relative case with which Theorem 3.5 
is disposed of will convince the reader to learn how to manipulate the isoperi- 
metric inequalities of [20], [21] and [23]. 

PROOF. There is no loss of generality to assume that the probability P has 
no atoms. Consider a function 0 which to each finite subset F of IQ associates 
a number 0(F). Assume the following: 

(3.4) F c G =* 0(F) < 0(G), 

(3.5) 0(F U G) < 0(F) + 0(G), 

(3.6) 0(F) < card F. 

Since we aw4ume that P has no atoms, the points X1,..., Xn are almost 
surely distinct. We can consider the function Z = 0({X1,..., Xn}). When this 
function is measurable, it follows from the isoperimetric inequality of [21] that, 
for some universal constant K2, we have, for t ? K2EZ, 

t et 
(3.7) P(Z > t) < expk- log 

K2 K2 EZ 

This inequality can also be derived from the newer and simple inequality of 
[23] (but the derivation is less immediate); but the inequality of [21] itself has 
now received a very simple and elementary proof [24]. 
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Consider the class c9 of functions f - Ef for f e . Thus 

| f(Xi )-nE( f) = (Xi) 
i~fl IF i~n 

Also, we observe that (averaging in X1,..., Xn inside the supremum rather 
than outside) 

E E8jEf < HI 

so that, by the triangle inequality, 

E eig(Xi) < 2H. 

We apply (3.7) to the functions 

'9(fXi, . . , Xn) = EE E 8ig(xi) 
i~fl 

and 

t'([Xi, gX ) g2(Xi) 
i~fn 

respectively, to get that, for u > 2K2H, v ? 8K2S, we have 

(3.8) P(E_, E -8ig(Xi) > u < exp( K2 g 2K2H) 

(3.9) Pti g2(Xi) 1l v) < exp(- 
- 

log8KS 

[We have used that, by Corollary 3.4, we have EIIEi<ng2(X )_K < 8S.] 
We now appeal to the isoperimetric inequality of [20] to get that, for 

t 2 4EsIIFi < nsig(Xdkf we have 

P( (| ig(Xi) t < 2exP(- 3211Ei<n2g(Xi)ff) 

Thus we get 

P(| E ig(xi) || t) < 2 exp( -2 ) + P E_|| 1 Eig(Xi) ||2> 
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We use (3.8) with u = t/4. Thus, for t 2 8K2H, v ? 8K2S, we have 

P ( ? g(Xi) ? t) < 2exp- 32) exP( -8K 8K2H) 

/ v ev 
+ exp(- -iog8V) 

K2 8K2S* 

If t < 8K2S, we take v = 8K2S, and we observe that v 2 t2/v to obtain 
the result. If t ? 8K2S, we take 

V 

{ 

lg~ 

et 

) 

1/2 v = tlog KSI 

and the result follows by simple calculations. cl1 

Let us observe a simple property of the function PL, S(t). 

LEMMA 3.6. One can find a number K(L) depending on L only such that 

(3.10) V t < K(L)v' , (PLs(K(L)tFS) ? lit2. 

COMMENT. The number 11 could be replaced by any other. 

PROOF. If K(L)tjS- < LS, then 

K___ 
2 

cPL,S(K(L)tVS) = 2 t 

If K(L)tV/S ? LS, then we have 

K K (L)t) ( etK(L) 1/2 

Since the log is at least 1, if K(L)tS 2 llt2L the result holds. Otherwise, we 
have t ? K(L)VI/111L, so that since t < K(L)V/S, we have 

'PLS(K(L)t-) 2 
- (logt 1(2 

Thus it suffices to take K(L)2 = l1L2 exp(11L)2. o 

Here is a simple corollary of Theorem 3.5. 

COROLLARY 3.7. There exist two universal constants K3, a0 > 0, with the 
following property. Consider a class SF of functions on a probability space and 
-assume that 0 < f < 1 for all f E I. Assume that 

sup Eff - Ef )2 < ao. 
fe - 
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Let 

H=E E eif(Xi) 
i~n 

Then, if 

(3.11) n ? K3H, M17 ? K3H, 

we have 

i-(M) < K3exp(- 11M2). 

COMMENT. The number ao will be used throughout the paper. 

PROOF. We set S = nao + 8H. Thus, by Theorem 3.5, we have 

MEn ? K1H 7T(M) < exp(-SoK1,S(MFnT)). 

We observe (and this will be used many times) that, since If(Xj) - Ef1 < 1, we 
have T(M) = 0 unless MVn < n, so that one can always assume M < v?. 

We now use Lemma 3.6 with t = MVn, S' = n/K(K1)2. We observe that, 
since M < VW, we have t < K(K1)Vg7, Thus, by (3.10), we have 

(PK,, S,(Mrn) 2 11M2. 

Since PK1, (t) is an increasing function of x, we are done if S' ? S. But this 
occurs if a 0 = 1/2K( K1)2, n ? 16K( K1)2H. o 

4. Binomial coefficients. Certainly it is hard to say something new 
about binomial coefficients. However, we have not found in the literature the 
exact property we need here. In any case, the reader might appreciate that we 
give a computationally very simple derivation, of the bounds we need. Consider 
1 < k < n - 1. Using Stirling's formulas as, for example, in Robbins [14], we 
get 

{nA ~KX n n 

Ok l/k(n-k) kk(nk)n-k 

Setting t = k/n yields 

Tuk s, gv( > 0 - t)ha 

Thus, given a > 0, we have 

, am \ KS n a tt 1 - a \-t 
n 



BOUNDS FOR GAUSSIAN AND EMPIRICAL PROCESSES 49 

Setting u = t - a = k/n - a, we get 

(4.1) a k(la-a)nf ~n) < KXn exp(-nT(u, a)). 

where 

T(u, a) =-(u + a) log a + (u + a) log(u + a) 

+ (1-(u +ai))log(1 - (u + a)) 

-( 1- (u + a)) log(1 -oa). 

To understand better the function 4, one checks by direct computation that 

dT 
AY(O, a) = , d (?, a) = 0 

du 

and 

d2T 1 4 
0u =._ d (u + a)(1 - a-u) 14u( -)2 

In particular, we have 

Thus 

dT 16 1 3 1 3 

(4.2) -(u,a) 2 4u + - lu- - -a + --al . du 3 \ \2 J1 2J 

The function h(,8) = (u - ,8)3 + p3 is minimum at p = u/2, so that 

dT 4 
(u,a) 2 4u + -u3 

du 3 
and thus 

U4 
(4.3) T(u, a) 2 2u2 + - 

LEMMA 4.1. Assume that a0 < a < 1 - aO (where a0 has been introduced 
in Corollary 3.7). Then, for all k such that an < k < n, we have 

ak(l -a) nk() < 7 exp-(n(2u +; )) 

where we have set u = k/n - a. 
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PROOF. If k < n(1 - ao/2), we have n - k ? nao/2, so that 

_ 1 1 

k(n- k) VT a0/2 

and the result follows from (4.3) in that case. 
If k ? n(1 - ao/2), k < n, we have u ? a0/2, so that by (4.1) and (4.3) 

(and since n - k ? 1) 

ak(l - a)n(k ) 

< pK P( n(2u + [FY /exp(-na4/12)] 
Fn ~(1 -a02) epnu 4j L OJ 

and the result follows since the last term is bounded independently of n. Only 
the case k = n remains. It is left to the reader. E1 

COROLLARY 4.2. Assume that aO < a < 1 - aO. Consider 0 < w < u < 1. 
Then 

al(1 - a)- (n )< ^gexp - n 2U2 +_4 + 5nu(u - w). l~n(w+a) 
1 u n \\+n4uw) 

PROOF. Consider the function h(x) = 2x2 + x4/4. It is convex, so that for 
all x we have 

h(x) ? h(u) + (x - u)h'(u). 

Thus, by Lemma 4.1, we have 

F, al(l - a)n-1( In 
l2n(w+a) 

K 
< 7=exp(- nh(u)) exp(( nu - (I - na))h'(u)). 

l2n(w+a) 

We observe that 4u < h'(u) < 5u. If we denote by 10 the smallest integer with 
10 ? n(w + a), we have 

E exp((nu - l + na)h'(u)) 
l2n(w+a) 

= (1 - exp(-h'(u))) 'exp((nu - l1 + na)h'(u)) 

K 
< h'(u) exp((nu - 10 + na)h'(u)) 

K 
< -exp(5n(u-w)u). 

U 
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5. Basic inequality: the case of sets. 

THEOREM 5.1. Consider a class e of subsets of fQ. Consider a certain set 
CO E e and assume that a0 < P(CO) < 1 - a0 (where a0 has been determined 
in Corollary 3.7). We set 

H=E E.eilcAco(Xi) , a= supP(CA CO). 
i<n CEf e 

Then, if M > 4/ao, we have 

r(M) < -eM exp2(KaM2 + 
' _ 

We first present a lemma that will allow us to bring in classes consisting 
only of small sets. 

LEMMA 5.2. In the situation of Theorem 5.1, consider the classes of sets 

-el= {CO \ C; CE -e}, e2 = {C \ CO; C E -}. 

Consider a subset I of {1,... , n} and the event 

QI = { i E I Xi E CO}. 

Set k = card I. Consider the random variables defined on fQ by 

(5.1) F1 = | lc(Xi)-k P(C) 
ie k~P (CO) el 

(5.2) F2= -(n-k) P(C) 

Then on fl1 we have 

(5.3) lc(Xi) - nP(C) <I nP(CO) - k +-) +F1 +F2 
i~fl ao 

PROOF. Consider a set C E W. We observe that 

C = (C\ Co) U (CO\(Co\ C)). 
Thus 

card{i < n: Xi EC}- = card{i < n; Xi E CO} 

+ card{i <n; Xi C\Co} 

- cardfi < n; Xi E Co\C}. 
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Now we observe that 

nP(C\CO)-(n-k) 
P(C C0) _ 

P(C\Co)nP(QlCO)-(n-k) 

P~fl \ <Co) P(n\Co) -k a 
-InP (CO) - kI ao 

A similar inequality for 

| P(C \ C) kP( CO \ C) 
nP(C0\C)-P(CO) 

completes the proof. M 

Consider the probability P1 on fQ given by P1(A) = P(A n CO)/P(A). 
Consider i.i.d. r.v. Y1,..., Yk distributed according to P1. Then, conditionally 
on fIr, F1 is distributed like 

V( k) = | lC (Yi ) - kP,( C) | 

Thus we will be able to bound the tails of V(k) using Theorem 3.5. 

LEMMA 5.3. Consider a class 5 of functions and set 

H=E ?e-f(X ) 
i~n 

Consider a subset CO of fQ, with aO < a = P(CO) < 1 - aO. Consider the 
variables (Y) < k as above. Then 

E E ?t f(Yi) < KH. 

PROOF. We observe first that 

E | |5 i f (Xi) >E E i f (Xi) 
i~n -e Xi E-Co 

Thus, if we set 

G= E|| E ?i f(YY) 
i<l 

taking expectations we have 

H 2 a~ (1 a)n ( I 1) 

Thus there exists 1 ? an such that G, < 2H. Since k < n < i/ao, we have 
E(Gk) < E(Gl)/a O. ME 
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We now observe that 
a 

sup P1(C) < a; 
CeW a 

Thus we see from Theorem 3.5 that 

P(F1 ? tLQ1) < K1 exp(- pK1S(t)) if t ? K1H, 

where S' < K(na + H). Certainly the same bounds do hold for P(F2 ? tI 1), 
so similar bounds (with different constants) hold for P(F1 + F2 ? tLQ1). We 
observe that these bounds are independent of k. 

PROPOSITION 5.4. We have 

| 10C(Xj)-nP(C) <nU(1+-) +W. 

where the random variables U and W have the following properties: W ? 0, 
and for all t > 0, u > w > 0, we have 

K 
(5.4) P(U > w, W > t) < exp(-nh(u) - 4p(t) + 5nu(u - w)), 

where h(u) = 2u2 + u4/4, and where 

p(t) = 0 if t < K4H, 

(p(t) = cpK4, s(t) if t 2 K4H, 

where we have S = an + H. 

PROOF. We set U = (1/n)I na - Ei < n 1CO(Xi) I On each set fQI, we define 
W = F1 + F2, where F1 and F2 are given by (5.1) and (5.2). Thus we have 

{U2 w} = U {I1; IcardI-nal w}. 

Thus 

P({U 2 wI) < , al(l - antn + a (1 - a 
l2n(w+a) l<n(a-w) 

= E al(l - a)n1(f) + (1- a)lan(f1) 
l2n(w+a) 12 ln(w + 1-a) 

so that, by Corollary 4.2, we have 

K 
P({U ? w}) < ? exp(-nh(u) + 5nu(u - w)). 
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The result then follows from the fact that 

P(W ? t Ifi) < K exp( -p(t)) 

whenever I c {,. ..,n}. 

We now go back to the proof of Theorem 5.1. We keep the notation of 
Proposition 5.4. 

Consider the function 'p defined in the proof of that proposition. The 
function p(t)/t increases. We define u by u(1 + 2a/ao) = M/ v', and we 
note that u < 1. We consider the smallest d ? 1/u such that (p(d)/d ? llu. 

Suppose that nU(1 + 2a/ao) + W ? MF. 
Consider the smallest 1 ? 0 such that 

nU(1 + 2_ M - (1 + 1)d. 

Then, if 1 > 0, we have 

/ 2a 
nU 1 +-< MM - Ild, 

ao 

so that W ? Id. Thus, since W 2 0, we can find 1 ? 0 such that 

W > 1, U U -(I 
+ 1)d 
n 

By Proposition 5.4 this implies 

r(M) := P( E 1C(Xj) - nP(C) ? Myb) 

K 
<-7=- exp( -nh(u)) E exp(5u(l + 1)d - (p(ld)). 

n U 120 

For 1 > 1, we have 

'p(ld) ? lop(d) ? lluld ? 5u(l + 1)d + lud 
so that 

E exp(5u(l + 1)d - p(ld)) < E exp(-lud) < K 
121 121 

as ud ? 1. Thus we have 
K 

r(M) < F exp( -nh (u)) exp(5ud). 

To estimate d, we use (3.10) with t = uK(K4)F to see that (PK4,s(do) ? 

lldou, where do = KuS, so that we have d < max(1/u, KH, KuS), and thus 

HM ( 
ud <K 1 + ; +aM2. 



BOUNDS FOR GAUSSIAN AND EMPIRICAL PROCESSES 55 

To conclude the proof, it remains to evaluate exp(- nh(u)). We write 

M M M 
h(u) hh ( + ( - 7f'(7 

Mi M M 
> h -5 A;-uJ 

M M2 
> - Ka 

Fn n 

Theorem 5.1 is proved. m 

6. Classes of sets. Our aim is to prove Theorem 1.1. The hardest case is 
(i), where condition (1.2) holds. Until further notice, we assume that e is a 
class of sets that satisfies (1.2), where V ? e. The necessary modifications to 
cover case (ii) will be indicated later on. 

LEMMA 6.1. Consider a class e of sets that satisfies (1.2) and points 
XD ... ,xn of fl. Set 

b E1c(xi) 

Then we have 

Vn 
E E i lc(xi) < K bv log b- 

PROOF. Consider the distance a on C given by 

S(A, B) = (card{i < n; xi E A A B})1/2 

Thus we have 8(A, B) = VlndQ(A, B), where dQ is the distance on e given 
by (1.3), with Q = (1/n)Ei < n8x, By (1.2), we have 

(6.1) N(e, 5,E N(e, dQ) 6 2/n) < 2 

The diameter of e, for the distance 8, is at most x/-E. By Proposition 2.1, we 
have 

E , eilc(xi) < log N(2, 8, ?) de. 

Using (6.1), the result follows by a routine computation. m 
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PROPOSITION 6.2. Set a = supc e P(C). Then we have 

IV 
(6.2) E E 1c(Xi) < 2na + Kv log-, 

i~~~~n ~~a 

V V V12 

(6.3) E .eiic(Xi) < K Vl +n 

PROOF. Step 1. Consider the rv. b = IIE < n 1C(Xd) I . 
From Lemma 6.1, we have 

Vn 
(6.4) EE Eeilc(Xi) K b og b 

The function x -* x log(Vn/x) increases for x < n (provided V ? e). Thus, if 
we set b' = max(b, Eb), we have 

Vn 
EE Eilc(Xi) < K b'vlog b 

Vn 
?K b'vlo~Eb. 

Since Eb' ? 2Eb and since E X < Eb, we get 

Vn 
(6.5) E E eilc(Xi) < K Ebv log 

Step 2. By Corollary 3.2, we have 

Vn 
Eb < na+K Ebv log 

If Eb ? 2na, we have Eb - na ? Eb/2, so that since Vn/Eb < V/a, 

V 
Eb <K Ebv log- a 

and thus Eb < Kv log(V/a). Thus, in any case, we have (6.2). And (6.3) then 
follows from (6.5). [ 

We now show that we need only be concerned with sets C such that 
aO < P(C) < 1 - aO. 

PROPOSITION 6.3. Consider a class e of sets that satisfies (1.2). Assume 
that supc0~P(C) < a0. ForM 0 O. we set 

r(M) P( E 1C(X>) - nP(C) > M4n 
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Then we have 

K M) (6.6) V n 1, V M > K4 V r(M) < exp(-2M2). 

PROOF. Set 

H = E || eilc(Xi) 
i~n 

It follows from Corollary 3.7 that (if K is large enough) (6.6) holds when- 
ever 

(6.7) n 2 K3H, MVn 2K3H. 

Now, it follows from (6.3) that 

H < KS (-( ao +-log -)log-) 

so that (6.7) holds as soon as n ? K4v logV, M ? K4 v log V. Since, as 
already noted, we have n ? MVn, we have n ? K4v log V as soon as M > 
K4VvlogV. a 

After these preliminaries, we go back to the proof of Theorem 1.1. We 
assume M 2 K4v log V. 

By Corollary 4.2, we can assume a0 ? P(C) < 1 - a0 for C E W. The 
method of proof is similar to that of Theorem 2.4. We will split e into sets to 
which Theorem 5.1 will apply. We will take a = v/M2. 

Consider the smallest p such that 4-P + 1 < a. Consider q ? p, which will be 
determined later. We construct the partitions of T = 6 given by Corollary 2.6, 
with k1 = [3 * 4v] 2 2 * 4v. Thus N = card p < (KVM2/v). Consider the 
atoms (j)>%N of ?p4. Set 

Hj = E E Ei1CACj(xi) ' 

where Cj is an arbitrary element of ej. Set H = sup1< ?, Hj. We will apply 
Theorem 5.1 to each class ej. Thus we need to control 

K4MH M4 
(6.8)- * 

In 4n 

For this, we evaluate H. 

PROPOSITION 6.4. Assume 3(q - p)v < n4 q. Then 

(6.9) H < K(v [ 4P + q4 + 4log V] + qv + v log V). 
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COMMENT. This proposition replaces (2.16) in the Gaussian case, in the 
proof of Theorem 2.4. If we had H < K no-4-P, the proof would be much 
simpler. The larger M, the larger are the extra terms of (6.9). It will require 
rather significant work to show that the term -M4/4n in (6.8) absorbs these 
extra terms for all values of M < v4. (This would be easier to do if one 
restricted to the case M < n1"4.) 

PROOF. Let us fix j < n. Then, by the usual chaining argument, we have 

Bj < E E e-i f(Xi) 
p<l<q i<n 

+ Esup E sif(Xi) 
r<R i<n 

There, card - < (3 * 4V)l-P, and each function f in -1 is of the type 
lc - lc,' where P(C A C') < 41+1. Also, R < (3 * 4V)q -p and, for a certain 
set Cr GE &, Sr consists of the functions 1C - 1Crfor C eE er, where 

er = {C E e7; P(C A Cr) < 4-q+1}. 

Let us observe that 

(6.10) EEi(lc - 1cr)(Xj) |Ei=cAcr( Xi) 

where = means equality in distribution. Let us also observe that the class 
{C A Cr, C E 4r} consists only of sets of probability < 4 -q+1 and satisfies 
(2.1). 

Now we have to evaluate the expectation of the supremum of a family of 
r.v.'s when we control their tails. This is standard. 

PROPOSITION 6.5. Consider (not necessarily independent) r.v. (Zr)r < R. 
Assume that for numbers A, L and B we have 
(6.11) t ? A > P(IZrI 2 t) < exp(-pOL,B(t)). 

Then, if log R < B, we have 

EmaxlZrl < K(A + LVY logR). 

PROOF. We write, for any number W 2 A, 

EmaxlZrl = f P(maxlZrl > t) dt 
r<R r<R 

< min(1, E PR Zr1 > dt 

< W+ fRexp( -sL, B(t)) dt. 
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Since PL, B(t)/t increases, we have 

fexp(- L, B(t)) dt ? I exp t )dt 

w 
~LpB(W) exp(-svL,B(W)). 

We take now W = max(A, L ,B log-R ), so that if log R < B we have 

'PL,B(W) ? (PL, B log R ) = log R 2 log2. 

We return to the proof of Proposition 6.4. 
In the case of ., it follows from Theorem 3.5 (or, if one prefers, from 

Bernstein's inequality!) that, for f e .T, if we set a = 4-1+, Z = 

i<n if(Xd)I satisfies (6.11) with 

L <?K A <Kx/-, B < na + V . 

Since v > 1, we have log card .9 < 3(1 - p)v. Thus, if we have 3(1 - p)v < na 
and na > 1, we have 

E E E1if(Xi) ?< K(vHi + V logcard~ 1 ) 
i~fl 

< K 41 (l - p)v. 

By (6.10), Proposition 6.2 and Theorem 3.5, the variables 

Zr | | E i(1 - 1 r )(Xi) 

satisfy (6.11) for L < K; B = na + A, where a = 4-q+1 and 

(6.12) A=KV J(( -log )lo)g a 

Thus, by Proposition 6.5, provided that 

3(q - p)v < B, 

we have 

Esup El if(Xi) =K(A+ v(q-p)(A+na)) 
r<R i<n 

< K(A + jv(q -p)A + Vv(q - p)na) 

Since a = 4q+l < 4 * 4Pq we have 

V 1 
log- -(q -p), 

a K 
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so that KA 2 Vvna(q -p), KA 2 v(q - p), and thus 

Esup Ei f(Xi) <KA < K(vn4-(q+logV) + v(q + logV)) 
r?R i<n 

< K( vn4 q + v g vq+vlogV). 

To complete the proof, it suffices to observe that 

E 4-1/2 ?< K 4P 

12p 

Proposition 6.4 is proved. fl 

Since 4-P < v/M2, we are left with the task to show that we can select 
q ? p such that 

(6.13) 3(q - p)v < n4-q 
and that we can control 

R = qn ( 4 + vq + vn4- logV + vlogV) - _ 

Fn ~~~~~~~~4n 
For that purpose, we simply pick the largest q for which (6.13) holds. We 

observe that 
n n 

3(q - p)4q-P <-4-P <v 

so that q - p < K log(Kn/M2). Also, by the definition of q, we have 

(6.14) n4-q-1 < 3(q + 1 - p)v < 3qv, 

so that, using that Vq log V < 2(q + log V), we have 

KMv M4 
R? - (q+logV)- 4 

We first bound 

KMv M4 
q 8n 

Since 4P+l 2 v/M2, we have p < K log(4M2/v), so that, writing q = p + 
(q - p), we have q < K log(Kn/v) and 

Mv Kn M4 
R1<K log - 8- . 

Taking the supremum over M of the right-hand side yields 
lxr / V i~~~1/3/ n1/3 

R1 < Kv(-) (log K-) <Kv, 

since n 2 v, as follows from the inequalities n ? fMi, M ? K4 a log V. 
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Thus we have 

KMv M4 
R <Kv + logV- 

_7n 8n 

Observe that, if M < 4n /log V, we have R < Kv. On the other hand, taking 
the supremum over n of the right-hand side gives 

R <Kv[1 + M2(logV)2j 

Thus we have proved the following. 

THEOREM 6.6. Under condition (i) of Theorem 1.1, if M ? K41v log V and 
if either n ? M2(log V)2 or M ? Cv log V, we have 

7(M) < (KV- e- _2 

where K is universal. To deduce (1.4), it then suffices to take K(V) large 
enough that the right-hand side of (1.4) is greater or equal to one when 
M < VlogV. 

We now turn to the proof of Theorem 1.1 under condition (ii). For a class F 
of functions and E > 0, we denote by N[ ](G, 8) the smallest number of 
brackets [ fl, f2], such that E( f2 - f_)2 <82, needed to cover E. An essential 
ingredient of the proof is as follows. 

PROPOSITION 6.7 (Ossiander's bracketing theorem [11]). 

E || f(Xi) - nEf |< Kvd dlogN[ ](3,E) d. 

Suppose now that e' is a class of sets that satisfies condition (ii) of 
Theorem 1.1, and that moreover all the sets C of -' are contained in a certain 
set C0 with P(CO) = b. Then, by Proposition 6.7, using a computation similar 
to that of Lemma 6.1, we get 

E A f(Xi) -nEf < K vnb log 
i~~~~~n ~~~b 

so that, by Lemma 2.7 of [5], we have 

(6.15) E|| E 8if(Xi) < K vn og 
i~~~~n ~~b 

This in particular applies to 6"' 6 when b = 1, so that 

E E ei f(Xi) ?< K vn log-V. 
i<n 
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The estimate (6.15), used instead of (6.3), is sufficient to make Proposition 6.3 
work [by first breaking e6 into pieces to which (6.15) applies]. The rest of the 
proof of Theorem 1. 1 is nearly identical to what it was in case (i), with the 
major difference that each class -6. is now contained in brackets [C1, C2] with 
P(C2 \ C1) ? 4-q and satisfies N, 1(e, V6) ? (V/8)V. Thus, in the proof of 
Proposition 6.4, the quantity A for (6.12) can now be replaced by 

K nv4-q log(4qV),) 
and the conclusion of Proposition 6.4 can be reinforced to 

H?<K(rnv~4-~q + K n4 g) 

We then take q as before, so that by (6.14), we get 
n 

n- ?< Ky log 2 

so that 
Mv n M 

R?<Kv +K log 2log V- ~~ 
Mn Y ~4 

It is simple to see that if n ? M 2 log V log log V, then R ? Ky. 
Also, it is simple to see that 

R?<Kv(1 + yM2log log V) 

so that R ? Ky for M ? Vv log V log log V. Thus we have shown the following 
result. 

THEOREM 6.8. In case (ii of Theorem 1. 1, if M ? K vv-logV and if either 
n ? M 2log Vlog log Vor M? Vvlo~gVl~oglog V, we have 

where K is universal. 

We now explain how to prove Theorem 1.2. We observe that, for all /3 

and u, 

(U-_P)3 +f83 =u3 - 3f8u2+ 3f32U 

u 3 /2u 
= U(U2 8 fu+32) > -+ 

since 

2 '8forallf3. U-38u+3 _+- fral8 
8 4 
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Thus, by (4.2), we get 

dT u3 u /l 2 
-(u,a) ? 4u + - + a 
d9u 8 4\2 / 

and thus 

T(u, a) 2 2u211 + - a + 
[ 16 2 JJ 32 

Only the obvious changes are needed to the proof of Theorem 5.1 to obtain 
that if moreover all the sets in e satisfy IP(C) - I ? 23, then the conclusion 
still holds with the term e-2M (1+1 /16) instead of e-2M . Again, only obvious 
changes are needed to show that if v satisfies either condition of Theorem 1.1 
and moreover all the sets in v satisfy IP(C) - ?1 /3>, the conclusion holds 
with the term e -2M2(1+p2/16) instead of e-2M2. The dependence in /8 is 
certainly not sharp, but this statement suffices to derive Theorem 1.2 the way 
Proposition 2.8 follows from Theorem 2.4. 

We now discuss some possible variations on Theorem 1.1. One such varia- 
tion in case 2 is to consider more general ways to control the bracketing 
entropy than just assuming polynomial decay. One can, for example, assume 
that 

N[ ](e, E-) < () 

where fp satisfies p(e/2) < A(P) (polynomial-type control) or log P(E/2) < 
/3 log (e) for some / < 4 (exponential-type control). The main difference from 
Theorem 1.1 is that the statements are not so clean, since it is harder to 
optimize the size of the pieces in which 6 will be broken for applications of 
Theorem 5.1. Let us also note that in the case where we assume log P(E/2) < 
,/ log (P0, Lemma 2.5 is not needed, and the proof greatly simplifies. 

Another variation would be to assume that all the sets in e satisfy 
P(C) < a < 2 and to obtain a bound for -r(M) of the type 

K M a em 
Polynomial term in M x - exp - nT a, + perturbation term 

with the smallest possible perturbation term. In order to get a clean result, 
when a = 2, we have replaced -nT(M/ Vn, 2) by -2M2 - M4/4n and we 
have arranged that this little room given by the extra term M4/4n kills all 
the perturbations. It seems, however, that one can go through the same proof 
keeping the term - nT(M/ Vn, a) and tracking the perturbations (although 
the detailed careful computations remain to be done). 

T. Moment generating functions. When the function f is not the 
indicator of a set, it is not obvious how to obtain results conditioned on the 
event {EI < i f(Xn) - nE( f) 2 M?7}. A substitute for this is obtained through 
the next result. 
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THEOREM 7.1. Consider a function f on a probability space (Q, P) and 
assume that 0 < f < 1. Set a = Ef and assume that aO < a < 1 - aO. 

Consider a class a of functions on f. Assume that for all g in c9, we have 
Eg = Efg = O. Set 

H =E ,ig(Xi) o = sup(Eg2)1/2 b = sup 1111. 
i<n Ad g E ,gEc 

Let S = ao-2 + bH, 
Then, for t 0 O. u > 0, we have 

P( I f (Xi) - nEf 2 t; ||Eg(Xi)| 2 a) 
(7.1) i<n i<n 14 

< K exp - nAYa, n)- (p(u)) 

where (p(u) = 0 if u < K4H, and sP(u) = (PK4,s(U) for u ? K4H. 

COMMENT. It should be said that moment generating functions are not a 
sharp tool. For example, they do not allow us to capture the correct factor in 
front of the exponential in (4.1) (see [7]), thereby creating an irretrievable loss 
of one power of M in (1.8). The use of this technique is, however, motivated by 
the success of Theorem 7.1. 

PROOF. Step 1. By approximation, we can assume that a is finite. Con- 
sider the set 

I= {h: 0 < h < 1, Eh = a, V g E c9, Ehg = 0}. 

This is a convex subset of the unit ball of L(P) that contains f. Provided 
with the weak* topology o(L(P), L1(P)), this is a compact set, Let us fix A 
and A. and consider the function 0 on X? given by 

(7.2) 0(h) =Eexp(A( Eh(Xi) na) + cg(Xi) 

Since the exponential is convex, 0 attains its maximum at an extreme point 
of A. 

Step 2. We show that an extreme point of A' is of the type 1A. Indeed, 
consider h E A' and assume that P(B) > 0, where B = {O < h < 1}. Then, 
for some 8 > 0, we have P(B.) > 0, where BE = {E < h < 1 - E}. Since we 
assume that a9 is finite and since there is no loss of generality to assume that 
P has no atoms, we can find a function w that is 0 outside B6, such that 
liwiKl < a, Ew - 0 and E(wg) = 0 for all g in -. Then h + w and h - w both 
belong to A, so that h is not an extreme point. 

Step 3. Thus we have shown that for some set A with 1A E a", we have 
0(f) < 0(1A). Since 1A E a, we have P(A) = a, and E(glA) = 0 for all g 
in -A. 
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Thus E(gl1A) = 0 for all g in -9. Consider now, for a subset I of 
{1, ..., n}, the event 

Q. = {i E I Xi E A}). 

To compute 0(1A), we write 

0(1A) = E P(fl1) E expA( E A(Xi) -na) 
Ic{l, . .., n} i<n 

+,ELg(Xi)lI 
(7.3) i<n ,80 

< P P(Qf,)exp A(card I - na) 
Ic{l,..., n) 

x E ,exp pa E 9(Xi)l exp I-L 9,( Xi) lil, 

Consider now the probabilities on fQ: 

P1(C) = P(C n A)/P(A), 
P2(C) = P(C \ A)/(1 - P(A)). 

Consider Y1,... , Yn; Z1,... , Zn that are i.i.d. distributed like P1 (resp. P2). 
From (7.3) we get 

0(1A) < Eak(1 -a )n(k )exp ( Ak - na)) E exp ,a E g(Yi) 
(7.4)kn 

an(2e (Ak ))eP 

x Eexp,|t E g(Zi) 
i<n-k 

Step 4. Consider now the function 

(7.5) ) = K() = f eLxdx + f x exp(-(PK, 5X) dx. 
00 KHI- 

If we u.se Lemma 5.3 as well as Theorem 3.5 (after rescaling), we see that 
for K sufficiently large, the last two terms on the right of (7.4) are dominated 
by ga). Thus we have 

0( f) < 0(1A) ?< )2 (y ak(l - a)nkeA(k-na) 
k<n 

- g(jt)'2((1 - a)e-aA + aeA(1-a))n 

Step 5. By Chebyshev's inequality we have 

P E f (Xi) - nEf - t; + g(Xi) | u) 
i<n i<n -! 

< -(At+lu)grj2(l - a-aA + aA(l -a) )n 



66 M. TALAGRAND 

We observe (this is actually the derivation of the Chernoff bounds for the 
binomial law) that 

infe-At((1 - a)e-aA + ae A(1 -a)) = exp (-n a(-a)). 

If we observe that g(,) = E exp ,uY for a certain r.v. Y. we see by Cauchy- 
Schwarz that _L)2 < 6(2A.). Consider u ? 4KH [where K is the constant of 
(7.5)]. Then set 

(PK, S(u/4) 

so that PKS(X) ? 4Ax for x ? u/4. Thus 

L/2,ue2/xexp(K, s(x)) dx - f 2ie-2Ax dx < e-? /2 

Thus 

6(2,u) < fU/42IsLe2Ax dx + e -u/2 < 2elu /2 
-oo0 

and 

e -,U ((2/,t) < 2e - - /2 = 2exp(-(1/2)p0K, S(u/4)). 

This completes the proof. E 

We can now state and prove the basic inequality for classes of functions. 

THEOREM 7.2. Consider a class 91 of functions on fQ and assume that 
O ? f ? 1 for each f in F. Assume that o2 = supfE -E f - Ef)2 ? aO. We set 

H = E sup EEi(f-f')(Xi) ( PX= sup (E(f - f')2)1/2 
f,f'E59 i<n f, f'E 

Then, provided that p < a0, we have 

-M) e2M2e KP2M KMH M4 
,T-q(M) < K- exp Kp2 +- . 

PROOF. By approximation, we can assume that F is finite, so that there 
exists f1 e F for which o.2 = E(f1 - Ef1)2. 

For a function f e F, we set 
1 

0(f) = -2E((f - f1 - E( f - f1))( f1 - Ef1)). 

Thus 10(f)l p/f< p/ao?<1 and 0(f) <O since E(f-Ef)2?E(f1- 
Efl)2. 

For a function f E 91, we write 

g'(f) =f -f(l + 0(f)), g(f) = g'(f) - E(g'(f)). 
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Consider the class c9 of all functions of the type g(f) for f E 5". We 
observe that for g e -9 we have Eg = 0, E(f1g) = 0 (which follows from a 
straightforward computation). 

Since 10(f)I < 1, we have 1IgIl < 4 for g e . 
Also, 

(Eg( f )2)/2 ? (Eg'( f)2)/2 <p + o(p/o) < 2p 
and 

E| E E-ig( Xi) I]< E| E si(( f - fi)( Xi) - E( f - fi))| 

+ sup 0( f)E| E Ei(f1(Xi) - Ef1) 
fE F i<n 

By an argument used in the proof of Theorem 3.5, the first term is less than 
4H. The second is less than or equal to (p/o-)o- = p. Since we certainly have 
p < KH (by Khintchine's inequality), we get 

(7.6) E E eig(Xi) < KH. 
i~fl 

For f = , we have 

f=fi(1 + 6(f)) +g(f) + E(g'(f)), 
so that, since - 1 < 0( f ) < 0, Eg(f) = 0, we have 

E f(Xi) - nEf = (1 + 0(f))(E f(Xi) - nEfi) + E g(f)(Xi) 
i<n i<n i<n 

(7.7) < (1 + 0( f))( E fl(Xi) - nE/) + |E g(Xi) 
i~fl i~nfl 0 

< max(O, f, fi Xi ) - nEfi) + || E ( Xi) | 

Consider a number d > 0 and suppose that Ei < n fi(Xi) - nEf1 ? 0. If 1 is the 
largest integer such that Ei < n fi(Xi) - nEfi < MV7 - Id, then by (7.7) we 
have 

sup(f(Xi)-nEf)?M7=4 || g(Xi)| ?ld, 
fE i<n i<n ,48 

so that 

P(sup (E f(Xi) - nEf) ?MV) 

P ( g(Xi) - nEf ? MA (I + l)d g(Xi) 2 Id 
120 i<n i<n , 

+ P(| E 9g(Xi)| 2 M4)n 
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where the last term occurs because of the case Yi n f(Xi) - nEf < 0. To each 
term of the sum we apply Theorem 7 [using (7.6)], and we apply Theorem 3.5 
to the last term. The computation then parallels that of the end of the proof of 
Proposition 5.4. [To control r(M), we then apply the same argument to the 
class F' = {1 - f; fe F}.] o 

8. Control of the variance. Consider a class F of functions on fQ, such 
that 0 < f < 1 for each f e . Assume that 

V feS, E(f-Ef) ?2< 1/4. 

We would like, using this information, to improve upon Theorem 1.3. In the 
case of one single function, sharp bounds for 

(8.1) P( E f(Xi) - nEf nt) 
i~n 

are better expressed when Ef = 0. In that case, setting a2 _Ef2, b = sup f, 
Hoeffding [7] shows that 

(8.2) P( E (Xi) 2 nt) < exp(-nO(t, 0.2 b)), 

where the function 0(t) = O(t, 2, b) is best understood by the relations 0(0) = 
o'(0) = 0, 

0"(t) = 
O2 + t(b - 2/b) - t2 

It can be shown that 0(t, 2, b) is a decreasing function of o-, a fact that we will 
use many times. 

Let us observe that 

t2 t3 / O"2 
(8.3) 0(t) = 2o2 - 6 4 b - b + O(t4), 

so that the influence of b on the right-hand side of (8.3) starts to be felt 
(unless b - c2/b < 0) for nt3 > o-4, that is, when t = M/ n, for M3 > 4r. 
For values of M just slightly larger (M3 ? o/ log n), the influence of the 
second term on the right of (8.3) is more important than any polynomial term 
in M in front of the exponential. In other words, when proving bounds of the 
type 

(8.4) r:(M) < (LM)aexp(-n Mp (F,2))2 

the number a becomes unimportant for M3 ? O-4F/ log n, if 0(t, o-, 1) - 
p(t, .2) 2 ct3/cr4(c > 0). This is in particular the case if one uses for (o the 
function derived from the use of Bernstein's or Bennett's inequality for which 
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one has (when b = 1) 

t2 t3 
(p(to) = 2o2 - 4 + 0(t4). 

This is an interesting contrast with the situation of Theorems 3.1 and 3.2, 
which corresponds to the use of (8.2) for o-= b, so that the approximation 
0(t) = t2/2o-2 of (8.2) remains good until nt4 1, which corresponds to values 
of M of order n1/4 rather than n1/6 (a point at which, as should have been 
apparent from the proof, the sharpness of Theorems 1.1 and 1.3 becomes an 
illusion). 

It must also be mentioned [again because of the contribution of the second 
term on the right of (8.3)] that for these large values of M, no argument using 
(8.2) will be reasonably sharp unless it always uses (8.2) with b = 1 - Ef 
rather than b = 1. This is a level of sophistication the need for which has yet 
to be demonstrated. For these reasons, we will concentrate our effort on the 
values of M with M3 ? cr4F(nt3 ? or4) and only briefly indicate what could 
be done for other values. For these values of M, one sees that changing b by a 
factor 2 will not matter much. Thus we will replace the class $F by the class of 
functions { f - Ef, f in F}. In other words, we will assume that $F consists of 
functions f for which -1 < f < 1 and Ef = 0, El'2 ? 

Let us observe that 

1 1 1 tb 

o2 + t(b -_ o2/b) - t2 -o2 + tb - 2 O4 

so that 

b2 t3b 
0(t, 2, b) 2o2 - 

In particular, if a function h satisfies Eh = 0, Eh2 <- 2 h < b, we have 

nt2 nt3b 
(8.5) PE h(Xi) ? nt < exp- 2 r2 + 

i~n 

We now come to a basic observation. 

LEMMA 8.1. Consider a function f, 11 f1K ? 1, Ef2 < )2 Ef = 0. Consider a 
function g, 1IgIIK < 2, Eg = 0, Eg2 = p2, E(fg) < 0. Consider t, u ? 0. Sup- 
pose that 

(8.6) nt3 < 0.4 24t2/0.f2 < U < tp/lf.- 

Theo we have 

nt2 nu 2 

(8.7) P( f (Xi) 2 nt; E g (Xi) 2 nu J < K exp-2 - - 
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PROOF. Consider a > 0. The left-hand side of (8.7) is at most 

P E ( f + ag)(Xi) ? n(t + au)). 
i<n 

Since ac> 0, E(fg) < 0, we have E(f+ ag)2 < O2+ a2p2. By (8.5) we have 
(since If + agi < 1 + 2a) 

P E: (f + ag)(Xi) ? n(t + au)) 
i<n ( n(t + au)2 n(t + au)3(1 + 2a) 

2(a 2+ a 2p2) 6of / 
We take a = u o-2/tp2. The first term inside the exponential becomes 
-n(t2/2o-2 + U2/2p2). For the second term, since u < tp/o, we have au < t) 
so that n(t + au)3/o-4 < 8nt3/o-4 < 8. Also, since u ? 24t2/o-2, we have 
16t3a/o-4 < nu2/p2, so that the second term inside the exponential is less than 
or equal to 8/6 + nu2/6 p2. E] 

It is well known that bounds of the type of Theorem 3.5 can be recovered by 
working through the usual chaining argument (see, e.g., [9], Chapter 11). The 
importance of Lemma 8.1 is that it allows us to mimic these arguments 
"conditionally on Ei < n f(Xd) ? nt." 

Our objective now is to (indicate how to) prove that, for M < n?/6a 4/3 

under hypothesis (i) or (ii) of Theorem 1.1, we have 

K'vMo,-2 I M2 

(8.8) 1-(M ) ) exp( - ) 

for M ? K(V, v, o-). Here, and in the rest of this section, K(V, v, a) denotes a 
number, depending only on V, v, o-, which may vary at each occurrence. 
(Figuring out the best possible dependence given by this approach requires 
checking many computational details and more energy than the author has left 
at this point.) Let us fix M. Consider the largest p for which 

p = 4-P`1 
a2F 

The approach is (as usual) to cut F into (KV/p)v pieces a9 for which 

m 2 

(8.9) rz(M) < Kv exp 22. 

Proceeding as in Section 6, cv will have the following property: there is an 
increasing sequence of partitions (U4l), 2 p of 9 into less than (2 . 41-P) atoms 
J for which 

ggEc :i d(E(g_ g,)2)l/2 < 4-1+1 



BOUNDS FOR GAUSSIAN AND EMPIRICAL PROCESSES 71 

Moreover, 

g,9g' E d= (E(g _ gf)2)/< P. 

To prove (8.9), there is no loss of generality to assume that v9 is finite. Let 
us consider f in c9, such that 

Vge 9, Ef2>Eg2. 

Set 9' = {g - f; g E A}. As usual, we write 

P(sup Eg(Xi) ?Mn) 
vi<n 

< P fP(Xi) 2 (M- l p?J )r 

(8.10) 1?1?10 i~n 

sup E g(Xi) (I - l)p) 
c9' i~n 

+P(sup Eg(Xi) 10Pvn) 

The last term will be evaluated through Theorem 3.5. The inequality 
i 0Fv > KM/o- will suffice to make this term of smaller order. Thus we can 
assume lo? < KM/u. We fix an l such that 1 < 1 < 10, and set 

t = (M - lp4v)/V4, u = (1 - l)p v/n. 

We have to get bounds for 

(8.11) P( E f (Xi) ? nt; sup Eg(Xi) nu). 
i<n a' i<n 

We will assume l > 1 and leave the easy case l = 1 to the reader. The 
definition of p shows that if M is larger than a suitable constant K(V, v, a), 
we have l0pVE < KMp/u < M/2, so that we have t ? M/24n. We also ob- 
serve that 

(8.12) pv/n < u < KMp/VFn. 

We now use chaining. Consider r ? p, and, for p < s < r and each atom R of 
AS, let us select hR E R such that E(fhR) is as large as possible. For R re 
set c9(R) = {g - hR; g E R}. For RE E R+ , set g9 = hR- f. For RE E , 
p + 1 < s < r, set gR= hR- hR', where R' is the atom of 4s-1 that con- 
tains R. Observe that by construction we have E(fgR) < 0. Consider a 
sequence (us)p<s<r such that Ep<s<rus < u/2. 

Thus, if sup' Ei<ng(Xi) ? nu, then we must have either Ei<ngR(Xi) ? 

nuS for some p + 1 < s < r and some atom R of ,s, or sup,-(R) ,i <ng(Xd) ? 
nu/2 for some atom R of 4.r. 

Setting ps = 4-s+1, we see that if 

(8.13) 24t2/ur2 < u <tp /u, 
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then by (8.7) we have that the quantity (8.11) is bounded by 

(1 K(2 4sP) expU2u2 - ___ 

(8.14) -~~ 
aS 

+ P g(Xi) ? fl) 
Ratom of Or i<n (R) 

This last term is evaluated through Theorem 3.5. Consider q 2 r, such that 
3(q,- r)v < n4-2q. The version of Proposition 6.4 for functions shows that 

H(R) = E| E 6zg(Xi) 
(8.15) i<n '(R) 

< K( nv(4-r + 4-q (q + log V)) + qv + v log V). 

We select r such that Pr u a/K5t, where K5 is universal and will be 
determined later. Since we assume M4 < ?Fn4, we leave the reader to check 
that, for M ? K(V, v, oa), by taking q as large as possible, we get H(R) < 
K flVPr (recall that v' ? M). [This observation also applies to the computa- 
tion of the last term of (8.9).] Also, we see that taking M ? K(V, v, a) yields 
H(R) < Knpr2. Thus, provided that 

(8.16) Klb-iPr ? nu ? Knpr, 

we have by Theorem 3.5 that the last term of (8.14) is bounded by 

(2 * 4rP) exp(- <) ?(2 4rP) exp(- 2) 

by a suitable choice of K5. We observe that 

p tp Kt V 
4r- < K- < - 

Pr UU a C 

Thus the last term of (8.14) is bounded by 

(Kn4 exp- 2) < exp - 2) 

for t 2 Ku v/n log(1 + v), which we may assume since M 2 K(V, v, a). 
Finally, by (8.12), we have 

/nt2 nt2 nu 8 
exp( - ?< exp(- 2 - ___ 

Observe also that (8.16) reduces to 
C? U ff u 2 a2 

Kgn- t - nu < n Kt2 

that is, t 2 Kaff/ F, Kt2 < u'2 that is, t ? KV /VKt u. The first condition is automatic since 
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t ? M/21P; for the second, it suffices to see that Kt2 < -2p v/n = or4v/MVW, 

that is, Km3 < c4rV, which holds. 
We now take us u4-(s-P)/K, where K is large enough that (8.12) implies 

u < tpp-1/a, so that us < tps_-/o for s ? p. To check (8.13), it suffices to 
show that Ur ? 24t2/oU2. But Ur = UPr/4p is of order uo-/Kpt and is bigger 
than 24t2/o-2, provided u ? Kt3p. According to (8.12), it suffices that 
Kt3VH ? u I, that is EM3 ? no-3?n . But M3 ? Vfr4 and we can assume 
n ? Kv/o . 

Now, we, have proved that the quantity (8.14) is bounded by 

nt2 nu2 
K exp(2F2 - p`_ 

We then leave the reader to combine this with (8.10) to yield (8.9), and hence 
(8.8). 

What can be done when M3 > F/Thr4? The main obstacle in the above 
approach using large values of M is in the proof of Lemma 8.1, namely in the 
inequality 

P E (f + ag)(Xi) 2 n(t + au)) 
(8.17) i on 

< inf exp(-no(t +anu, 2 + a 2p2, 1+ 2 a)). 
a>O 

The problem is that when nt3 -4, the value of 0(t, o2, b) depends a lot on b, 
so that replacing 1 by 1 + 2a creates a big decrease of 0. One situation where 
this difficulty is diminished is when one has a control over 11g lI, as the term 
1 + 2a can be replaced by 1 + 2aIIgIjoo. This is, for example, the case when 
one considers hypothesis by (ii) of Theorem 1.3 [and one mimics the proof of 
Ossiander's theorem "conditionally on Ei <,n f(Xd) ? nt"] and in particular 
when one controls the covering numbers of 9 for the LX norm. 

Another rather fascinating twist is as follows. As pointed out in Hoeffding's 
paper, the inequality 

f(Xi) nt) < exp(-no(t, Ef2supf)) 
i<n 

is rather sharp for functions f that take the value b = sup f on a set of 
probability a-2/(b2 + or2) (where 2 = El'2). Now, if a2Eg2 << Ef 2, the func- 
tion f + ag cannot take the value b = 1 + a sup g on a set of probability 
a-2/(b2 + U2) [where U2 = E(f + ag)2], nor can it be reasonably close to any 
such function. Thus one can expect that in such a calse (8.17) is not sharp. It 
can actually be shown (by adapting suitably a lemma of Bennett [7], Lemma 2) 
that (8.17) can be much improved in that case. The improvments that we 
developed were apparently optimal. They did allow us to prove (8.8) for the 
values of M3 much beyond 1Fno3 [the exponent being of course replaced by 
- n O(M/ Vn, a 2, 1)] although they were not sufficient to get a clean result for 
all values of M (or even of M < i2F). 
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Should anyone be really interested in the situation studied in this section 
for large M, we would like to point out a less accurate, but much simpler 
method. It is simply to write that, for a class of functions c9 and f E c9, 

T (M) < P(|E f(Xi)| 2n 4(M -)) (li+ P1M ) 
X) >W 

(8.18)M W 
( 2exp ( n ( ,r 21)) + P( E g(Xi) 2 wF, 

where c9' = {g - f; g E A9}. 
One then evaluates the last term through Theorem 3.5 and one optimizes 

over w. Finally, one breaks a general class 9 in pieces to which (8.18) can be 
applied efficiently. It should be pointed out that this rather straightforward 
approach can be used in the situations considered in Theorems 1.1 and 1.3, 
and that the power of M one obtains in front of the exponential is only twice 
the optimal, a result that already improves considerably on the previous work 
in this area. For simplicity, we will discuss this approach in the present case 
only for M < a-2Vn. The point of this condition is that it is simple to see that 
the function 0(t) = 0(t, a2, 1) satisfies O'(t) < Kt/o-2 for t < o2. If we set 

H = Ell Ejg(Xj) s,, p= sup(E(g f) 2)/2 
ge C9 

and S = np2 + H, it then follows from Theorem 3.5 and the fact that 

(M - W - KwM 

l n Fn 2a1 2 vn 

that (8.18) implies 

M KwM 
i-(M) < 2exp(-n () + K wM + exp(- pKs(wn)) 

provided w ? KH/ Vn. Consider then the smallest number w0 such that 
fPK, S(WOV) ? nO(M/ Fn ). Then 

M Ku, 0M KHM 
i-(M) < 3exp(-nO + K2- + K 2HM 

If we recall that nO(M/ n) < KMA2/a-2, we see from the definition of fPK, S 

'that if S ? M2/u 2, we have w0 < KVS/nM/u, so that 

M / M2 KHM) 
T79(M) < 3exp ( -nO( M KK + - 

Let us take p = vo3/M2, so that S ? M2/o-2 whenever M6 ? nv2u8 (the 
reader should observe that this is essentially the case M3 v< 'F4/K consid- 
ered before). Thus, in that case, splitting $F into K(V/p)v pieces c9' of 
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diameter < p, we get 

Krvw2 \ I M \ M2 KHM 

t expel -not ~ + + K + 
where H is controlled by (8.15). At least for M ? K(V, v, o), the last two terms 
in the exponent will disappear by previous arguments, yielding a reasonable 
bound, although not as good as the bound obtained previously in (8.8). 

If S < M2/o-2, then the definition of ffK S shows that 

KM 2 /eM2 -1/2 
w0? ~ log( ) 

Fn a ;2 a~g 2S) 

yielding 

((I M\ KM2 / eM2 -/2 KHM 
(8.19) -r(M) < 2exp -nO X} + F4log 2S + 2 

If it were true that S = np2, knowing that F can be split into K(V/p)v 
pieces for which (8.18) holds, optimization over p would mean taking 

__ _ M2/3 _ 

p = M exp - n1/6 3/4U273 23 

But, on the other hand, we do not know how to do better than (8.15) to control 
H (and, in particular, we need np 1!). This makes optimization of (8.18) 
unwieldy. A simple choice is, however, p = vo-3/M2, where M6 = nv2U8, so 
that p = n-1/3v1/3o-5/3. This can be shown to work in the usual way, at least 
for M 2 K(V, v, a). For M 2 MO this yields 

l KVn1/3 V ( M X KA3 (eM2 
1 

-r-9M) < l 1/3 r5/3 )x Xt-nOt +S (4 lo M 2 
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